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Abstract—Goal: Clinical interpretation of an electrocar-
diogram (ECG) can be detrimentally affected by noise. Re-
moval of the electromyographic (EMG) noise is particularly
challenging due to its spectral overlap with the QRS com-
plex. The existing EMG-denoising algorithms often distort
signal morphology, thus obscuring diagnostically relevant
information. Methods: Here, a new iterative regeneration
method (IRM) for efficient EMG-noise suppression is pro-
posed. The main hypothesis is that the temporary removal
of the dominant ECG components enables extraction of
the noise with the minimum alteration to the signal. The
method is validated on SimEMG database of simultane-
ously recorded reference and noisy signals, MIT-BIH ar-
rhythmia database and synthesized ECG signals, both with
the noise from MIT Noise Stress Test Database. Results:
IRM denoising and morphology-preserving performance is
superior to the wavelet- and FIR-based benchmark meth-
ods. Conclusions: IRM is reliable, computationally non-
intensive, fast and applicable to any number of ECG chan-
nels recorded by mobile or standard ECG devices.

Index Terms—Mobile ECG, EMG noise, ECG acquisition,
filtering.

Impact Statement—Presented is a new method for elec-
tromyographic noise removal from ECG signals with min-
imized signal distortion. It preserves the ECG signal mor-
phology and, hence, diagnostically relevant information
better than the existing methods. The proposed method
performs excellently on signals with a high level of noise.
It is suitable for use in clinics and mobile ECGs with any
number of leads.
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I. INTRODUCTION

IN RECENT years, the number of mobile health devices
on the market has been rapidly increasing. Among them,

mobile electrocardiographs (ECGs) are the most frequently used
devices [1]. These devices are mainly utilized outside the clinical
setting, making them highly susceptible to noise. Commonly,
ECG signals can be contaminated by different noise sources
[2]: (i) baseline wander (BLW) - a low-frequency (<1 Hz) noise
component caused by a variety of sources, including perspira-
tion, respiration, body movements, and poor electrode contact;
(ii) power-line interference (PLI) – a narrowband component
(50/60 Hz) (iii) motion artifact—originating from the change
in impedance at the electrode-skin contact, with the spectral
content mainly between 1 and 10 Hz; (iv) electromyographic
(EMG) noise—a broadband component caused by muscle ac-
tivity with the spectrum spreading predominantly at higher
frequencies (>10 Hz) and overlapping with the spectrum of QRS
complex. The latter two are particularly relevant to the mobile
ECG signals. The motion artifact can be ameliorated by mea-
surement under stationary conditions. However, the underlying
physiology of the EMG noise, resulting from the engagement
of fingers during measurement by handheld devices [1], [3],
does not allow for an obvious mitigation strategy and must be
eliminated in postprocessing.

Success of the EMG noise removal highly depends on the
targeted application. Conventional linear filtering methods
are sufficient for the diagnoses relying on detection and
analysis of R-R intervals, such as atrial fibrillation [3], [4].
However, filter-induced distortions of the QRS complex may
render these methods unsuitable for diagnoses requiring
the preservation of heartbeat morphology, such as clinical
diagnosis of myocardial infarction (MI) and some arrhythmias
[5], [6], [7], [8]. Even the advanced filtering methods based
on discrete wavelet transformation lead to signal distortion
when a significant variation of noise energy is presented
[9]. The filters based on adaptive methods require either a
reference or generic signal at the input, which is not known
a priori [10]. A hybrid method that combines adaptive and
wavelet filters shows excellent performance, but retains the
problem of signal distortion in the presence of large changes in
noise energy [11]. Similarly, the model-based filtering method
successfully suppresses noise, compresses and classifies
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ECG signals, but can introduce heartbeat over-processing
thus occluding clinically significant information [12],
[13], [14].

Other algorithms suffer from mechanical and practical limi-
tations. For example, the quality of highly-successful ensemble
averaging (EA) technique, is proportional to the number of heart-
beats included in the averaging process, which may represent a
challenge for recordings made with the ECG handheld devices
with typical duration below 30 seconds. Furthermore, inter-beat
variations of the heartbeat are lost in the averaging procedure
[2]. Methods including independent component analysis are
powerful; however they require more than one lead for noise
signal decomposition, often not present in mobile ECG devices
[12]. Finally, over the last decade, denoising methods based on
deep learning, such as autoencoders [15] or U-net-like networks
[16], have been standard in the literature. The main limitation
of these methods is their interpretability and trustworthiness.
However, even with these problems surpassed, the necessity for
a large amount of data and the result dependence on the quality
and dynamics of the training set remain practical limitations of
the deep learning method [17], [18].

Therefore, although the problem of EMG filtering of ECG sig-
nals has been well-studied in theory and practice, the sweeping
solution which would enable exploitation of mobile ECG in car-
diovascular diagnostics outside a small number of arrhythmias
has not been reached.

In this paper, we present a new Iterative Regeneration Method
(IRM) for the suppression of broadband EMG noise. The hy-
pothesis behind the IRM method is that after removing approxi-
mations of the dominant components from the ECG signal (pri-
marily QRS and T waves), the remaining cardiac components
have a very small frequency overlap with the EMG noise, thus
allowing for an easy removal of the EMG noise. It has been found
that the EMG noise occurs mainly at frequencies above 10 Hz,
T and P waves at frequencies below 10 Hz, while the dominant
QRS frequency content is below 50 Hz [19]. We justified the
hypothesis by a posterior analysis of the EMG-ECG spectral
overlap. Namely, we found that in the frequency region below
10 Hz, in which the spectra of the T and P waves overlap with
that of the EMG noise, the spectral power of the EMG noise
carries less than 1% of the total EMG spectral power.

Comparison with other techniques on the standard databases
shows excellent performance of our method in terms of signal
morphology preservation. The algorithm performance shows
good potential for telemedical ECG monitoring.

The paper is structured as follows: in Section II, we present the
new filtering method and describe the three databases used for
IRM validation and comparison with other denosing methods.
Results are presented in Section III and discussed in Section IV.
Concluding remarks and future steps are presented in Section V.

II. MATERIALS AND METHODS

A. IRM Method

The IRM method is an iterative process that aims to remove
EMG noise from the ECG signal. The main idea behind the
method is to free the noisy signal from the dominant ECG
components, QRS complex and T wave, upon which the EMG

noise can be easily extracted and removed. This is implemented
in 3 stages (Fig. 1):

– Preprocessing stage, in which the frequency components
which can affect the IRM stage performance or are con-
tent insignificant are spectrally filtered out and the QRS
segments are detected;

– IRM stage, in which the EMG noise is extracted and
removed from the signal; and

– Postprocessing stage, in which the low-frequency signal
components filtered out in preprocessing stage are returned
to the denoised signal.

In the preprocessing stage, the following filters are applied:
– Low-pass 2nd–order Butterworth filter with a cutoff fre-

quency of 100 Hz for removal of the high-frequency com-
ponents of the EMG noise that do not spectrally overlap
with QRS complexes.

– The 2nd-order IIR notch filter with the frequency of 50 Hz
in both forward and reverse directions for removal of PLI;

– High-pass 5th–order Butterworth filter with a cutoff fre-
quency of 2 Hz to obtain higher similarity between heart-
beats. As this filter changes the heartbeats’ morphology,
we restore the low-frequency signal component in the
postprocessing stage.

All filters were applied in both forward and reverse directions
to ensure zero-phase filtering.

Finally, Pan-Tompkins algorithm is applied to detect QRS
complexes and heartbeats [20], [21]. Here, heartbeats are related
to the R points. The start and the end of the ith heartbeat are
defined as:

HBi
start = Ri − 0.25 · median (RR) , (1)

HBi
end = HBi+1

start . (2)

In (1), RR is a vector of intervals between consecutive QRS
complexes. Note that this definition maintains the heartbeat
length.

IRM stage comprises a 2-step IRM block:
– Step 1: Beat-by-beat generation of auxiliary signal (AS)

using EA technique and its subtraction from the input
signal. EA evaluates the standard arithmetic mean of the
beats included in averaging,

– Step 2: Extraction of the EMG noise (Fig. 1(b-2)) and its
removal from the input signal (Fig. 1(b-3)), and a decision
on the number of iterations which is applied only in the
first filtering iteration.

We denoted the signal at the input of the IRM block as IB
and the signal at the output of the IRM block as OB. We now
describe the IRM steps in detail.

In Step 1, IB signal is processed beat-by-beat to obtain the
AS in which each heartbeat is replaced by its denoised heartbeat
approximation – an auxiliary heartbeat (AHB). The AHB is
obtained by EA of all beats morphologically similar to a beat
at hand and filtering. Two beats are considered similar if their
correlation is greater than the correlation threshold xcorrthr.
As the quality of noise reduction depends on the number of
heartbeats included in the averaging procedure, nHB, and their
morphological similarity, xcorr, we optimize AHB calculation
by the adaptive procedure described in detail in Appendix A.
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Fig. 1. (a) Block diagram of the 3-stage IRM method. IB stands for the signal at the input of the IRM block, OB for the signal at the output of the
IRM block. The SNRiter_1 stands for the SNR after first iteration. (b) Signals at different steps of the IRM stage: (1) IB signal in 1st iteration, (2)
EMG noise approximation, (3) OB signal after 1st iteration, (4) signal at the end of the processing stage (3 iterations). Presented is the signal with
SNRiter_1=4.5 dB.

Upon applying AHB calculation to all heartbeats of the signal,
AS is obtained. The AS represents an approximation of a noise-
free signal without inter-beat variation. Hence, after subtracting
the AS signal from the IB signal, the difference signal comprises
the EMG noise and inter-beat variation.

In Step 2, the EMG noise is obtained by applying Butterworth
high-pass filter with a cutoff frequency of 10 Hz to the difference
signal. The cutoff frequency is chosen based on the spectrum
strength of the EMG signal, which is negligible under 10 Hz
[19], [22]. At the end of the IRM block, the tentative EMG
noise approximation (Fig. 1(b-2)) is removed from the IB signal
(Fig. 1(b-3)), creating an OB signal.

The number of times the signal will pass through the IRM
block is determined based on the estimated Signal-to-Noise Ra-
tio (SNR) after the first pass through the IRM block, SNRiter_1,
calculated as the ratio between the OB signal and a tentative
EMG noise approximation, following the rule:

– If SNRiter_1 > 16 dB, the signal is filtered once,
– If 8 dB < SNRiter_1 ≤16 dB, the signal is filtered twice,
– If SNRiter_1 ≤ 8 dB, the signal is filtered three times.

These thresholds are obtained empirically and fixed for all
tests.

Postprocessing stage: At the end of the IRM stage, we ob-
tained a signal with reduced EMG noise but with morphological
differences compared to the raw signal. The difference stems
from the high-pass filter applied in the preprocessing stage.
Hence, in the postprocessing stage, the low-frequency content is
returned to the signal to obtain the EMG-noise-free ECG signal
with minimal morphological alterations.

The algorithm was implemented in MATLAB (MathWorks
Inc.).

B. Databases

Three different databases were used to study the performance
of the proposed IRM method. Here they are described briefly,
while a more detailed description is given in the Appendix B.

1) SimEMG database is a unique resource that provides
back-to-back recorded ECG signals with and without
EMG noise [23]. It contains 37 noise-free and 110 noise-
contaminated single-lead recordings generated from 14
healthy subjects (9 females and 5 males aged 40 ± 13).
The average SNRIN of the noise-contaminated signals is
8.53 ± 5.5 dB.

2) In MIT-BIH-EMG database, the noise-free signals orig-
inate from the MIT-BIH arrhythmia database [24], [25].
Noise-contaminated signals were created by addition of
the genuine muscle artifact recordings taken from the MIT
Noise Stress Test [26]. The total number of recordings
in MIT-BIH-EMG is 228, out of which 51 are reference
recordings and 171 are noise-contaminated with the aver-
age SNRIN of 11.90 ± 3.25 dB. Over 25% of recordings
are with arrhythmias.

3) Synth-EMG database was constructed by adding the
EMG noise originated from the MIT Noise Stress Test
Database [26] to the noise-free ECG signals obtained by
the ECG signal generator described in [27]. The total
number of signals in Synth-EMG is 200, out of which
50 are reference signals and 150 are noise-contaminated
signals with the average SNRIN of 6.22 ± 3.11 dB.

C. Benchmark Method

In order to compare the performance of the proposed methods
with conventional techniques for noise elimination in ECG sig-
nals, we included the Adaptive Wavelet Wiener Filter (AWWF)
[11], Wavelet Transform (WT) [9], and Finite Impulse Response
(FIR) Low-Pass Filter [14] in the analysis. The principles behind
these methods are described in Appendix C.

D. Performance Metric

Upon applying a method for denoising ECG signals, it is
necessary to establish a quantitative criterion for success of
the filtering process. We assess the noise extraction quality
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via improvement in SNR and the preservation of the signal
morphology via cross-correlation and Pearson coefficients.

The SNR improvement (SNRIMP) is defined by:

SNRIMP = SNROUT − SNRIN, (3)

where the SNR of the filtered signal (SNROUT) is calculated
as a ratio of the noise-free signal and the noise obtained as the
difference between the filtered and noise-free signal. Given the
same noise-free signal in both terms on the right-hand side,
this measure practically assesses the ratio of the original and
extracted noise. The higher it is, the better is filter performance.

To estimate the morphology preservation after applying filter-
ing procedure, we calculated correlation coefficient of the whole
filtered signal (A) and the whole noise-free signal (B) as:

ρ (A, B) = 100 ∗ 1

N− 1

N∑
i=1

(
Ai − μA

σA

)
∗
(
Bi − μB

σB

)
,

(4)
where µA and σA are the mean and standard deviation of the
noise-free signal, respectively, and μB and σB are the mean and
standard deviation of filtered signal, respectively. We further
assessed the morphology preservation in the fiducial points (P,
R, J and Tmax) by calculating Pearson coefficients applying (4).
Here, µA and σA are the mean and standard deviation of the
noise-free signal amplitude at a given fiducial point, respectively,
andμB andσB are the mean and standard deviation of the filtered
signal amplitude at the same point, respectively. Fiducial points
were determined manually and verified by a cardiologist.

III. RESULTS

The performance of the IRM filter method on different
databases is shown in Table I. The values are averaged for differ-
ent SNRIN ranges. The Num stands for number of recordings for
specific SNRIN range; the third column shows the SNRIMP value
of the IRM algorithm with the number of iterations determined
based on SNRiter_1. For a more detailed analysis of the IRM
method, we let all signals pass 3 times through the IRM block and
show the SNRIMP values after each iteration - columns SNRIMP

1-3 for the first, second, and third filtering iteration, respectively.
Gray values represent the optimum number of iterations for
specific SNRIN range.

Based on the results from Table I, we can conclude that multi-
ple passes through the IRM block improve the filter performance
when the SNRIN values are < 12 dB. The first pass through the
IRM block reduces the noise, while some noise components re-
main in the filtered signal (Fig. 2(a)). At the second pass through
the filtering block, more heartbeats are included in creating the
AHB due to the cleaner signal, which leads to better noise
suppression (Fig. 2(b)). The same effect appears in the third
pass (Fig. 2(c)) when the best noise suppression is achieved. For
SNRIN > 16 dB, we obtained the best performance for a single
pass through the IRM block. This indicates that multiple passes
can lead to “over-processing” of signals with low noise level.

Table II compares SNRIMP achieved by IRM, AWWF, WT,
and FIR methods when applied to SimEMG, MIT-BIH-EMG,
and Synth-EMG databases, respectively. The best-performance

TABLE I
SNRIMP VALUES OBTAINED BY IRM ON SIMEMG, MIT-BIH-EMG AND

SYNTH DATABASES

Fig. 2. Example signal after passing through the IRM block (a) one,
(b) two and (c) three times (blue lines). Gray line represents the original
noise-contaminated signal, SNRIN= 6.72 dB.
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TABLE II
SNRIMP VALUES OBTAINED BY DIFFERENT FILTERING METHODS ON

SIMEMG, MIT-BIH-EMG AND SYNTH DATABASES

values are shown in grey. We conclude that on the whole ECG
signals, IRM and AWWF have excellent performance, while
the SNR improvement by WT and FIR is not guaranteed. This
is illustrated by example signals in Fig. 3. The IRM algorithm
outperforms AWWF across most SNR ranges and databases.
Exceptions are the signals with extremely low signal or high
level of noise (SNR < 4 dB) in the Synth-EMG database, and
low-noise level (SNR > 20 dB) signals. Importantly, the IRM
also works efficiently when the noise level changes within the
same recording. For example, it successfully removes lower-
level noise around the 1st beat in Fig. 3, higher-level noise around
the subsequent beat, as well as the noise of the varying level
between the two beats.

The excellent filtering performance of IRM and AWWF al-
gorithms is achieved at the expense of extending their runtime.
Table I in Supplementary material shows comparison of the
algorithm runtimes on SimEMG database. The IRM is for one
and two orders of magnitude slower than WT and FIR, respec-
tively. However, it is 2.5 times faster than the AWWF with the
comparably high performance parameters.

Table III shows the morphology-similarity assessment based
on the whole-signal cross correlation and Pearson coefficients
calculated at fiducial points. Since the SNR analysis identified
AWWF as the main competing method, IRM is compared back-
to-back with it.

Fig. 3. Example of different filtering methods applied on a typical
signal from the SimEMG database. Each frame shows the original
noise-contaminated signal (gray line). The red line in (a) shows SNR
of the input signal (SNRIN) for 1-second window. SNRIN averages at
3.71 dB. The blue lines represent: (a) Recorded noise-free signal, (b)
IRM-filtered signal, (c) AWWF-filtered signal, (d) WT-filtered signal, (e)
FIR-filtered signal.

It is evident that both methods preserve signal morphology to
a high correlation level of above 0.95. The IRM performs better
on the noisy signals with SNR<16 dB in both databases with
recorded signals, SimEMG and MIT-BIH. AWWF performs
better on the recorded signals with SNR > 16 dB (with a minor
advantage at the second digit behind the decimal point). Also
extremely noisy synthetic signals with SNR < 4 dB are better
filtered by AWWF, while for all other noise levels IRM is more
successful.

With regard to the diagnostically relevant signal features, the
IRM better reproduces signal amplitudes at P, J and T points
while AWWF better reproduces R point amplitude on recorded
signals. This can be observed in Fig. 3, in which the AWWF
distorts the P-wave of the 2nd beat beyond recognition and
significantly decreases the P-wave amplitude in the 3rd beat. On
synthetic signals, AWWF loses advantage at R point, but gains
advantage at P point. This can be explained by the compliance
of the function used in P-wave synthesis with the wavelet used
by the AWWF algorithm [11].

Based on all above, we can recommend the IRM for appli-
cations with signals with medium-to-high level of noise and for
evaluation of the ST elevation interval in the vicinity of J point
(from J+10 ms to J+60 ms), highly relevant as the marker of MI
[28]. On the other hand, AWWF is recommended for the signals
with low-level noise and for precise reproduction of R point.
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TABLE III
CROSSCORRELATION AND PEARSON COEFFICIENTS IN DIFFERENT POINTS OF INTEREST CALCULATED ON SIMEMG, MIT-BIH-EMG AND SYNTH DATABASES

For a more objective comparison, we calculated statistical sig-
nificance of performance differences between these two meth-
ods. We checked the distribution of data points and found that it
was Gaussian. Hence, we applied the Student t-test. It revealed
that the statistical difference exists in the MIT-BIH database for
SNR range between 8 dB and 16 dB and in the Synth database
with SNR range up to 16 dB (shown as bolded values in Tables II
and III). Details and results of the Student t-test calculation
along with the effect size estimation are shown in Supplementary
material.

IV. DISCUSSION

To evaluate the IRM applicability in telemedical monitoring
by mobile ECGs, we have checked the algorithm speed and
compatibility with lower sample rate recordings typical of these
devices. The algorithm needed roughly 0.5 s for a 30 s ECG
signal on an average PC, which is sufficient for the immediate
presentation of the signal to a doctor on the medical service
provider side. In particular, we have downsampled our 500 Hz
signals to 300 Hz, as used by KardiaMobile (AliveCor Inc., CA,
United States), a mobile handheld device, and performed the
cross correlation morphology check. We obtained a negligible
difference between the IRM-filtered original and downsampled
signals (with a maximum correlation difference of 0.3%), thus
confirming applicability of IRM at lower sampling rates.

Furthermore, we assessed the IRM applicability to the mea-
surements in which the significant noise amplitude transition

within a single recording is present. Indeed, the minimal signal
morphology distortion for SNRIN > 4 dB (correlation > 0.98)
enables successful filtering across signals with transitions. An
example is shown in Fig. 3(a)) in which all signal features are
preserved despite the SNR excursion of 3 orders of magnitude,
from the clear SNR minima generated at T-P intervals to the
maxima generated at QRS complexes. Here, the SNR is calcu-
lated within 1 second wide moving window.

The performance of the IRM critically depends on the quality
of AS, i.e., the quality of each AHB. The EA used in AHB
calculation implies that the IRM’s performance depends on
the signal length - the more heartbeats are included in the
process, the more suppressed is the noise in AHB. Therefore, the
proposed method has limited performance when filtering very
short signals, such as 10-second signals obtained with standard
ECG devices or the signals shortened to eliminate extreme
motion artefacts. However, we designed the method primarily
for filtering signals obtained by mobile ECG devices, which are
mostly 30 seconds long [5], [6]. In this setup, we verified by
calculations that enough heartbeats can be selected to create a
low-noise AHB. Redundant noise was additionally removed by
a moving average filter to reach a high-quality AHB. While other
filtering methods, such as those based on wavelet or frequency
filtering can also be used for this purpose, we have chosen the
moving average filtering method as the most straightforward
and fastest approach. Likewise, it is possible to completely omit
filtering after the EA; however, this would increase the number
of IRM iterations to achieve a high-quality AHB.
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One drawback of the method is related to the QRS detector-
when an R point is omitted, the frequency components of that
heartbeat higher than 10 Hz will be marked as the EMG noise
and removed from the signal. This detrimentally reduces the
information available for that heartbeat.

The number of IRM iterations depends on the SNR level
after the first iteration (SNRiter_1). The overall performance
of the IRM method showed low sensitivity to changing the
thresholds for choosing the number of iterations for ±2 dB.
This demonstrates the method’s robustness to the threshold
selection, along with an excellent performance for a small
number of iterations (≤3). We have also tested an automated
method for determining the number of iterations that is based
on SNR convergence. We processed the signal with the IRM
block iteratively until SNR between two consecutive iterations
became insignificant (SNR>30 dB). Such automation not only
makes the algorithm less supervised, but offers an opportunity
for a slight improvement in denoising performance at the cost
of computational time.

A discussion in [29] and the references therein suggest that the
high frequency content of the ECG signal between 300 Hz and
500 Hz is important. The low-pass filter with the 100 Hz cut-off
applied in the preprocessing stage clearly prevents observation
of these high-frequency features. We have examined the IRM
performance upon removal of the low-pass filter and found out
that SNRIMP improved, which is expected due to the higher
noise content. The comparison of IRM and AWWF on the
SimEMG database in Table II in Supplementary material is
consistent with the comparison in Table II here, with the IRM
performing better in all SNR ranges except on the very clean
signals with SNRIN>20dB. Therefore, we showed that IRM
can be used without the low-pass filter in the preprocessing stage
equally. Considering the current embodiment with the low-pass
filter applied, we remind that the “Recommendations for the
Standardization and Interpretation of the Electrocardiogram”
suggest that most of the diagnostic information carried by the
QRS, T and P waves is contained below 100 Hz [30]. Here, the
EMG noise is filtered out only upon the removal of the auxiliary
signal (AS), which is represented by medians containing the
main signal features, such as QRS, T and P waves. Hence,
the frequency content of these features, notwithstanding the
frequencies above 100 Hz filtered in the preprocessing stage,
retains a major part of the clinically relevant information. An
intrinsic limit to the capability of the IRM to resolve their
high-frequency features is induced by ensemble averaging.

Finally, as various studies utilize different metrics for report-
ing their results [11], [12], [13], [14], [15], [31], we have tested
the key ones and obtained similar results applying RMSE, Noise
Reduction Factor (NRF) [13], [31] or Percentage Root Mean
Square Difference (PRMS) [15]. Detailed results are given in
Supplementary material.

V. CONCLUSION

In this study, we have introduced a new iterative regen-
eration method for EMG noise removal from ECG signals
suitable for implementation in ECG mobile devices. Essential

characteristics of the IRM are the preservation of heartbeat
morphology by retaining the low-frequency content and the
preservation of inter-beat variation. The morphology preserva-
tion is particularly important in segments with small amplitude,
such as ST segment crucial for detecting MI and P wave cru-
cial for diagnosis of antrioventricular blocks. The heart beat
preservation is mandatory in detection of some arrhythmias,
such as premature ventricular contractions. Results of the study
show superiority of the IRM compared to the commonly used
wavelet and FIR filtering methods, especially when the analysis
is performed on signals with significant amount of noise, SNR<
12 dB. The robustness of IRM to the changes in the EMG noise
level and the low computational cost make IRM a good candidate
for direct application in mobile ECG devices. Moreover, with
minor adaptations, concerning mainly the signal preprocessing
and adjustment of thresholds, the IRM algorithm can be used
for different kinds of noises with the known spectral range, such
as baseline wander.

Finally, by analyzing the MIT-BIH database we have implic-
itly included signals that represent different diagnoses, such
as atrial fibrillation, left and right bundle branch block beats,
premature ventricular contractions, non-conducted P-wave, etc.
Further development of the method will be in the direction of
exact compliance with the particular diagnosis accessible by
clinical and mobile ECG measurements.
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SUPPLEMENTARY MATERIALS

Supplementary materials contain detailed results about the
IRM and AWWF algorithm runtime, SNRIMP values obtained
on SimEMG by IRM and AWWF without the low-pass filter
in preprocessing stage, Student t-test analysis and effect size
analysis and comparison of IRM and AWWF using RMSE,
normalized RMSE and NRF.

APPENDIX

A. AHB Calculation

In the proposed method, parameters used for signal filtering
are selected in Table IV.

The nHBthr and xcorrthr are initially set to 7 and 0.97, respec-
tively. If there are not enough similar heartbeats (nHB<nHBthr),
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TABLE IV
TRESHOLDS APPLIED IN IRM METHOD

Fig. 4. Block diagram of AHB creation for a single bit. (a) Algorithm
that determines the number of beats nHB used in EA procedure and the
length of the moving average filter MA. (b) The beat is first averaged with
ensemble of all beats from IB that contributed to the nHB count (IB beats
(nHB)), and then filtered to obtain AHB. Example signals are shown in
b-1 and b-2, where the noise-contaminated heartbeat is given in gray
and the filtered signals in blue.

we reduce xcorrthr in increments of 0.02 until either nHB ≥
nHBthr or xcorrthr = 0.91 is reached. If it is still not possible to
have nHBthr heartbeats, nHBthr is reduced by 3, while xcorrthr
is restored to its initial value (0.97). This process is repeated until
nHB ≥ nHBthr or nHB = 1 is reached (Fig. 4(a)). The number
of similar beats increases with SNR.

On average, we have detected less than 7 similar beats in
signals that have SNR<3 dB, and 7 or more beats in signals
with SNR>3 dB (a typical empirical value of noise at which
the signal is discernible by bare eye [32]). Hence, by setting the
initial nHBthr to 7, we ensure that the algorithm does not spend
excessive time on beats that can be clustered as morphologically
similar (xcorrthr>0.96 [33]) and are efficiently filtered by EA in
the first iteration, as well as that it does not corrupt the average by
morphologically non-similar signals. The latter is particularly
important in noisy signals, the SNR of which dramatically
improves after the 1st iteration.

For example, in the SimEMG database, 25% of beats (with
average SNR= 2.31 dB) are identified as individual in the 1st
iteration, but in the 2nd iteration they were averaged with 9
other beats. We further stress that the algorithm classifies beats
solely according to their similarity, with no reference to their
diagnosis-relevant normality, and, hence, render a good AHB
also for signals in which the abnormal outnumber the normal
beats. Nevertheless, it does correctly identify and average all
single or multiple heartbeats with a significant morphologi-
cal difference (e.g., premature ventricular contractions [33]).
Fig. 4(b-1) shows an example of the heartbeat after applying
ensemble averaging. It is apparent that it contains residual noise.
Thus, it was additionally processed by a moving average filter
applied to two segments: (i) from the start of a heartbeat to
the R-40ms; (ii) from the R+40ms to the end of the heartbeat
(Fig. 4(b-2)). The length of the moving average window, MA,
was set to approximately neutralize dependence of denoising
efficiency on nHB. It ranged from 5 samples when the nHB ≥
11 to 15 samples when nHB = 1.

B. Databases

Three different databases were used to study the performance
of the proposed IRM method.

1) SimEMG database contains 37 noise-free and 110 noise-
contaminated single-lead recordings generated from 14
subjects (9 females and 5 males aged 40± 13). All record-
ings are with duration of 30 seconds. The method relies on
a particular placing of ECG electrodes to record signals
with and without EMG noise. The noiseless reference
measurement was performed with the ECG electrodes
placed on the upper arm, which is known to be much
less affected by EMG noise than the hands. The noisy
measurement was performed with electrodes on fingers,
meaning that all signals are equivalent to lead I of the
standard ECG. Considering all electrode configurations,
the average SNRIN of the noise-contaminated signals
was 8.53 ± 5.5 dB. Here, the SNRIN is calculated as
following:

SNRIN = 10 ∗ log10
(∑N−1

n=0 [s (n)]2∑N−1
n=0 [z (n)]2

)
[dB] , (5)

where s(n) is the reference signal, and z(n) is the EMG
noise obtained by subtraction of the reference signal
from the simultaneously recorded noisy signal. Here, we
defined recorded EMG noise as the difference between
the noise-contaminated ECG signal from hands and the
reference signal. Most signals obtained from fingers con-
tain a high noise level (SNRIN < 8 dB), while only
seven recordings have SNRIN beyond 16 dB. The total
number of recordings in SimEMG was 147. The SimEMG
database is available as open-source at [23].

2) In the MIT-BIH-EMG database, the 2-lead noise-free
signals originate from the MIT-BIH arrhythmia database
[24], [25], which comprises 48 30-minute recordings.
The first lead of these recordings was cut into 30-second
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segments and then estimated against the noise rejec-
tion criterion defined for the SimEMG database. As a
result, 57 recordings obtained from 11 subjects passed
the rejection criterion from this database and could be
considered noise-free. This subset contains 9 recordings
(16%) with atrial fibrillation, 3 with ventricular bigeminy
(5%), 4 with ventricular trigeminy, and 1 with nodal (A-V
junctional) rhythm. Additionally, the subset comprises
normal beats (76.3% of the total number of beats), left
bundle branch block beats (10.1%), premature ventricu-
lar contractions (8.9%), right bundle branch block beats
(1.2%), and other abnormal beats in a smaller percent-
age. Noise-contaminated signals were created by addition
of the genuine muscle artifact (EMG noise) recordings
taken from the MIT Noise Stress Test [26] to these sig-
nals. The MIT Noise Stress Test database comprises 12
30-minute ECG recordings and 3 30-minute recordings of
noise containing predominantly BLW, EMG, and motion
artifact noise with different SNR ratios. Since this study
focuses on eliminating EMG noise, we have used only
the noise recordings that predominately contained this
type of noise. To remove BLW, we additionally processed
them with a Butterworth high-pass filter with a cutoff
frequency of 3 Hz. For every noise-free signal, 3 different
randomly selected noise segments are added, resulting
in 171 noise-contaminated recordings with an average
SNRIN of 11.90 ± 3.25 dB. The total number of record-
ings in MIT-BIH-EMG was 228.

3) In the Synth-EMG database, the noise-free ECG sig-
nals were obtained from the ECG signal generator de-
scribed in [27], with 5 parameters randomized here.
We generated 50 noise-free ECG recordings with du-
ration of 30 seconds. The EMG noise originated from
the MIT Noise Stress Test Database. We added 3 dif-
ferent noise segments for every noise-free signal, re-
sulting in 150 recordings with an average SNRIN of
6.22 ± 3.11 dB. The total number of recordings in Synth-
EMG was 200.

C. Benchmark Methods

A detailed description of the AWWF method can be found
in [11]. This algorithm uses the dyadic stationary wavelet trans-
form in the Wiener filter. It improves the signal quality by adding
the block for noise estimate, which monitors the time depen-
dence of SNR within the signal. It also includes the algorithm
for finding suitable parameter values by maximizing the average
SNR improvement. We have used a MATLAB implementation
of the AWWF algorithm.

WT is the standard method for filtering ECG signals from
noise. Here, we applied the algorithm as described in [9]. In
addition, we optimized the methods’ parameters (wavelet family,
lower and higher thresholds) on the SimEMG dataset. It resulted
in sym4 filter banks, a decomposition level of 5, and hard
thresholding to manage the cD3 and cD4 coefficients.

Conventional FIR and IIR filters are commonly used to com-
pare different ECG denoising algorithms [11], [14]. Here, we

applied a low-pass Butterworth filter with the cut-off frequency
set to 40 Hz.

D. Code Availability

As a proprietary code of the HeartBeam, Inc. included in
AIMIgo device, the IRM code is not available online. We pub-
lished our implementation of WT algorithm from reference [9]
here https://drive.google.com/file/d/1z-QfXv35dHf65wgX9_
vimimJPxaXtPyr/view?usp=drive_link and of FIR here
https://drive.google.com/file/d/1xc7KlZablaveLrwHiLno0TG
GjUtlI9jI/view?usp=drive_link.
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