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Abstract

A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to
regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part
of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional
information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical
interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose
the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the
molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that
couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of
which are known to play a role in root development. We perform extensive numerical calculations that allow for
quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model
recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of
stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected
under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to
explicitly consider gene regulatory networks or to treat other developmental systems.
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Introduction

The study of stem-cell niche patterns, and specifically how stem

cells can maintain their totipotent state while simultaneously giving

rise to daughter cells that obtain distinct fates to form differentiated

tissues and organs, is fundamental to understanding the develop-

ment of multicellular organisms [1]. Although plants and animals

have key differences in their development (e.g. lack of cell migration

in plant development), the cellular organization of stem-cell niches

in both lineages reveals striking similarities [1,2]. In both plants and

animals, stem-cell niches are formed by an organizer group of cells

with low rates of division, surrounded by stem cells with slightly

higher division rates. Moving distally from the organizer and stem

cells, cells proliferate at high rates. This proliferation domain (also

called amplification domain) is bordered by the elongation and then

the differentiation domains where proliferation stops and expansion

and differentiation, respectively, take place [1,3].

Gene interactions within intracellular complex regulatory networks

(GRN) [4,5] or from morphogen dynamics at supracellular scales (see

[6,7]) are fundamental for proper growth and development. Indeed

organ and tissue development, as well as stem cell maintenance relies

to a great extent on complex transcriptional regulatory networks and

chemical fields. However, these are not the only components of

pattern formation. It is now recognized that physical fields are also

critical to explain developmental patterns, as they may provide

positional information that modifies cell behavior and differentiation

(see [6,7]). At the cellular level, the simplest physical constraint is

space. Cell expansion is driven by turgidity, which is an important

force acting on the cell wall [8]. The cell wall is a network of rigid

cellulose microfibrils cross-linked by polysaccharides and proteins,

that confer stiffness to the wall and allows it to resist turgidity [9].

Expansion of the cell is opposed by the rigidity of the cell wall,

producing a real stress field. Recent evidence shows that these kind of

mechanical cues are transmitted to the nucleus and, directly or

indirectly, regulate transcription factors (see for instance [10] and

references therein).

Given the complexity of the processes involved in the coupling

of developmental restrictions, mathematical and computational

tools have become indispensable in our efforts to understand the

network of interactions involved in cellular differentiation and
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organ development. Previously [11] we demonstrated that a

simplified version of the originally proposed GRN [12,13]

involved in floral development, could be coupled with a

mesoscopic physical field. This provides positional information

to cells in the floral meristem which is required to produce the

overall spatial pattern of cells observed during early flower

development. This and other similar studies [14] suggest that

robust morphogenetic patterns in multicellular organisms emerge

from complex interconnected dynamical processes, acting at

different levels of organization and spatio-temporal scales.

However, models that include such dynamical processes into the

dynamics of pattern formation in multicellular organs are in their

infancy [15,16]. Here we use the Arabidopsis thaliana (A. thaliana)

root apical meristem as a study system to propose a model that

couples cell proliferation and growth with chemical-physical

dynamical processes to predict the emergence of patterns in a

multicellular and multi-scale system.

The A. thaliana root has become an important experimental

model for understanding the molecular, cellular and biophysical

basis of morphogenesis in complex organs. This is due to its

relatively simple cellular structure and its indeterminate growth,

which gives rise to a multicellular structure with distinct cell

proliferation and elongation domains. Importantly, the root apical

meristem exhibits the typical cellular organization of stem cells

described above (see Fig. 1). At the tip of roots stem cells are

located surrounding the quiescent centre cells or the organizer

cells (green cells in Fig. 1); together, they constitute the stem-cell

niche (SCN) of the Arabidopsis root. Towards the base of the

plant, the stem cells transit to a cell proliferation domain (CPD)

where cells have high rates of cell division (also called proximal

meristem by some authors, for example: [17]), then they enter a

transition domain (TD), where cells have low or no probability of

dividing, but they have not started to elongate [18]. The SCN, the

CPD and the TD comprise the root apical meristem (RAM). More

distally from the organizer center, cells cease to proliferate and

start to grow in the elongation domain (EZ). Upon expanding to

their maximum length, cells attain their final fate in the

differentiation domain and produce the different tissues of the

root.

Key experimental data on cell cycle regulation and auxin

behavior in the root are used to develop our model. Patterns of cell

proliferation along the root longitudinal (apical-basal) axis are

greatly affected by the dynamics of the cell cycle itself and by the

concentration of several plant hormones, including auxin [19–23].

Cells in the root proliferation domain of the RAM undergo several

Figure 1. Confocal microscopy image of the A. thaliana root tip.
The stem-cell niche (SCN) with the quiescent cells (QC, in green) and
surrounding stem cells, the cell proliferation domain (CPD) with actively
proliferating cells, the transition domain (TD) and the elongation zone
(EZ), where cells do not proliferate, are indicated. The SCN, CPD and TD
comprise the RAM.
doi:10.1371/journal.pcbi.1003026.g001

Author Summary

The emergence of tumors results from altered cell
differentiation and proliferation during organ and tissue
development. Understanding how such altered or normal
patterns are established is still a challenge. Molecular
genetic approaches to understanding pattern formation
have searched for key central genetic controllers. However,
biological patterns emerge as a consequence of coupled
complex genetic and non-genetic sub-systems operating
at various spatial and temporal scales and levels of
organization. We present a two-dimensional model and
simulation benchmark that considers the integrated
dynamics of physical and chemical fields that result from
cell proliferation. We aim at understanding how the
cellular patterns of stem-cell niches emerge. In these,
organizer cells with very low rates of proliferation are
surrounded by stem cells with slightly higher proliferation
rates that transit to a domain of active proliferation and
then of elongation and differentiation. We quantified such
cellular patterns in the Arabidopsis thaliana root to test our
theoretical propositions. The results of our simulations
closely mimic observed root cellular patterns, thus
providing a proof of principle that coupled physical fields
and chemical processes under active cell proliferation give
rise to stem-cell patterns. Our framework may be extended
to other developmental systems and to consider gene
regulatory networks.

Coupled Physical-Chemical Fields and Cell Dynamics
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rounds of division before starting to elongate in the elongation

domain. A complex network of regulatory interactions controls the

cell cycle, in which cyclin proteins are key regulators. As their

name suggests, the expression of cyclins oscillates during each cell

cycle. At the beginning of each cell cycle, D-type cyclins (CYCD)

induce the expression of the RETINOBLASTOMA-RELATED

(RBR) gene through E2F-RBR pathway. RBR is a negative

regulator of E2F transcription factors, which activate the

transcription of mitotic cyclin CYCB. Later, CYCB cyclins are

degraded by the Anaphase-promoting complex/cyclosome, thus

completing the cycle and returning to the beginning of the cell

cycle (see reviews in: [24,25]). For the present study, the oscillatory

and time differential expressions of CYCD and CYCB are

sufficient to represent the cell cycle dynamics. The cell cycle

phases and main regulators are illustrated in Fig. 2.

Auxin is a phytohormone involved in almost every aspect of

plant development (see [26–32]). Auxin is a key regulator of cell

proliferation and cell elongation, and also modulates cell cycle

progression and cyclins [33–35]. Auxin has been shown to

upregulate mitotic cyclin (CYCA and CYCB) expression, and

the over-expression of CYCA can partially recover the phenotype

caused by low auxin levels, thus suggesting that auxin promotes

cell cycle progression [35]. It is also well-documented that auxin

gradients correlate with apical-basal patterns of cell proliferation

and elongation along the root (see [35–41]). There is an auxin

concentration gradient along the longitudinal axis of the root, with

the maximum concentration detected at the stem-cell niche,

specifically in the quiescent center [41,42]. While other hormones

are important in root growth and development, we exclusively

consider auxin due to its clear role in regulating cell cycle

dynamics and its measurable concentration gradient that corre-

lates with root developmental patterning [26].

Theoretical and experimental studies suggest that such auxin

gradients depend critically on the polar localization of the auxin

efflux transporter proteins, belonging to the PINFORMED gene

family (PIN ) (see [43–47]). Five PIN members are expressed

throughout the root, namely PIN1, 2, 3, 4 and 7. The proteins

PIN1, 3, 4, and 7 maintain a continuous auxin flow from the base

to the apex along the central tissues of the root. At the most apical

zone, below the QC, auxin is laterally redistributed to the

peripheral tissues by PIN3, 4, and 7. Finally, PIN2 directs flow

from the root apex to the base in addition to lateral auxin flow in

peripheral tissues. In conjunction, all PIN proteins create a reverse

fountain mechanism that maintains an auxin gradient along the

root [43,46,48].

Physical signals have been shown to affect auxin distribution, for

instance auxin gradients can be modified by mechanically-induced

root bending [49,50], or by changes in gravitational fields [51,52].

Polar auxin transport and microtubule orientation also respond to

mechanical forces in the shoot apical meristem [53,54]. Such

evidence suggests that auxin transport is affected by and tightly

coupled to physical forces. Furthermore, there is increasing

evidence that mechanical stress is extremely important for plant

morphogenesis; for instance, experiments show that differentiation

of mesenchymal cells is influenced by the rigidity of the

intracellular matrix [55].

In this paper we propose a simple model to study the interaction

between cell proliferation dynamics, local auxin concentration

(that in turn depends on the polar localization of PIN transporters

in the cell membranes), and an elastic physical field arising from

the inherent growth dynamics of the root. Our model provides a

formal tool that can be used to understand and predict the

emergence of the cellular patterns in the root tip. This type of

model can be extended to explore similarities in stem-cell niche

organization and subsequent cellular behaviors (proliferation,

elongation and differentiation) of plants and animals, and to

predict if such cellular organization might be explained by the

coupling of generic non-linear physical and chemical fields

relevant to cell proliferation dynamics. Our model is validated

with experimental measurements on cell size and proliferation

patterns along A. thaliana root, and sets the stage for developing

similar approaches in other systems.

Model

Roots are three-dimensional structures. However, the root tip

presents a consistent cylindrical symmetry that allows one to

ignore changes in the transverse plane of the root when

considering growth models. It is therefore possible to use a two-

dimensional domain consisting of undifferentiated cells to repre-

sent the shape of the root tip. This approximation allows for

numerical analysis of the model in 2D space. The model can be

validated by comparing the patterns obtained with those observed

experimentally in longitudinal histological or optical sections as the

ones readily used in experimental assays done with A. thaliana

roots. In some cases we have also compared our results obtained

from 3D roots.

Based on the shape and spatial arrangement of the root, we

conclude that cell reproduction in the early stages of root

development involves mainly three chained dynamics of cell

proliferation and resulting elastic field, and of the pattern of auxin

concentration, whose co-occurrence provides the spatial informa-

tion necessary to regulate the proliferation rate of each cell and to

ultimately determine its future fate during differentiation (see Fig. 3

for a schematic summary of the processes to be modeled and the

region of the root in which they take place).

Our first hypothesis is that a macroscopic physical field along

the root tip results from cell growth and proliferation within this

tissue in addition to constrained conditions imposed by the root

cap and the epidermal cells surrounding the root. We propose that

this field is elastic in nature and can be characterized by point

functions of stress, pressure, or local mechanical forces that stem

from the symplastic nature of plant tissues that are formed by

interconnected cells surrounded by cellulose cell walls. Perfect

equilibrium represents a state in which there are no mechanical

forces acting anywhere in the system. In practice, this equilibrium

Figure 2. Simplified scheme of the cell cycle. The four main
phases and the expression of two key cyclins are indicated.
doi:10.1371/journal.pcbi.1003026.g002

Coupled Physical-Chemical Fields and Cell Dynamics

PLOS Computational Biology | www.ploscompbiol.org 3 May 2013 | Volume 9 | Issue 5 | e1003026



cannot be completely achieved because of the geometric

hindrances that impede the macroscopic system to reach a global

minimum in the energy landscape, trapping it in a local minimum.

In this situation there are remnant forces, and consequently the

field is not uniform. Our model considers this lack of uniformity as

a source of spatial information.

Our second hypothesis is that the synthesis, degradation and

transportation of auxin respond to the local elastic field in a direct

way, producing a dynamic pattern of auxin concentration along

the longitudinal axis of the root tip. This is important, since the

dynamical behavior of the formation of an auxin gradient should

be very different from the relaxation dynamics of the elastic field,

and it should occur at a different spatio-temporal scale.

Our third hypothesis proposes a direct relationship between

auxin concentration and cell cycle regulation that determines cell

proliferation rate. In the locations where cells divide and expand,

the elastic field is greatly modified and, in fact, it is reinforced

locally. This, in turn, affects the cell proliferation dynamics.

In short, we propose that the interaction among three different

coupled dynamics (the relaxation of the physical field, the

transport and concentration gradient of auxins and the oscillations

of the cell cycle regulators, i.e., the cyclins) capture the key aspects

underlying the overall emergent patterns of cell proliferation/

elongation, as well as the macroscopic appearance and overall

shape of the root. Our model includes the three dynamical

processes (cell proliferation, auxin spatio-temporal concentration

patterns and the elastic field) and their couplings in a two-

dimensional domain that represents a longitudinal section of the

root.

Cell dynamics and physical fields
We start by modeling the space occupied by a cell. Expansion of

the cell volume, whether by turgidity or growth, is opposed by the

rigidity of the cell wall producing a real stress field [9,56]. This

field is also present at the larger scale of a group of cells, such as

within the root apical meristem, since the increase in volume

required by cell growth and division is opposed by the surface

forces exerted by the root cap and epidermal cells surrounding it

[57]. From this perspective, it is logical to assume that this stress

field is self-regulated, that is, the accumulation of local stress (or

pressure) triggers mechanisms that prevent (or enhance) cell

division and growth. This assumption of self-regulation has been

incorporated into previous models of cellular interactions: Dupuy

and collaborators [58] used a rigidity matrix to model the

relationship between cell displacement and implied forces. A form

of potential energy has likewise been proposed as a way of

describing the equilibrium between turgor and cell wall resistance

[59]. Finally, in a recent paper investigating the floral meristem of

A. thaliana, potential energy was proposed as the means of

regulating auxin transport [15].

In our model for the root apex, we define a spatial domain in

which a potential function acts. The spatial derivatives of this

function render the mechanical force as a function of time and

space. Taking advantage of the radial symmetry of the region of

the root tip, we consider a two-dimensional space and divide it into

cells. We simulate cells by a Voronoi diagram obtained from a

collection of generating points that represent the position assigned

to each cell.

Voronoi diagrams
A Voronoi diagram, or tessellation, associated with a collection

of points assigns to each point a limited region of space in the form

of a convex polygon (polyhedron in three dimensions). Voronoi

cells are used nowadays in many fields of science, however it was

Honda [60] who first proposed the use of 2D Voronoi to model

cells in a biological context.

Our domain is defined as follows: 1) We construct a regular

shape with points on a rectangle and a parabolic tip. The exterior

points are fixed and represent the epidermal cells surrounding the

ground tissue of the root (See Videos S1 and S2). 2) These points

in the border cannot define a convex polygon, so the correspond-

ing cells have a point at infinity. 3) We create N points with

random coordinates in the interior of this domain and perform a

Voronoi tessellation using a Delaunay triangulation algorithm.

A typical configuration is shown in Fig. 4. Observe that the

areas of the cells (Ai) vary in size and shape, and that the

generating points shown in the figure (~rri) do not correspond, in

general, to the centre of mass of the cells (~rr0i
).

The average �AA0~
PN

i~1 Ai=N is the space that each cell would

occupy in a regular hexagonal lattice. Analogously, the distance is

di~D~rri{~rr0i
D~0Vi in the regular array. In two dimensions the

array of cells with minimal surface energy is the hexagonal lattice,

and we use this fact to define a potential function around this

equilibrium configuration.

Elastic fields
Previous studies have used springs to simulate the interactions

among cells [61], and the elements of the cellular walls [62,63]. In

our case the equilibrium area �AA0 could be used to fix the size of

mature cells, so deviations from this value would represent

immature cells. If the cells in the tissue tend to be isotropic in

shape, then a value of di different from zero would represent cells

with the wrong shape and, consequently, largely stressed.

Regardless of the actual functional form of the energy potential,

it is possible to make a Taylor expansion around the equilibrium

state retaining only the first non-zero terms, provided one

considers small deviations from equilibrium. The first non-trivial

contributions correspond to a quadratic form, whose coefficients

can be interpreted as force constants.

Therefore, we propose a harmonic potential acting on each cell

i

V (xi,yi,t)~
Kv

2
(Ai(t){�AA0(t))2z

Kc

2
(~rri(t){~rr0i

(t))2 ð1Þ

where the first term tends to uniformize the size, and the second

term is related with the shape of the cells. Kv and Kc are elastic

constants.

Figure 3. Histological drawing of the A. thaliana root tip. Here we
show the SCN and the same domains as shown in Fig. 1 are indicated
along the root apical-basal axis, as well as an schematic representation
of the processes that are included in the cellular model and their
interactions.
doi:10.1371/journal.pcbi.1003026.g003

Coupled Physical-Chemical Fields and Cell Dynamics
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The expressions for the components of the force are:

Fx(xi,t)~{
Kv

2

1

2

XM
m~1

(xi{xm):li,m
D~rri{~rrmD

fAi{~AA0g
" #

{Kc(xi{x0i
)

Fy(yi,t)~{
Kv

2

1

2

XM
m~1

(yi{ym):li,m
D~rri{~rrmD

fAi{~AA0g
" #

{Kc(yi{y0i
)

ð2Þ

where li,m is the length of the edge shared between neighboring

cells, and we have omitted the time dependence of the variables on

the right hand side. All quantities in Eqs. 1 and 2 can be readily

calculated with the algorithm used to define the Voronoi diagram.

Since this is a conservative system, and there is no reason to

assume conservation in the root system, we include dissipation in

the form of friction that simulates losses due to the inability of cells

to make drastic elastic changes of shape or size. Therefore, the

total force should be:

~FFT (xi,yi,t)~{+V (xi,yi,t){k~vv(xi,yi,t) ð3Þ

where ~vv is the velocity and k is a friction coefficient. The N
coupled dynamical equations of this newtonian system

L~vv
Lt

~~FFT

L~rr
Lt

~~vv

ð4Þ

can be integrated numerically by using a simple Euler method,

imposing fixed boundary conditions on the fixed surface points.

As an example of the relaxation process with this scheme, in

Fig. 5 we show the configuration of points in Fig. 4 after 2000 time

iterations. The numerical calculation was stopped when the

relative changes of the positions and velocities was less than 10{10.

The magnitude of the constants Kc, Kv and k sets the units of the

time variations of the dynamical behavior of the system, and

should be adjusted to physical units when modeling the growth of

the RAM. One should consider the number of cell divisions per

unit time (2.6 events/hr), the cell production rate (between 0 and 6

cells|mm{1hr{1) and the cell proliferation rate distribution

(between 0 and 50 mm=hr) in the RAM [64]. The final form of the

relaxed field suggests that it could be used to transfer positional

information to the cells in the meristem. In order to achieve the

latter, the auxin concentration must be coupled to the local value

of the potential.

We introduced the process of cell division and proliferation into

the simulation by defining two points inside a cell when it

undergoes mitosis. The resulting Voronoi cells then locally alter

the field, and the extra space needed for the two daughter cells is

obtained by moving the upper border of the domain a proper

distance to provide the exact extra space required. We show details

of this process below.

Auxin transport
It is assumed that the field V is involved in the processes of

auxin transport. In any transport equation there are basically two

aspects to be considered: the hydrodynamic forces compelling a

fluid to move, and the diffusion phenomena. Both are important

for the case of auxins. Furthermore, the process of auxin transport

Figure 4. Typical initial configuration of cells after the Voronoi
tessellation of random generating points.
doi:10.1371/journal.pcbi.1003026.g004

Coupled Physical-Chemical Fields and Cell Dynamics

PLOS Computational Biology | www.ploscompbiol.org 5 May 2013 | Volume 9 | Issue 5 | e1003026



is recognized to be active, meaning that the transfer of matter

through the cell membranes could go against the concentration

gradient of auxin molecules due to the action of PIN proteins. We

propose that the amount of matter Q transported per unit time

from cell i to a neighbor cell m is proportional to the gradient of

the field V :

Qi,m~{Pi,m
:Ai,m

:DVi{VmD, ð5Þ

where Pi,m represents the permeability of the membrane and Ai,m

is the contact surface between the cells i and m (the line li,m in 2D).

Observe that if the values of the Pi,m’s were constant, this

equation would reduce to the well known Darcy’s Law in

hydraulics, which is analogous to Fourier’s law in heat conduction,

or Ohm’s law in electrical networks. However this is not the case,

because of the action of the PIN proteins which are critical.

Therefore, the permeability is:

Pi,m~a(ci{cm)F i,m, ð6Þ

where a is a constant related with the time scale of the dynamics,

and the direction of the flux with respect to the concentration

gradient (ci{cm) (diffusion term) is given by the logical function

F i,m. This latter function mimics the action of the PIN molecules,

which attach to the membrane according to orientation and

position in the domain.

We can simplify this action by considering ‘‘gates’’, which could be

opened (1) or closed (0) according to specified simple rules. Let S be the

set of cells at the surface, i.e. in contact with the immobile epidermal

cells. We have set the following rules: All gates are closed, except

1. when i,m[S and i is above m,

2. or if i,m =[S and i is below m,

3. or if i =[S and m[S and i is above m.

The dynamical equation for the concentration of auxins in cell i
is then:

1

a

Lci

Lt
~
XM
m~1

lim(ci{cm)DVi{VmD, ð7Þ

where the sum is over all neighboring cells. This expression can be

readily integrated numerically in parallel with Eq. 4, once the

parameter a has been properly adjusted.

In Fig. 6 we show the effect of the logical rules on the formation

of auxin gradients. On the left we show a calculation without these

rules, that is, maintaining all the membranes permeable. In (B) we

incorporate the PIN action into the model. Observe that the

distribution of the concentration of auxins (normalized with its

maximum value) is similar to the one observed in real roots [42].

Cell division cycle
We shall assume that the period of the cell division cycle is

regulated by the local concentration of auxins ci. We are aware that

this is an oversimplification of the complex hormonal regulation of

the cell cycle in plants, but auxin has been shown to be an important

component of such regulation [65]. We therefore need a model for

the oscillations of cyclin concentrations. The robustness of these

oscillations suggests that a non-linear oscillator would be a good

model. We consider a two-component system for simplicity,

considering CYCD and CYCB as the two key players. Since both

undergo regular out-of phase oscillations with maxima related to the

transitions between the G1-S and G2-M phases, respectively (See

Fig. 2), we choose a simple Lotka-Volterra non-linear system with

two components, generally used in ecology to model the predator-

prey dynamics. This system presents all characteristics required for

the observed time behavior of the concentration of cyclins [66]. The

adimensional activator-inhibitor dynamical equations are:

Lu

Lt
~u(1{v)

Lv

Lt
~bv(u{1),

ð8Þ

where u and v represent CYCD and CYCB, respectively. This

system presents an oscillatory behavior, provided b is within a

certain range, whose period (T ) and wave shape depend only on b
and on the boundary conditions. It is easily shown that the period is:

T~
2pffiffiffi

b
p , ð9Þ

Figure 5. Configuration of cells after 2000 time iterations. (A)
The points in Fig. 4 once they have attained equilibrium using the
potential (See Video S3). (B) Final configuration of the cells in the RAM.
Observe the regularity of the shapes and sizes of the cells. (C) 2D profile
of the field after relaxation. Observe that it is not constant, but there are
three well defined sections (See Video S4).
doi:10.1371/journal.pcbi.1003026.g005

Figure 6. Typical numerical integration of Eq. 7 showing the
formation of auxin gradients. (A) All gates are open (no PIN action).
(B) Including the logical rules to open the gates to model the PIN action.
doi:10.1371/journal.pcbi.1003026.g006

Coupled Physical-Chemical Fields and Cell Dynamics
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which is inversely proportional to the square root of the ratio of the

linear growth rate of the ‘‘prey’’ (u) to the death rate of the

‘‘predator’’ (v). In Fig. 7 we illustrate the oscillations of both

variables.

Experimental data has shown that the cell cycle is arrested if the

auxin concentration is below or above certain threshold values,

and that the cycle period increases with auxin concentration [65].

Therefore, we simply assume that the auxin concentration is

linearly related to the only parameter of this dynamical system:

b~cc(i). Hence, each cell has its individual clock, which runs

faster or slower depending on the auxin concentration in the

model under consideration. We couple this dynamical feature into

the numerical calculation of the model by performing a division of

cell i when t~d(nDt{Ti½t�) (where the d{function is one when

the number of iterations nDt, used in the Euler integration,

surpasses the period). Therefore, c is another constant that relates

the time scale of reproduction (t) to the time step used for

relaxation dynamics. Parameters a and c should be fitted

according to the observed time scales for each of the three

dynamics. Time step Dt (in seconds) should be obtained as well.

In practice, the act of cellular division is performed in the

following manner:

1. At each time step, advance the internal clock of all cells

according to the value of the local auxin concentration given by

the cell life-cycle model.

2. Detect the cells in which the internal clock completes one

period (a single division event occurs every cycle), and set the

clock of these cells to zero.

3. In each one of these cells, ~rri is substituted by two points,

oriented at random and at equal distances of~rri. This distance is

typically of the order of a quarter of the radius of the cell.

4. The kinetic energy (v2
i =2) of the mother cell is equally divided

between mother and daughter cells.

5. The upper boundary of the domain is shifted upwards to

increase the area by the exact amount required by these new

cells to grow eventually to adult size.

The changes in the domain size and the size of the new cells

produce a rearrangement of all cells, and this changes the local

value of the elastic field, which, at the same time, drives the auxin

concentration that, in turn, regulates the division rate of all cells.

We hypothesize that coupling among such three dynamics at

different time scales is sufficient to produce the growth of the root

with cellular patterns that mimic those of real systems in a wide

region of the parameter space. We verified that the process is

extremely robust against changes of initial conditions.

Results

In Fig. 8 we show the dynamical loop that integrates the

dynamical equations with an Euler method. The program is

initiated by choosing the values of the number of cells (N), the

position of each cell (ri), their proliferation rate (vi), the gates given

by the PIN action between two cells (F i,m) and the concentration

of auxins (ci) at time t~0.

It is important to note that we normalize the auxin concentra-

tion function c with its maximum value at every time step. This

allows our model to take into account the role of possible sources

and sinks of auxin, since c is not a conserved quantity. The final

distribution of auxin is insensitive to the initial conditions, but we

start with a random distribution of auxin with a maximum at the

quiescent centre in accordance with experimental observations.

We recovered the same results if auxin concentrations were

random at initial conditions (data not shown). The cycle clocks of

each cell are set to zero at t~0 and reset after a successful cell

division.

The shape and color of the boxes (Fig. 8) represent the action of

the different dynamics as described in experimental systems (see

Fig. 3). The red square indicates a subroutine that includes the

logical rules F i,m of the PIN action and the red circles represent

points of logical decisions at appropriate times. Black arrows

represent the direction of flux of the simulation and the black-dash

arrow indicates a decision related to the time condition for the

dynamics of the cyclins. Eq. 4 is implemented in the blue diamond

Figure 7. Variation of two-type cyclins concentrations and
typical oscillations from the Lotka-Volterra model. Relative
expression data of D-type cyclins (purple triangles) and B-type cyclins
(green rhombuses) were taken from analysis of gene expression profiles
using aphidicolin synchronization on Ref. [76], and are available on
GENEVESTIGATOR web page. The oscillations from the Lotka-Volterra
model of the inhibitor (blue dashed line) and the activator (red line) are
also shown.
doi:10.1371/journal.pcbi.1003026.g007

Figure 8. Flow-chart diagram of the program used for the
numerical simulations. We show the parameters in red and the initial
conditions in blue at the top of the diagram.
doi:10.1371/journal.pcbi.1003026.g008
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block that represents the elastic field with time scale Dt. The loop

is performed while the time t is less than the final time h. Eq. 7 is

implemented in the green block. The cyclin period is calculated for

each cell at the violet block using Eqs. 8 and 9 and the threshold

b~cc(i). Cellular divisions are performed as a subroutine

represented by the orange block, and cell proliferation alters the

conditions of all three dynamics.

The first step is to estimate the values of the parameters of the

system. The adjustable parameters are the quantities indicated in

red in Fig. 8. We start with the kinematical parameters. The

constant Kc is related to the elastic modulus E of the cells. This

quantity is measured when studying the mechanics of walls, cells,

and tissues and is of the order of E*10MPa, as reported in [67].

For simplicity let us consider hexagonal cells in equilibrium.

The magnitude of the elastic force is DFE D~ES0DL=L0, where S0

is the contact area between two cells, DL~DA{A0D1=2 is the

change in length just after division, where A0~
ffiffiffi
3
p

L2
0 is the area of

the hexagon, if L0 is the distance between centroids of two

contiguous cells. This should be equal to the corresponding force

magnitude in our model DFKc
D~KcD~rri{~rr0i

D. Just after a cell

division, A~A0=2, thus DL~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p

L2
0=2

q
, D~rri{~rr0i

D^L0=2 and

S0~A0=6. Equating the two forces we obtain

Kc^
L0ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3
pp E:

Taking the average diameter of a mature cell as L0~15 mm [64]

and the experimental value E~10 MPa we obtain

Kc*80 Pa{m.

At this stage, Kv should be related to the properties of the cell

membrane, the metabolism of cell growth and the turgor pressure.

It is difficult to associate the action of the first term of Eq.(1) to a

single biological property. However, the dynamics of this term

should produce a restoring force of the same order of magnitude as

the second term, if the form and geometry of the domain are to be

maintained during the growth dynamics. Therefore, if we use a

value of Kv~80 Pa=m the system should relax to a set of cells with

roughly the same size and shape, as shown in the calculation of

Fig. 5B. We found numerically that this produces results for the

dynamics of growth that are comparable to the experimental

quantities measured.

Parameter k is related to the viscous damping of the cell motion.

The dynamical friction constant k can be estimated by observing

that the amplitude of the oscillatory motion e{ivt, caused by the

harmonic forces should be reduced, to avoid oscillations, by a

factor of 1=e in a lapse of at most one period T~2p=v, that is

k§m=T . Note that in Eq. (4) the mass of the cell (m) is considered

to be one. This gives v~2
ffiffiffiffiffiffiffiffiffiffiffiffi
Kc=m

p
&18 sec{1, and

k~mv=2p~2:84 Pa{m{sec.

The values used in the calculations are Kc~80, Kv~80 and k~3.

With these values we obtain the real time scale of an iteration step Dt
in the numerical calculations, by finding the number of iterations

needed to obtain the experimental number of cell divisions in that

lapse. In seven days, our observations showed (see Fig. 1) that the

number of cells in the meristem is about 350. In averaged calculations

we reproduce this number in 3400 iterations by using c~100 and

a~8. This means that the lapse representing one iteration is the

number of minutes in 7 days over the number of iterations, that is

Dt~(7|24|60)=3400~3 min. Considering that the average

auxin concentration is ScT~0:5, the value of b is &50 in units of

t, which is about 100 times Dt. These values produce a single cell

cycle period on the order of 12 hr, as shown in Fig. 7 [66].

In Fig. 9 (and Video S5) we provide an example of the growth of

the system. We start with eight points at random in the parabolic

tip of the domain, and fix the position of two additional points that

represent the quiescent cells in the centre of the domain, marked

with a white symbol. These cells reproduce at a rate ten times

lower than the others; they divide after ten divisions per cell on

average (in the right panel of the figure these quiescent cells have

just divided). The auxin concentration in these cells is set to the

maximum initially, and this is represented by a dark red color in

the figure. The cell’s position, shape, and proliferation rate are

calculated every time step and the auxin is transported between

cells. After 400 time steps the cells are attaining a uniform shape

and size (Fig. 9), and the auxin gradient is already formed. This

gradient will dictate the time in which a complete cell proliferation

cycle is accomplished locally, followed by a cell division event that

produces a sudden increase of the local potential that, in turn,

governs auxin transport.

Despite these complicated dynamical interactions, the auxin

gradient is preserved throughout and the process of growth and

cell patterning is by no means random. This can be seen in Fig. 10.

The overall pattern that emerges after some cycles of coupled

dynamics is very similar to the apical-basal pattern of cell

proliferation and elongation observed in RAM and along the

length of the root tip. Such dynamics and emergent pattern are

robust to initial conditions.

It is interesting to note that the region around the quiescent

center in the stem-cell niche shows the greatest concentration of

auxin, and a maximum in the potential. Also, the cell division

cycle is minimum at this location. An intermediate region in which

the auxin concentration diminishes and the potential is very small,

but the cell proliferation rate is roughly constant, surrounds the

quiescent cells. Finally, the most distal part from the tip (towards

the base of the plant) is characterized by a very small

concentration of auxin, causing the cell proliferation rate to be

very small, and the potential to increase enormously. The

combination of these effects results in the arrest of cell proliferation

and in the formation of the elongation zone at a defined distance

from the root tip. The emergent patterns recovered in the model

are similar to those observed for the distribution of auxin as

reported in Ref. [68], and the pattern of cell proliferation along the

root longitudinal axis reported in Ref. [69]. Our results are also in

agreement with the qualitative patterns of cell proliferation and

elongation that are observed along the apical-basal, longitudinal

axis of the growing A. thaliana root.

Figure 9. Typical calculation of the dynamical growth of the
root using the model described. We show four snapshots of the
configuration at 400, 1400, 2400 and 3400 time steps. The color code
represents the concentration of auxins, red for the maximum and blue
for the minimum. See Video S5.
doi:10.1371/journal.pcbi.1003026.g009
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We can use this model to predict what patterns are expected

under different growth conditions. In Fig. 11 we show a histogram

of the number of cell divisions occurring at a given distance from

tip, as obtained from an example calculation in which we fixed the

parameter a~8. Interestingly, we observe that the length of the

RAM does not surpass a certain value, which depends on a,

because the modeled coupled dynamics prevents cells far from the

tip to divide. Such types of coupled dynamics could explain the

emergence of the transition from proliferation to the elongation

cellular states in real roots, as well as the limited ranges or domain

sizes of actively proliferating cells in stem-cell niches of plants and

animals [1,3].

Hence, our model can be used to generate novel predictions

concerning the role of the parameters considered in the model,

and in determining RAM size and cell proliferation and elongation

patterns along the root apical-basal axis for A. thaliana under

different environmental or growth conditions. Our general model

could eventually be adjusted to model stem-cell niches in other

plants and animal systems, as well as modeling growth and

differentiation in communities of unicellular organisms if similar

physical fields can be postulated in such latter cases.

In order to examine the quantitative behavior of the model and

validate it with published experimental data, we compared our

model’s predictions to measurements of the proliferation rates

along the axis of the A. thaliana root as a function of the distance

from the quiescent centre [64]. We ran numerous iterations of the

model in order to obtain a reasonable statistical sample. We show

a typical result from the simulations run to the experimental data

in Fig. 12. Panel (A) shows the available experimental results for

cell proliferation rates along the apical-basal axis of the root

reported in Ref. [64] as a continuous red curve. The numerical

results from our model are shown in blue. These results were

obtained using the estimated parameter values that give the time

in hours and the sizes in mm. We shifted the origin to account for

the fact that all quantities in our calculations were measured from

the tip of the domain and not from the quiescent centre. Notice

that the simulated and experimentally generated curves are very

similar.

In Fig. 12(B) we show an histogram of the frequency distribution

of cell size. This histogram varies with different iterations because

of the stochastic nature of cell proliferation and growth dynamics

[70]. However, all calculations share the same qualitative

characteristics; namely an unimodal distribution between *10
and *35 mm, with a maximum around 15 mm. This result was

already recovered by Verbelen and collaborators Ref. [71]. The

red curve was obtained by measuring the cell size in an

Arabidopsis root Fig. 1. Similar curves have been obtained for

many different plant species, including wheat [70].

Figure 10. Plots of local potential, auxin concentration and cell
cycle, after coupling dynamics. The normalized local potential
(dashed-blue), the auxin concentration (red) and the advance of the
cycle clock (dotted-black) as functions of the distance from the tip (mm),
at t~3400 time steps, corresponding to seven days.
doi:10.1371/journal.pcbi.1003026.g010

Figure 11. Histogram of the number of cell divisions obtained
along the root when a~8. The potential profile is shown as red dots.
Observe that there are no cell divisions beyond *300mm, meaning that
the meristem has attained a stationary length.
doi:10.1371/journal.pcbi.1003026.g011

Figure 12. Comparisons between results obtained with the
model and experimental data. (A) Cell proliferation rate as a
function of the distance from the quiescent centre; calculation from
Fig. 9 after six days of growth. The red line and dots are the
experimental points reported in Ref. [64]. (B) Frequency distribution for
cell length. Experimental data were taken from our laser microscope
image of Fig. 1. (C) Average cell length as a function of the distance
from the quiescent centre; calculation from Fig. 9 after six days of
growth. The red line is the experimental result reported in Ref. [64]. (D)
Average cell proliferation velocity as a function of the distance from the
quiescent centre; calculation from Fig. 9 after six days of growth. The
red line is the experimental result reported in Ref. [64].
doi:10.1371/journal.pcbi.1003026.g012
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In Fig. 12(C) we show the variation of cell length along the

longitudinal axis of the root. The red curve is the experimental

result from Ref. [64]. It should be pointed out that the experiment

was obtained by measuring the cell flux in a fixed point and by

counting along the axis of the root in two dimensions, which is very

convenient when comparing with our two-dimensional model. In

order to mimic the experimental procedures, our numerical results

were obtained by spotting the centroids of the Voronoi cells in the

final time, which corresponds to six days. We calculated the length

(l) by assigning an area of Ai~p(l=2)2 to each cell. Again, a shift of

10 mm in the horizontal axis was needed to account for the

difference in the origin, and the results for each cell are displayed as

blue dots in the figure. Once again, the agreement between our

simulated results and the experimental data are clear.

Finally, in Fig. 12(D) we show the average cell proliferation

velocity, as defined in Ref. [64], as a function of the distance from

the quiescent centre (red line), and compare it with our results

(blue dots). In the experiment, Beemster and collaborators

measured the difference in position of each cell for two subsequent

times, averaged over time. In our calculation we measured the

difference in position of each cell with respect to the apex of the

root, which is itself being displaced every time a cell division takes

place. By changing the frame of reference, we can compare the

reported experiment with our results. The agreement is also

remarkable when one compares the simulation results recovered

with our model and the experimental data. This is more significant

than the previous validations, since this result reflects the totality of

the dynamical behavior in time and not only in a frozen snapshot,

as in the previous cases.

Discussion

We present a dynamical model that couples auxin concentration

gradients, cell proliferation and a physical tension field in a two-

dimensional spatial domain that mimics the A. thaliana root tip. We

have validated our model with both static and dynamic cellular

empirical data, and have shown that our model recovers the

pattern of rates of cell proliferation observed in the apical-basal

axis of roots. The model also recovers the discrete transition from

the proliferative to the elongation domains. Thus, our model puts

forward a novel theoretical framework to test hypothesis concern-

ing the coupled roles of auxin, cell proliferation, and physical fields

dynamics in the emergence of the cellular pattern observed along

the A. thaliana root tip. Ultimately, we have postulated a complex

system in which the main emergent property of the coupled

dynamics is at the appropriate spatial and cellular structure for the

intracellular genetic networks to express differentially along the

root. However, the explicit consideration of complex gene

regulatory networks is out of the scope of this paper.

Our model and analysis suggest that the size of the RAM

depends on the value of the parameter a (Fig. 13) in a rather

defined manner. This parameter represents the ratio between the

time scales of the potential relaxation and the auxin transport

mechanisms. The length of the RAM decreases as the auxin

transport parameter a increases as a power law. Therefore, this

quantitative prediction can be verified experimentally, as auxin

concentrations and transport along the root can be modified by

manipulating the conditions of root growth (e.g. adding NPA to

the growth medium to block auxin transport). Previous experi-

mental work has suggested that the size of the RAM varies

depending on growth conditions and is altered with external

supplementation of auxin [39].

Given that plant growth is influenced by the mechanical

behavior of the cell wall, measurements of the mechanical

properties of living cell walls are important to fully understand

how cellular organization is achieved. Like most biological

materials, material properties of cell walls change as a function

of age, the magnitude of forces they are subjected to, and

immediate physiological conditions [67,72]. This confers spatial

and temporal heterogeneity on cell wall constituents, complicating

measurements of the mechanical properties of plant living walls

even with present-day instrumentation. Furthermore, a single

modulus of elasticity is not sufficient because of the structural

anisotropy of the cell wall [67]. Therefore, comparisons between

the predicted values of Kv and Kc of our model and the values

reported for the modulus of elasticity of real cell walls are far from

being straightforward. However, the fact that we reproduced the

root tip pattern with the selected values suggests that they are likely

to be biologically meaningful.

More generally, our work reinforces conclusions from recent

studies that experimentally demonstrate the importance of

physical forces in the regulation of root apical-basal patterning

[49,53], such as the mechanical induction of lateral roots or the

coordination between auxin concentration and microtubule

orientation [49,53,54]. It is remarkable that simple arguments

concerning uniform size, shape and geometry of cell disposition is

sufficient to produce a non-uniform field that provides sufficient

spatial information to recover the overall dynamical growth

pattern observed along the root. It is thus predicted that

modification of physical forces would change the size and the

pattern of these zones, an issue that could in principle be further

explored theoretically and experimentally.

Auxin response is modulated not only by auxin concentration,

but also by the auxin signaling pathway, which includes many

components of different gene families, and which interact through

several feedback loops, creating non-linear behaviors. Conse-

quently, auxin concentration at any location does not necessarily

coincide with auxin response. Even if this is not the case in the root

[68], it could be important to include an explicit model of the

auxin signaling pathway in future extensions of our model. In

addition, in our model we considered the polar PIN configuration

as fixed, as in Ref. [46]. However, in reality a more robust

dynamic auxin transport is observed when the PIN expression is

regulated by auxin [73].

Figure 13. Log-log plot of the maximum RAM as a function of
the parameter a. Numerical results are blue rhombuses, and the red
line is the best fit with a function of the form f (x)~1:7x{0:26z1:88

with R2~:993.
doi:10.1371/journal.pcbi.1003026.g013
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In our model we fixed the position and number of the quiescent

cells. We are aware that the root stem-cell niches are regulated by

a complex regulatory network [74]. WUSCHEL RELATED

HOMEOBOX5 (WOX5) is a Quiescent Center identity gene

indispensable for the maintenance of the undifferentiated state of

stem cells and niche size regulation, and it is part of the proposed

root stem-cell niche regulatory network [74,75]. Recent theoretical

and experimental work has suggested that WOX5 regulates and is

regulated by auxin [36,74]. In our calculations we input several

initial conditions for auxin concentration, and demonstrated that

the model is fairly robust to these changes. However, as shown in

Fig. 6, neglecting the action of PIN polarization destroys the auxin

gradient along the root. Including these and other regulatory

interactions in a future model would enable us to explicitly

consider intracellular complex gene regulatory networks, which

are likely coupled among cells by physical and hormone fields.

The complex network underlying the cell cycle was also reduced

to consider two basic components, because for our purposes, only

the phases of the oscillations of the concentrations matter. Since

CYCA and CYCB oscillate in phase, we consider them as a single

variable; and because CYCD oscillates in anti phase, we take this

to mean that there is an activator-inhibitor interaction between

these two groups of proteins. In our model we stressed the

importance of the relationship between auxin concentration and

the regulation of cell proliferation, and we neglected the details of

the known regulatory processes of the cell cycle, which although

important, do not directly affect the overall results of our

simulation. Nonetheless, such details of the gene regulatory

network underlying the cell cycle, cell differentiation and auxin

dynamics should be incorporated in future developments of the

model.

In conclusion, we have put forward a minimal mathematical

model that considers the essential dynamical coupling of cell

proliferation with a physical field and chemical (hormone)

gradients, in order to explore if such processes are sufficient to

obtain the emergence of cellular organization during stem-cell

niche patterning and organ growth. We have used the A. thaliana

root as our study system.

Despite the simplification of many biological details, our model

is able to recover patterns that greatly resemble those observed in

stem-cell niches of plants and animals, and particularly those in the

A. thaliana root tip. The remarkable coincidence between the

simulated cellular characteristics along the model root apical-basal

axis (shown in Fig. 12), with those that have been observed and

quantified in actual roots, validates the qualitative features and

utility of our model for understanding the emergence of cellular

patterns in such a multicellular organ. Furthermore, the cellular

patterns of stem-cells among multicellular plants and animals have

generic traits. Our model provides a formal tool to explore if such

traits may be explained by the generic non-linear coupling of

relevant physical and chemical fields to discover emergent

properties of cell proliferation dynamics across biological systems.

Supporting Information

Video S1 Dynamical growth and proliferation of cells
and boundary.

(MP4)

Video S2 Dynamical behavior of stem cells only.

(MP4)

Video S3 Relaxation process for a fixed number of cells.

(MP4)

Video S4 Dynamical changes of the local cell potential.

(MP4)

Video S5 Dynamical development of auxin concentra-
tion.

(MP4)
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