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Abstract 

Purpose: Early accurate diagnosis of infection ± organ dysfunction (sepsis) remains a major challenge in clinical 
practice. Utilizing effective biomarkers to identify infection and impending organ dysfunction before the onset of 
clinical signs and symptoms would enable earlier investigation and intervention. To our knowledge, no prior study has 
specifically examined the possibility of pre-symptomatic detection of sepsis.

Methods: Blood samples and clinical/laboratory data were collected daily from 4385 patients undergoing elective 
surgery. An adjudication panel identified 154 patients with definite postoperative infection, of whom 98 developed 
sepsis. Transcriptomic profiling and subsequent RT-qPCR were undertaken on sequential blood samples taken 
postoperatively from these patients in the three days prior to the onset of symptoms. Comparison was made against 
postoperative day-, age-, sex- and procedure- matched patients who had an uncomplicated recovery (n =151) or 
postoperative inflammation without infection (n =148).

Results: Specific gene signatures optimized to predict infection or sepsis in the three days prior to clinical presenta-
tion were identified in initial discovery cohorts. Subsequent classification using machine learning with cross-validation 
with separate patient cohorts and their matched controls gave high Area Under the Receiver Operator Curve (AUC) 
values. These allowed discrimination of infection from uncomplicated recovery (AUC 0.871), infectious from non-infec-
tious systemic inflammation (0.897), sepsis from other postoperative presentations (0.843), and sepsis from uncompli-
cated infection (0.703).

Conclusion: Host biomarker signatures may be able to identify postoperative infection or sepsis up to three days in 
advance of clinical recognition. If validated in future studies, these signatures offer potential diagnostic utility for post-
operative management of deteriorating or high-risk surgical patients and, potentially, other patient populations.
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Introduction

Sepsis, the dysregulated host response to infection lead-
ing to life-threatening organ dysfunction [1], is a sub-
stantial global cause of mortality and morbidity [2]. 
Early, accurate diagnosis of infection and organ dys-
function remains problematic, as reflected by multiple 
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interventional trials over three decades failing to yield 
outcome improvements [3]. These failures relate in part 
to the uncertainty that infection was actually present [4, 
5], but also to belated intervention once the patient is in 
established multi-organ failure with the therapeutic win-
dow of opportunity having closed [3, 6]. Success with 
immunomodulatory and other therapeutic strategies is 
likely predicated on use early in the sepsis course or even 
pre-emptively, as frequently achieved in preclinical mod-
els [6]. On the other hand, inappropriate use of antibiot-
ics contributes to antimicrobial resistance [7] and may 
distract clinicians from diagnosing a non-infective condi-
tion [4, 5].

Considerable efforts are being expended to develop 
rapid, even point-of-care, biomarkers for infection and 
sepsis with high sensitivity and specificity [8]. Pathogen-
focused techniques include molecular identification of 
the pathogen or unique components such as prokaryotic 
DNA. The dysregulated host response is being inter-
rogated using -omic approaches, single- or multiplex 
protein assays or flow cytometry [8, 9]. However, host 
response studies to date often lack comparator cohorts 
of patients with non-infective causes of critical illness 
or microbiological confirmation that infection is indeed 
present. Furthermore, sampling is usually begun after the 
patient presents with suspected infection or sepsis. An 
ideal patient cohort would allow accurate pre-sympto-
matic identification of patients who proceed to develop 
an infection, in particular those progressing to sepsis.

Our primary study aim was to develop a tool to facili-
tate presymptomatic identification of patients developing 
an infection, and we hypothesised this could be achieved 
using transcriptional changes in small gene sets. As a 
secondary objective, we sought to determine whether 
we could pre-identify those infected patients who would 
develop new-onset organ dysfunction (sepsis). To this 
end, we conducted a large prospective, multi-centre study 
in patients undergoing elective major surgery, with daily 
blood sampling and data recording commencing pre-
operatively and continuing up to a week after. A clinical 
adjudication panel independently examined clinical and 
laboratory data to identify patients with definite infection 
± sepsis. Samples from these patients enabled compari-
son of microarray and RT-qPCR data against cohorts of 
postoperative day-, age-, sex- and procedure-matched 
patients with either non-infective systemic inflammation 
or an uncomplicated postoperative course.

Materials and methods
Study design
Elective surgery patients were prospectively recruited 
at eight hospitals (seven UK, one German) between 
November 2007 and February 2017. Ethical approval 

was granted through the Southampton and South-West 
Hampshire Multicentre Research Ethics Committee 
(Reference 06/Q1702/152). The protocol achieved US 
Federal Wide Assurance Independent Review Board sta-
tus (IRB00001756). Patients were enrolled if they gave 
informed consent, were aged between 18-80 years, and 
due to undergo elective major surgery that would likely 
enhance the development of postoperative infection 
(Supplement S1).

Data and blood sampling collection
Demographic data were collected at enrolment with 
baseline blood sample collection taken at 1-7 days pre-
operatively. After surgery, relevant clinical, laboratory 
and imaging data and blood samples were collected daily 
on all patients until seven days, hospital discharge (if 
sooner), or a diagnosis of infection or sepsis by the treat-
ing clinician. Two 4 ml aliquots of blood were collected 
daily into sterile EDTA vacutainers and then immediately 
transferred into RNAse-free vials containing 10.5 ml 
RNAlater® (ThermoFisher, Waltham, MA, USA) to pre-
serve the transcriptome.

Patient selection process
A detailed description is provided in Supplement S2. 
Briefly, the initial diagnosis of sepsis was based on the 
treating clinician’s interpretation of clinical and labora-
tory markers using the then-extant ‘Sepsis-2’ definition 
of sepsis [10]. This described ‘sepsis’ as suspected or con-
firmed infection with two or more systemic inflammatory 
response syndrome (SIRS) criteria, and ‘severe sepsis’ as 
sepsis plus poorly-characterized new-onset organ dys-
function. The new sepsis definition (Sepsis-3), published 
in February 2016 redefined ‘sepsis’ as infection plus new 
organ dysfunction identified by a ≥2 point rise in the 
Sequential Organ Failure Assessment (SOFA) score [1]. 
To align with modern nomenclature, subsequent analyses 
and descriptors apply the new definition.

Since clinical opinion can vary when diagnosing infec-
tion or sepsis [11], a Clinical Advisory Panel adjudicated 
cases and enabled confident identification of patients 
with postoperative infection (Supplement S2). Patients 
with definite infection were allocated to either an uncom-
plicated infection subgroup or to a sepsis subgroup if 
new organ dysfunction developed following surgery 

Take‑home message 

Early transcriptomic changes offer potential diagnostic utility for the 
management of patients at risk of developing subsequent postop-
erative infection ± sepsis. The limited number of genes identified 
facilitates the development of a point-of-care rapid diagnostic.
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with a rise in SOFA score ≥2 points above baseline [1]. 
Postoperative day-, age-, sex- and procedure-matched 
cohorts of non-infected patients making an uncompli-
cated postoperative recovery (SIRS-), or developing a 
systemic inflammatory response (SIRS+), were selected 
from the remaining pool of patients recruited into the 
study. Blood samples from these three groups, totalling 
453 patients, were taken forward for transcriptomic and 
subsequent reverse transcription-quantitative polymer-
ase chain reaction (RT-qPCR) analyses.

Microarray and RT‑qPCR analysis
Infected patients were split into Discovery (Gene Feature 
Selection) (n= 63) and Training and Validation (Classifi-
cation) (n=91) cohorts (Fig. 1).

Discovery (Gene Feature Selection) Cohort
Biomarker discovery studies were undertaken exclusively 
in this 63-patient cohort at a pre-determined interim 
analysis of the study. A detailed transcriptomic analy-
sis was initially undertaken using globin-reduced RNA 

(GlobinClear Human, ThermoFisher) from the blood 
samples of 58 patients collected during the three days 
prior to presentation of definite infection, and from 55 
matched non-infected (SIRS-) control patients (Fig.  1). 
Further details of the microarray analysis using Human 
HT-12v4 bead arrays (Illumina, San Diego, CA, USA) are 
shown in Supplement S3. Differentially expressed genes 
(DEGs) based on microarray data were identified by 
applying a linear model fit for each gene [12], a p-value 
cut-off of 0.05 and a fold change of at least 1.2. Data 
obtained from non-infected study patients were used 
as reference. Gene expression of the top 80 identified 
DEGs was verified using multiplex RT-qPCR (Fluidigm, 
San Francisco, CA, USA) and TaqMan Gene Expression 
Assays (Applied Biosystems, Carlsbad, CA, USA).

The RT-qPCR data were then further used for down 
selecting the 25 most promising biomarkers. In these 
experiments, analysis was possible for 63 infection and 62 
SIRS- patients. In addition, RT-qPCR data were obtained 
from 58 SIRS+ matched patients (Fig. 1; Table 1). Within 
the 63 infected patients, 37 developing sepsis were 

Fig. 1 Study schema with Discovery (Gene Feature Selection) and Training/Validation (Classification) phases indicated. RT-qPCR Reverse Transcrip-
tion quantitative polymerase chain reaction, SIRS systemic inflammatory response syndrome, Inf+ infected patients, Inf- non-infected patients; Inf+ 
OD- uncomplicated infection patients
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Table 1 Patient demographics and clinical metadata

Three main cohorts were used for analysis (infected, non-infected SIRS+ and non-infected SIRS- patients). The infection cohort is further sub-divided into patients 
who developed organ dysfunction (sepsis) and those that did not. Data are given for cohorts used for initial biomarker discovery and subsequent biomarker 
validation.

IQR interquartile range, SOFA Sequential (sepsis-related) organ failure assessment score

Patient cohort Infection (n = 154)

Organ Dysfunction+  
(n = 98)

Organ Dysfunction−  
(n = 56)

Non‑Infective SIRS (SIRS+;  
n = 148)

Non‑infected non‑SIRS (SIRS‑; 
n = 151)

Feature 
Selection 
(n = 37)

Classification 
(n = 61)

Feature 
Selection  
(n = 26)

Classification 
(n = 30)

Feature 
Selection  
(n = 58)

Classification 
(n = 90)

Feature 
Selection  
(n = 62)

Classification  
(n = 89)

Age, median (IQR) 69 (61–72) 67 (58–74) 65 (53–73) 61 (52–73) 67 (57–75) 66 (57–74) 66 (59–73) 66 (56–73)

Sex

Male 25 54 15 21 36 76 39 73

Female 12 7 11 9 22 14 23 16

Ethnicity

White 37 53 25 29 58 85 62 84

Black 0 3 1 1 0 3 0 4

South Asian 0 1 0 0 0 1 0 1

Chinese 0 4 0 0 0 1 0 0

Type of surgery

Abdominal 28 50 18 24 41 74 46 74

Cardiac 1 1 0 0 1 1 1 1

Gynaeco-urological 1 4 3 0 3 3 3 3

Vascular 5 4 4 2 10 6 10 6

Thoracic 2 2 0 3 2 5 1 4

Other 0 0 1 1 1 1 1 1

Cancer surgery 27 55 18 24 45 75 46 74

Day of clinical 
presentation of 
infection, median 
(IQR)

4 (3–6) 3.5 (2–5) 4 (3–6) 3 (3–5) N/A N/A N/A N/A

Source of infection

Skin and soft tissue 1 1 3 1 n/a n/a n/a n/a

Blood 5 5 3 2

Chest 15 33 10 12

Biliary 1 1 2 0

Abdominal 13 17 6 13

Urinary tract 0 4 0 2

Unknown 2 0 2 0

Postoperative SOFA 
score

Median SOFA score 
on day of diagnosis 
for infection or 
equivalent day post-
surgery, Median 
(IQR)

5 (2–10) 4 (0–7) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Patient outcome

Sepsis-related death 2 7 0 0 n/a n/a n/a n/a

Non-related sepsis 
death

0 2 0 0 0 0 0 0

Discharged from 
hospital alive

35 54 26 29 58 90 62 89

Remained in hospital 
>7 days

29 30 12 16 32 57 31 55
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compared to 26 with uncomplicated infection (Fig.  1; 
Table  1). Gene ontology enrichment was performed 
using the R package cluster profiler (v3.18.0) and visual-
ized using the R package GoPlot (v1.0.2).

Down-selection of genes based on RT-qPCR data 
was made using a two-step feature selection process to 
improve the performance of the predictive classifica-
tion models used to discern patient groups (described 
fully in Supplement S4). Briefly, the Boruta algorithm 
[13], a wrapper method based on random forest [14] 
was used for the selection of relevant features in the 
dataset. This step was followed by backward elimina-
tion to determine features with the most discrimina-
tory power for a particular classification. Training of 
these models relevant for feature selection was done by 
a 5-fold cross-validation repeated 25 times. Mean per-
formances were tracked for Area Under the Receiver 
Operator Curve (AUC), PPV and NPV over the 25 
repetitions. This procedure was repeated to assess the 
ability of the identified biomarkers to discriminate 
between infected patients and either controls (SIRS-) 
or non-infected but inflamed (SIRS+) patients and, as 
a secondary objective, to discriminate between infected 
patients either developing organ dysfunction (sepsis) or 
not (Fig. 1).

Training and validation of final classification models
Of all 80 DEG biomarker candidates, 25 were identified 
as part of at least one classification model based on an 
orthogonal RT-qPCR approach that could discriminate 
between the patient classes. These 25 RT-qPCR tran-
scripts were taken forward to an independent patient 
cohort (Classification Cohort) to both learn a predictive 
classifier model and to assess performance.

RT-qPCR analysis of gene expression was undertaken 
on samples from 91 patients with infection, 89 matched 
SIRS- comparator patients, and 90 similarly matched 
non-infected SIRS+ patients, respectively (Fig.  1). Fur-
ther comparison was made within the infection cohort, 
comparing patients who did (sepsis, n=61) or did not 
develop organ dysfunction (n=30). A final compari-
son was made between patients with sepsis (n=61) and 
all other matched patients with non-sepsis outcomes 
(n=209) within our validation cohorts (Fig. 1).

For assessment of signature performance, a similar 
random forest-based approach was used. Models were 
created (‘training phase’) and then validated (‘valida-
tion phase’). We divided our data in a random 80:20 split 
for training and validation, respectively. In the training 
phase models were trained and cross-validated on the 
80% subset using 5-fold cross-validation. This process 

was repeated 25 times using R package caret (v6.0-90, 
‘train’ function) to prevent lucky or unlucky 5-fold cross-
validation. In the validation phase, the trained models 
were tested on the remaining 20% of the data that were 
not used for cross-validation in the training phase. This 
process was repeated 10 times with 10 different randomly 
selected subsets, again to counteract any lucky or unlucky 
data splits. For each comparison, 10 models (including 10 
different test sets) were created and the mean AUC, sen-
sitivity and specificity reported.

Statistical analysis
Prediction of a robust sample size followed the method 
described by Figueroa et al [15] and is described in detail 
in Supplement S4. Briefly, random forest-based classifier 
performance was assessed with an increasing number of 
simulated patients in each cohort to identify when a per-
formance plateau occurred.

All qRT-PCR data were analyzed with nonparametric 
Wilcoxon tests unless otherwise stated. All data and sta-
tistical analyses were done using R (v.3.6.3).

Results
Patient recruitment and subgroup identification
Clinical data and blood samples were collected from 4385 
high-risk elective surgery patients. An overall flow chart 
is shown in Supplement S5. The clinical panel adjudica-
tion identified a total of 154 patients with high certainty 
of infection, of whom 98 developed sepsis (Fig. 1). These 
were compared against samples taken from the postop-
erative day-, age-, sex- and operation-matched patients 
without infection, of whom 148 developed a systemic 
inflammatory response (SIRS+) and 151 (SIRS-) did 
not. Each patient group was split into Discovery (Gene 
Feature selection) and Training/Validation (Classifica-
tion) cohorts. Demographic and clinical data are shown 
in Table  1. Microbiological confirmation of infection 
was achieved in 81 septic and 45 uncomplicated infec-
tion patients (Supplement S6). A broad range of Gram 
negative, Gram positive and fungal organisms were iso-
lated. Strong clinical evidence of infection was used for 
the remaining 15 and 11 patients, respectively. Of the 98 
septic patients, 80 patients required at least one organ 
support (60 mechanical ventilation, 55 vasopressors, 8 
renal replacement therapy) Nine patients ultimately died 
of sepsis while two died for unrelated reasons. Approxi-
mately 60% of the non-infected patients received no 
postoperative antibiotic (Supplement S7). The remaining 
patients received one or more doses of antibiotic, 79% 
commencing on Postoperative Day 1 and likely to repre-
sent ongoing prophylactic medication.
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Discovery (Gene Feature selection) cohort
Microarray‑based biomarker discovery
Initial biomarker discovery was performed on blood 
samples taken from 58 infected patients over the three 
days preceding the clinical presentation of postoperative 
infection and underwent transcriptomic profiling. Com-
parison was made against 55 postoperative day-, age-, 
sex- and procedure-matched patients with an uncompli-
cated, non-infected, non-inflamed (SIRS-) course (Fig. 1, 
Table 1).

Overall, 2594 differentially expressed genes (DEGs) 
between infection and control were identified in the 
three days pre-infection diagnosis. Of the top 1500 DEGs 
with the highest fold change (Fig.  2A, Supplement S8), 
863 (57.5%) DEGs were upregulated and 637 (42.5%) 
downregulated. Functional enrichment analysis yielded 
immune relevant pathways involving primarily neutro-
phils and T cells (Fig. 2B, Supplement S8).

A random forest-based algorithm identified the best-
performing DEGs derived for all three days prior to 
infection/sepsis diagnosis and their respective non-
infected controls. Initial analysis indicated that different 
sets of eight genes could identify postoperative infection 
with high AUCs.

RT‑qPCR verification and down‑selection of microarray‑based 
biomarkers
Collectively, differential expression analysis and concur-
rent random forest-based classifiers with equally high-
performance metrics proposed 80 best performing genes 
from the microarray data. These were down-selected for 
confirmation by RT-qPCR analysis using the same 58 
infected patient cohort samples analysed for biomarker 
discovery plus samples from an additional five patients, 
with comparisons being made against 62 non-infected 
SIRS- patients. A representative 8-gene-set showed 
highly significant differential expression between the two 
patient groups, exemplifying the compatibility between 
microarray- and RT-qPCR-based gene expression (FDR-
corrected Wilcoxon test, p<0.001, Fig.  2C). To utilise 
all patient sub-groups with different postoperative out-
comes identified in our study, we subsequently explored 
whether subsets of our 80-gene set would suffice to differ-
entiate the 63 infected patients from 58 SIRS+ patients, 
as well as to differentiate within the infection cohort, 

i.e. with (n=37) or without (n = 26) organ dysfunction 
(Fig. 1; Table 1). Again using a random forest-based clas-
sification approach in conjunction with Boruta to select 
the most important gene transcripts (cf Methods) yielded 
convincing model performances throughout all clas-
sification attempts. Specifically, a 7 gene set (B4GALT5, 
AFF1, LDLR, ATXN7L3, LARP4B, SLC36A1, TRPM2, 
AUC >0.85, PPV >0.8) for infection versus SIRS- mod-
els, a 12 gene set (ATXN1, SLC41A3, MED13L, STOM, 
B4GALT5, MIDN, HVCN1, LDLR, CFLAR, SPATA13, 
EIF4G3, METTL7B, AUC >0.9, PPV >0.8) for infection 
versus SIRS+ models, and an eight gene set (DOK3, 
ICAM2, IL1R1, LGALS2, LSG1, RPL13A, RPS13, SGSH, 
AUC >0.75 (PPV >0.7) for sepsis vs. uncomplicated infec-
tion were sufficient to classify postoperative outcomes. 
These 25 genes were further selected for building predic-
tive models in an independent and substantially larger 
patient cohort.

Training/Validation (Classification) Cohort
Building machine learning predictive models in independent 
patient cohorts
In separate cohorts of patients, we evaluated the clas-
sification performances of the 7, 12 and 8 gene signa-
tures whose performance had been verified to discern: 
(i) infection (n=91) from non-infected SIRS- (n=89) 
patients, (ii) infection from non-infected SIRS+ (n=90) 
patients, and (iii) 61 sepsis and 30 uncomplicated infec-
tion patients, respectively, (Fig. 1; Table 1).

To prevent models from overfitting, classification train-
ing including nested cross-validation was performed 10 
times on a randomly selected 80% of the data. In each 
iteration, the models were validated on 20% of randomly 
selected sample subsets that were never used for training 
(kept outside of cross-validation, cf. Methods). The mean 
performance of the gene signatures across these 10 runs 
remained high following a random forest-based classifi-
cation. For postoperative infection versus SIRS- controls, 
the 7 gene signature achieved an AUC value of 0.871 
(Fig. 3). The 12 gene signature for differentiation of infec-
tion from non-infected SIRS+ patients achieved an AUC 
value of 0.897. Differentiation of sepsis from uncom-
plicated infection patients resulted in an AUC value of 
0.703. Finally, differentiation of sepsis from all other 
clinical presentations using all 25 transcripts achieved an 

Fig. 2 Gene expression analysis for infection versus healthy postoperative controls. A Expression profile of 1500 differentially expressed genes with 
the highest absolute fold change. The top ten up- and downregulated genes are indicated separately. B Top enriched Gene Ontology categories 
based on 1500 differentially expressed genes with the highest fold change as shown in Fig. 2A). Node sizes indicate a number of genes per shown 
category. Fold change is indicated for each displayed gene node. C RT-qPCR values for 8 genes originating from classifying infection versus no 
infection based on microarray-based expression data. ΔCq value indicates PCR cycle quantifications according to ΔCq = Cq(reference) - Cq(target 
gene). Wilcoxon test derived significance level is indicated (***p≤0.001, ns: not significant). Error bars show standard error of the mean. N(samples of 
infected patients) = 139, N(samples of control patients) = 144

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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AUC of 0.843. Sensitivity was high across all comparisons 
(0.785-0.942) whereas specificity was high for infected 
compared to non-infected SIRS+ (0.838) and SIRS- 
(0.776) patients, but poor for sepsis vs uncomplicated 
infection (0.217). Supplement S9 shows the Classifica-
tion performance for different thresholds optimized for 
sensitivity or specificity and various assumed prevalence 
of outcomes. This indicates, for example, how current 
practice specificity for correct antibiotic selection (Sup-
plement 7) can be enhanced by the use of a specificity-
optimized gene panel.

Discussion
This study demonstrates that patients undergoing elec-
tive major surgery who develop a postoperative infec-
tion with or without organ dysfunction (sepsis), can be 
reliably identified and differentiated from non-infected 
patients by using host transcriptomics up to three days 
before clinical diagnosis. 

Accurate, early diagnosis of infection and sepsis rep-
resents a holy grail for improving patient care and out-
comes and avoiding unnecessary antimicrobial use. 
Transcriptomic studies of patients with uncomplicated 
infection and/or sepsis have focused on patients with 
established clinical features requiring hospitalization 
or admission to critical care [17–21]. Such studies have 
added to our understanding of sepsis pathogenesis, dem-
onstrating some prognostic capability [18, 22–24], and 
offering reasonable discrimination between infectious 
and non-infectious causes of systemic inflammation [18–
20, 25]. Presymptomatic diagnosis would facilitate early 
investigation and treatment, and can be reasonably sur-
mised to improve patient outcomes.

To our knowledge, no study has specifically studied 
patient samples taken before the clinical onset of infec-
tion. An elective surgical population represents an ideal 
patient group, albeit somewhat inefficient, as most have 
a postoperative course uncomplicated by infection. Apart 
from the underlying need for surgery, patients enrolled 
in our study were infection-free and stable. To have as 
clean a dataset as possible, samples were only used from 
the 3.5% of patients where a clinical adjudication panel 
identified postoperative infection with high confidence. 
Intermediate cases with more uncertainty surround-
ing diagnosis were excluded. We also drew from a large 
patient cohort from which postoperative day-, age-, sex- 
and operation-matched patients could be selected having 
either an uncomplicated course or developing a postop-
erative systemic inflammation where the infection was 
confidently excluded and not treated.

Many studies examining sepsis biomarkers have relied 
on selection through knowledge-based approaches predi-
cated on known biological functions and pathways [25] 
rather than targets whose functions have not been fully 
described [26]. We adopted a target selection strategy that 
relied on statistical rather than biological features [27]. A 
machine learning approach was used to select appropriate 
targets and classify patients based on host gene expres-
sion with comparison against a clear-cut clinical diag-
nosis to determine predictive accuracy. The initial phase 
of biomarker discovery identified 80 genes for which dif-
ferences from other patient cohorts could be confirmed 
using an orthogonal approach (RT-qPCR). Re-classifi-
cation based on RT-qPCR aimed at feature reduction for 
best gene selection in the same group of patients enabled 
further down-selection to 25 key biomarkers. Subsequent 
classification analysis revealed the potential for clinical 

Fig. 3 RT-qPCR based classification performance based on random forest using all available patient samples and across all days prior to infection 
diagnosis. ROC curve and statistical metrics for (i) infection versus non-inflamed postoperative controls (SIRS-) [blue], infection versus non-infected 
and inflamed (SIRS+) [red], sepsis versus infection without organ dysfunction (OD-) [mauve] and sepsis versus all others [green]. The table reports 
mean statistics for classification models based on different numbers of transcripts. N number, AUC  area under the curve, PPV positive predictive 
value, NPV negative predictive value, Sens sensitivity, Spec specficity
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application with an even more reduced set of biomarkers, 
allowing a rapid and affordable point-of-care test.

A machine learning algorithm approach was also used 
to select appropriate targets and classify patients based 
on host gene expression (uncorrected for baseline val-
ues) with a comparison made against a clear-cut clinical 
diagnosis to determine predictive accuracy. The success 
of this approach is evidenced by high values of AUC, 
sensitivity and specificity comparing patients develop-
ing infection versus uncomplicated (SIRS-) controls, and 
the more diagnostically challenging group who develop 
postoperative (SIRS+) inflammation that is not driven 
by infection yet which shares many clinical features 
such as pyrexia, tachycardia, neutrophilia and elevated 
C-reactive protein levels. There was also reasonable dis-
crimination (high sensitivity but poor specificity) in 
pre-emptively identifying infected patients who would 
proceed to organ dysfunction compared to those with 
uncomplicated infection.

The difference in our study approach is also exemplified 
by only six out of 80 genes identified in our classification 
models overlapping with genes of prior published gene 
signatures for sepsis and community-acquired pneu-
monia [16, 18, 20]. The data reported within our study 
indicate that changes in expression of host biomarkers 
are predictive of later complications related to infection. 
Any shortcomings in model performance are likely due to 
the complex relationship between individual genes, their 
transcripts, post-translational modifications and protein 
interactions, and complicated further by both therapeu-
tic interventions and the dynamic nature of signaling 
within the host response that flux during the dysregula-
tion process [27, 28].

In trying to answer the more challenging question of 
when an individual will develop infection or sepsis, we 
sampled at multiple timepoints. While a common gene 
set could detect changes over a 3-day period prior to 
clinical presentation, separate gene transcripts gave even 
stronger signals on a day-by-day basis (data not shown). 
This reflects observations made in trauma patients [29], 
in human volunteers given endotoxin [30], and in chil-
dren with meningococcal disease [31]. However, using 
separate gene sets would require prior knowledge of 
precisely when a patient will develop features of uncom-
plicated infection or sepsis, and this would clearly be 
non-feasible in clinical practice.

Several limitations should be highlighted. Cost issues 
precluded even broader testing, in particular within the 
indeterminate subgroup in whom there was less cer-
tainty about the presence of postoperative infection but 
where antibiotics were commenced. We selected 20% 
patient subsets for internal model validation, which we 
repeated randomly 10 times to avoid a single selected 

advantageous or disadvantageous sample subset. Pro-
spective external validation is needed to confirm predic-
tive utility in both surgical and non-surgical populations, 
in specific patient subsets (e.g. children, haemoncology), 
in a broader racially diverse mix, and in patients with 
specific non-bacterial infections such as malaria and 
SARS-CoV-2. A validation study in patients with acute 
lower respiratory tract infection is currently in progress.

How such gene panels, if validated as reliable tools, 
could be used in clinical practice will depend on both cost 
and the rapidity with which results can be obtained. The 
ability already exists to deliver point-of-care information 
from small gene set PCR-based devices within 1-2 hours, 
or from multiplex protein analyses within minutes. This 
can currently be achieved at a relatively low cost and the 
price per unit test is likely to drop further with advances 
in technology and manufacturing. If cost is compara-
ble to routinely monitored biomarkers of inflammation 
such as C-reactive protein and procalcitonin, such a test 
could potentially offer (near-) daily ‘rule-out’ screening. 
The target product profile could also be altered using 
different cut-off values (as shown in Supplement S9) to 
enhance either sensitivity or specificity. Especially if the 
cost-economic analysis mitigates against its use as a daily 
monitor, it could still be used as a diagnostic with rule-in 
capability focussing on patients in whom infection is clin-
ically suspected but where the diagnosis remains uncer-
tain. A further potential use is a ‘rule out’ test in patients 
presenting with non-specific features where the infection 
is among a list of differential diagnoses. And, finally, the 
high sensitivity achieved from the complementary gene 
set in discriminating future uncomplicated infection 
from sepsis offers potential for early, safe discharge for 
low-risk patients from a higher dependency ward setting. 
Modelled examples comparing optimized sensitivities 
and specificities are shown in Supplement 10.

In conclusion, we demonstrate that postoperative 
infection can be identified by a panel of gene transcripts 
up to three days pre-onset of clinical presentation. This 
can be delineated from both uncomplicated postopera-
tive controls and, more crucially, patients with postop-
erative systemic inflammation unrelated to infection. 
Infected patients developing organ dysfunction (sepsis) 
could also be identified in advance. Subject to prospec-
tive confirmation, the identified gene sets offer the ability 
to reliably diagnose infection and sepsis presymptomati-
cally, which may impact upon patient outcomes and 
inappropriate antibiotic use.
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