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Abstract
Background: Novel strategies are needed to make vaccine efficacy trials more robust given uncertain epidemiology of
infectious disease outbreaks, such as arboviruses like Zika. Spatially resolved mathematical and statistical models can help
investigators identify sites at highest risk of future transmission and prioritize these for inclusion in trials. Models can also
characterize uncertainty in whether transmission will occur at a site, and how nearby or connected sites may have cor-
related outcomes. A structure is needed for how trials can use models to address key design questions, including how
to prioritize sites, the optimal number of sites, and how to allocate participants across sites.
Methods: We illustrate the added value of models using the motivating example of Zika vaccine trial planning during
the 2015–2017 Zika epidemic. We used a stochastic, spatially resolved, transmission model (the Global Epidemic and
Mobility model) to simulate epidemics and site-level incidence at 100 high-risk sites in the Americas. We considered sev-
eral strategies for prioritizing sites (average site-level incidence of infection across epidemics, median incidence, probabil-
ity of exceeding 1% incidence), selecting the number of sites, and allocating sample size across sites (equal enrollment,
proportional to average incidence, proportional to rank). To evaluate each design, we stochastically simulated trials in
each hypothetical epidemic by drawing observed cases from site-level incidence data.
Results: When constraining overall trial size, the optimal number of sites represents a balance between prioritizing
highest-risk sites and having enough sites to reduce the chance of observing too few endpoints. The optimal number of
sites remained roughly constant regardless of the targeted number of events, although it is necessary to increase the
sample size to achieve the desired power. Though different ranking strategies returned different site orders, they per-
formed similarly with respect to trial power. Instead of enrolling participants equally from each site, investigators can
allocate participants proportional to projected incidence, though this did not provide an advantage in our example
because the top sites had similar risk profiles. Sites from the same geographic region may have similar outcomes, so opti-
mal combinations of sites may be geographically dispersed, even when these are not the highest ranked sites.
Conclusion: Mathematical and statistical models may assist in designing successful vaccination trials by capturing uncer-
tainty and correlation in future transmission. Although many factors affect site selection, such as logistical feasibility,
models can help investigators optimize site selection and the number and size of participating sites. Although our study
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focused on trial design for an emerging arbovirus, a similar approach can be made for any infectious disease with the
appropriate model for the particular disease.
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Background

To observe enough events to reliably measure the effi-
cacy of a vaccine, phase III trials often enroll thousands
or tens of thousands of participants across multiple
sites. For endemic diseases like rotavirus or malaria,
incidence may be low but is relatively predictable.
Investigators can use historical data to guide the selec-
tion of trial populations assuming that future trends
will be similar. Where incidence is lower than expected
during the trial, investigators can expand the sample
size at existing sites or increase participant follow-up to
compensate. This strategy is unlikely to work for out-
break pathogens. Historical data may be only weakly
predictive of future incidence at a location. In fact, for
pathogens with high attack rates, an area with a large
prior outbreak may be less susceptible to a subsequent
outbreak if there is a build-up of population immunity.
Alternatively, that area may be more prone to another
outbreak if immunity wanes or the number of suscepti-
ble individuals is replenished. The outbreaks themselves
are highly unpredictable—when and where they will
occur, how many will become infected, and how long
they will last. The 2014–2016 West African Ebola epi-
demic was emblematic of this challenge, with a Phase
III trial in Liberia enrolling over 8000 individuals but
observing no events because the local outbreak sub-
sided.1 In this situation, expanding enrollment at exist-
ing sites or extending follow-up of participants would
not be able to compensate.

Novel strategies are needed to make vaccine trials
more robust to the uncertain epidemiology of out-
breaks, such as Aedes aegypti-transmitted viruses.2 One
recommended approach is to enable the addition of
new sites over time using a master or core protocol
framework.3 If transmission in early hotspots is
brought under control before the study has reached a
conclusion, the trial can continue at new hotspots. If
the outbreak is declared over, the trial can be paused
until a subsequent outbreak. Spatially resolved mathe-
matical and statistical forecast models can assist inves-
tigators in selecting participating sites.4 Models can
incorporate site-specific features such as population
size and density, socioeconomic vulnerability, sociocul-
tural acceptance, logistic feasibility, prior immunity
estimated from traditional surveillance or serosurveys,
ongoing local transmission, or risk of importation. For
vector-borne diseases, models can capture vector pres-
ence or abundance, sensitivity to temperature and

humidity, the spread of other diseases by the same vec-
tor, and whether other diseases interfere with the dis-
ease of interest. By integrating diverse data sources,
models can help investigators identify sites at highest
risk of future transmission and prioritize these for
inclusion in the trial.

Another advantage of simulation models for infec-
tious disease trials is that they enable investigators to
explore a range of trial design features.5,6 Projected
incidence is important, but so is the uncertainty around
that projection, including the probability of no or little
future spread. When there is a chance that sites will
have little or no transmission, it becomes more impor-
tant to include multiple, geographically dispersed sites,
to distribute this risk. Even where models are not able
to accurately project future incidence, models can be
very valuable for trial planning if they can replicate
uncertainty as an epidemiological feature of the
pathogen.

We illustrate the potential role of forecast modeling
by using simulation data from a stochastic, highly spa-
tially resolved, agent-based Zika virus model7 that was
used to inform Zika vaccine trial planning in 2016.8

Although the Zika epidemic subsided so that vaccine
efficacy trials were not possible,9 these are the type of
data investigators would have at their disposal when
designing future efficacy trials for other infectious dis-
eases. In addition to generalizable findings, we provide
a plan for how future trials may analyze their modeling
results to prioritize test sites, site size, and the total
number of sites. We explore how disease models can be
used to address key trial design questions, including
how to rank sites, the optimal number of sites to
include, and how to allocate participants across sites.
Simulations can also be used to explore trial feasibility
given financial, logistical, or time constraints. We fur-
ther consider how correlation between sites due to geo-
graphic proximity or human movement impacts trial
power.

Methods

Model

We used the Global Epidemic and Mobility model to
identify the top 100 sites in the Americas with the high-
est projected Zika virus probability of transmission and
infection rates in 2017. These projections were prepared
in 2016, reflecting the type of data available to
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investigators planning trials. The Global Epidemic and
Mobility model, which has been described elsewhere,7,10

is a discrete stochastic epidemic computational model
incorporating high-resolution demographic, socioeco-
nomic, temperature, and vector occurrence probability
data. This model includes a multiscale mobility
model incorporating short (e.g. daily commute) and
long-range (e.g. international flights) transportation
networks to reflect interactions from human travel pat-
terns. In addition to serving as a model basis for Zika
virus simulations, this model has also been used for
pathogens that spread by direct contact like influenza,
Ebola, and SARS-CoV-2.11–14 For example, model pro-
jections were demonstrated to show strong concordance
with empirical data for 2009 H1N1 influenza.13 This
transmission model capturing the spatiotemporal
spread of Zika virus enabled estimation of correlation
in outcomes between neighboring sites. Before simulat-
ing epidemics, the parameters of the Global Epidemic
and Mobility model were learned from real Zika epi-
demics during 2015–2018. We then fed the learned
parameters into the model to simulate future outbreaks
in the Americas to guide site selection. The details of
how uncertainty in parameters and how the model is
calibrated is described in Zhang et al.7 The projections
were calculated using discrete time steps of one day to
simulate transmission dynamics, but the results are
summarized as number of infections per month. The
resulting dataset included the site name, population
size, and number of simulated infections (both sympto-
matic and asymptomatic) by month from January
through December 2017 (Table S1). Population sizes
for sites included all ages. Thus, we can examine both
the range of projections for each site, as well as look
across sites within an epidemic.

Trial design

We describe the design of a hypothetical individually
randomized Zika vaccine efficacy trial. The primary
outcome is total number of confirmed symptomatic
Zika virus cases. Given a set of selected sites and a fixed
enrolled population for each site, for which we consider
various different combinations, we simulate a trial as
follows. First, we select one of the simulated epidemics,
which has an associated annual infection attack rate for
each site. We simulate the number of infected trial par-
ticipants at each site as a binomial draw with the prob-
ability of infection set at the site-level attack rate, and
then we draw the number of these with symptomatic
disease assuming 20% symptomatic proportion.15 This
yields the total number of cases at each site, which is
then added across sites. We repeat the binomial draws
50 times at each site, and then across all simulated
epidemics.

Approximately 60 symptomatic infection events are
needed to have 90% power to reject the null hypothesis

that the vaccine efficacy ł 30% when it is actually
70% using a 1:1 allocation to vaccine or placebo. We
therefore defined a successful (i.e. adequately powered)
trial as finding ø60 cases across all sites in 1 year; we
also explored trial designs targeting 50 to 150 events.

In a sensitivity analysis, we consider the feasibility of
trials when attack rates are uniformly lower than pro-
jected by the model. To explore this scenario, we restrict
analyses to the 25% of simulated epidemics with lowest
overall infection attack rates across all sites.

Results

Number of sites

The first key design choice is the number of participat-
ing sites. Sites are ranked by mean incidence of infec-
tion across all simulated epidemics (Figure S1), and we
consider designs including the top site, the top two sites,
and so on. For this example, we constrain the overall
sample size at 15,000 participants and allocate these
participants equally across selected sites. We plot the
distribution of the simulated number of cases for each
design in Figure 1. Starting on the left side of the figure,
the bimodal nature of outbreaks is apparent when five
or fewer sites are included. While the median number of
cases of the one-site design is highest relative to other
designs, with a high upper tail observed for large out-
breaks, there is notable mass near zero cases, when little
transmission occurs at the site. As the number of sites
increases, this bimodal phenomenon disappears; the
probability of having zero cases decreases, but the med-
ian expected number of cases also decreases because
lower incidence sites are included.

While it is theoretically possible to enroll from only
a single site, this presents an unacceptable risk of failing
to accrue the needed endpoints. It may also not be
practically feasible if the site has a small population.
Furthermore, while a very high attack rate in a trial
could shorten the trial duration or increase study preci-
sion, our primary goal is to meet our target number of
events, not dramatically exceed it. Thus, rather than
median expected number of cases, it is preferable to
examine the probability that the design is adequately
powered. The curves in Figure 2(a) plot the probability
of success (here defined as exceeding the target of 60
cases) as a function of the number of sites. We observe
a local maximum around 8–11 sites, such that too few
or too many sites are suboptimal with respect to trial
success. In practice, the exact location of this maximum
will depend on the specific epidemiological setting.

The location of this local maximum for number of
sites is reasonably stable to the ranking criterion, even
if we change the target number of events or total sample
size. Figure 3 shows the minimum trial size required to
achieve at least 90% probability of success for different
target numbers of events and sites. As the target
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number of events increases, there is an expected
increase in the total number of participants needed. Yet
for any specified target number of events, the desired
90% probability of success is achieved with the smallest
overall sample size when around eight sites are
included. Too many sites include sites with lower risk

profiles, whereas too few sites risk having little trans-
mission at those sites.

The optimal design depends on the underlying simu-
lation data through the site-level attack rates. We con-
sider a sensitivity analysis where the overall epidemic is
smaller than projected by restricting to the 25% of

Figure 1. Violin plot of the simulated number of Zika virus cases for the top 1–10 sites with the highest average site-level incidence
of infection across all simulated outbreaks in 1 year (2017). We assume an enrolled population of 15,000 across all enrollment sites
with enrollment size spread evenly across all sites. Median number of cases (dashed line), 25th and 75th percentiles (solid lines) are
shown. The threshold for a successful trial, defined as �60 cases across all sites in 1 year, is indicated by the dotted line.

Figure 2. Probability of a successful trial (defined as �60 cases for an enrolled population of 15,000 across all enrollment sites in 1
year (2017) as function of the cumulative number of enrollment sites. In Panel (a), enrollment size was spread evenly across all sites
and sites were added sequentially based on their ranking by the (1) average site-level incidence, (2) median incidence, and (3)
probability of exceeding 1% site-level incidence of infection across all simulated outbreaks. In Panel (b), sites were added sequentially
based on their ranking of average site-level incidence of infection across all simulated outbreaks and enrollment size was (1) spread
evenly across all sites, (2) proportional to the average site-level incidence of each site, and (3) average of equal enrollment and
proportional to mean incidence.
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simulations with lowest overall infection attack rates
across all sites. Figure 4 compares the probability of
success of different designs for all simulations versus
the low incidence subset. While many of the same rela-
tionships persists, the probability of success drops dra-
matically. Even increasing the total number of sites and
overall sample size, the probability of success does not

exceed 25% in the designs explored. Thus, this
approach is also useful for exploring the feasibility of
trials.

Site prioritization

In the previous section, sites are ranked by average
model-projected site-level incidence of infection. We
examined other ranking strategies, including median
model projected site-level incidence, and the proportion
of simulated outbreaks where site-level incidence
exceeds a threshold, such as 1%. The latter strategy is
intended to capture the bimodal nature of outbreaks,
and that a few very large outbreaks could drive a high
average incidence. In general, these measures are well-
correlated, but they can yield different rankings (Figure
S2, Table S2). Small sites may have higher attack rates,
but may also have a higher probability of having zero
infections across all participants. Nonetheless, we
found similar performance across the different ranking
strategies (Figure 2).

Allocation strategies

Next, we considered different strategies for allocating
the total sample size across multiple sites, again consid-
ering designs including the top site with highest average
model-projected site-level incidence, the top two sites,
etc. The strategies are to distribute enrollment size (1)
evenly across all sites, (2) proportional to mean inci-
dence of infection, and (3) a middle-ground strategy
using the average of sample sizes obtained from the

Figure 3. The minimum enrollment size required for an
individually randomized vaccine efficacy trial to achieve at least
90% probability of success for different target numbers of events
and numbers of sites. Sites were ranked by average site-level
incidence of infection across all simulated outbreaks in 1 year
(2017) with enrollment proportional to average site-level
incidence of infection.

Figure 4. Probability of a successful trial (defined as �60 cases) as function of trial size, with enrollment size spread evenly across
all sites. Sites were added sequentially based on their ranking by average site-level incidence of infection across all simulated
outbreaks in 1 year (2017). Panel A includes all simulations, whereas Panel B is restricted to the 25% of simulated epidemics with
lowest overall incidence across all sites.
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previous two strategies (see File S1 for equations). An
example with five sites is shown in Table S3. The differ-
ence between the strategies will depend upon how simi-
lar projected incidence is across the top-ranked sites.

In this example, enrolling participants proportional
to average incidence did not outperform the other stra-
tegies when fewer than 15 sites were included (Figure
2(b)). This covers the range where the probability of
success maximizes, around 8–11 sites. With larger num-
bers of enrollment sites, enrolling participants propor-
tional to average incidence outperformed the other
strategies as fewer individuals are enrolled from sites
that are expected to have lower attack rates. However,
designs with more sites are sub-optimal based on their
reduced probability of success. As expected, the middle-
ground strategy performs in between the others, but it
may be desirable for logistical reasons by balancing
enrollment across sites. The similar performance across
the strategies for fewer than 15 sites may reflect that
sites had similar enough risk and large enough uncer-
tainty that proportional allocation provided no worth-
while advantage.

Correlation between sites

It is conceivable that incidence rates are similar among
sites in the same geographic region. Aside from Brazil,
Figure 5 shows that correlation in incidence is highest

among sites from the same country. It may therefore be
that the sites with the highest simulated incidence are
all from the same geographic region. To reduce the
chance of enrolling sites from only one geographic area
that may, by chance, have a smaller than expected out-
break, it may be prudent to simultaneously enroll parti-
cipants from other geographically dispersed sites.

We explored whether alternative combinations of
sites (that may be more geographically dispersed) could
have a higher probability of success than those based
only on rankings. Figure 6 displays combinations of
three, four, five, six, and seven site trials that achieved
higher probability of success than a design that selects
sites based solely on average site-level incidence. For
example, the top three sites based on incidence are rela-
tively close together, as seen by the low mean pairwise
distance between sites plotted on the X-axis. Many
other combinations of three sites return higher prob-
ability of success, and these tend to be more geographi-
cally dispersed (higher mean pairwise distance). A
similar pattern is observed for higher numbers of sites,
although the gains become more modest.

Number of countries

While it may be prudent to recruit sites from at least a
few different countries (under the intuition that sites
within a country are correlated), an important

Figure 5. Spearman’s correlation of average site-level incidence of infection across all simulated outbreaks in 1 year (2017)
between sites identified by the Global Epidemic and Mobility model (countries with at least four sites included). Sites are sorted by
country and then by latitude.
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operational consideration is the number of countries
enrolled. For each country included, the logistical bur-
den for the trial increases substantially because it
involves engaging with multiple ministries of health and
the protocol needs to be approved by country-level
institutional review boards. Thus, investigators may
prefer to pursue trials in countries that have many high-
risk sites. Figure S3 visualizes the number and incidence
of sites by country. For example, in this scenario, it
may be practical to select several sites from Peru,
Mexico, Ecuador, and Colombia since many candidate
sites are high risk.

Conclusion

We describe the use of infectious disease modeling data
to inform site selection and sample size planning for
individually randomized vaccine trials during an
ongoing epidemic. Mathematical models allow us to
capture a range of possible outcomes, from small to
large outbreaks, and incorporate correlation between
sites connected by human movement. Models generate
a stochastic distribution for future incidence beyond
the mean estimate typically used in trial planning. This
allows investigators to explore trial robustness to the
considerable risk of no or very low future transmission
at sites.

We find that the optimal number of sites to enroll
represents a balance between mitigating the risk of a
smaller than expected outbreak at any one site, versus
enrolling participants from lower risk sites.7 This opti-
mal number of sites stayed relatively constant even
when increasing the targeted number of events. In our
example, different methods of prioritizing sites (by
average incidence, median incidence, and probability of
exceeding a threshold) returned different rankings but
overall performed similarly as they generally returned
the same set of prioritized sites. Investigators can prior-
itize participant enrollment from high-risk sites, though
this may only be worthwhile when there are large dif-
ferences in risk across sites.

We used a single model to identify the top 100 sites
in the Americas with the highest projected Zika virus
transmission probability and infection rates in 2017 and
leveraged those data to analyze vaccine efficacy trial
design strategies. However, ensemble forecast modeling
(combining projections from independent modeling
groups) has been shown to be overall more robust than
relying on a single model.16 Another advantage of
ensemble modeling is that it enables projections to be
compared across models.4,8 We may feel more confi-
dent about prioritizing sites for inclusion or larger
enrollment that are consistently ranked highest. Where
there is considerable disagreement across models, or

Figure 6. Probability of a successful trial (defined as �60 cases for an enrolled population of 15,000 across all enrollment sites in 1
year) by the mean distance between sites (in kilometers). The panels represent numbers of sites and points represent combinations
of sites from the top 15 sites with the highest average site-level incidence of infection across all simulated outbreaks in 1 year (2017)
that had a higher probability of success than the combination of sites with the highest projected incidence (represented by the black
dot). Enrollment is assumed to be spread evenly across sites. We have included combinations of 3–7 sites of the top 15 sites for
illustration, but this process could be extended to any number of sites.
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where real-time validation indicates that models are not
performing well enough, we may opt to rely less upon
models for planning. In many real-life settings, model
uncertainty may be too high to provide stable and reli-
able rank-orderings. The main value of models then is
to characterize uncertainty, in order to assess whether
the trial has enough sites to feasibly accrue the targeted
number of events.

Of course projected incidence is not the only con-
sideration when selecting sites. Vaccine efficacy trials
are logistically complex, and a site with existing clini-
cal trial infrastructure could be far preferable even if
it is lower risk. Practical considerations include the
availability of technical support, records maintenance,
cold chain storage, and commitment from regulatory
authorities to a speedy and high quality review.17

Model projected incidence is thus viewable as one fac-
tor among a larger set that must be weighed together.
One strategy is to use models as a first step to screen
sites that is then followed by site visits to explore
logistical capacity, collect additional surveillance
data, or conduct a baseline serosurvey to better under-
stand risk.

We use a model that captures correlation between
sites due to shared characteristics and connectivity by
human movement. We demonstrated that optimal com-
binations of sites may be those that are geographically
dispersed to reduce this dependency. However, includ-
ing multiple countries increases trial costs and logistical
complexities. The problem has parallels with the design
of cluster randomized trials, where there is a trade-off
between the cost of adding new clusters and statistical
efficiency. Like cluster randomized trials, these deci-
sions can be explored in a cost-effectiveness analysis
where the costs of engaging new countries or regions
are quantified and compared.18

Our simulations had several limitations. Our model did
not explicitly account for vaccination at the sites, which
could impact projected incidence if population coverage is
sufficiently high.19 Though the models should integrate all
available data that is predictive of risk, there may be other
interventions such as vector control or education at spe-
cific sites or countries that affect their risk profiles that are
not captured. In practice, sites that are projected to have
high incidence may also institute other preventive mea-
sures (e.g. vector control) that reduce their risk profile
independent of the model projections. It is important to
conduct sensitivity analyses where incidence is lower than
expected, as such a scenario presents the greatest barrier
to establishing vaccine efficacy.

This study focused on trial design for an emerging
arbovirus, but these methods can apply to vaccine trials
for other communicable diseases, such as COVID-19.
In using this approach for other diseases, a key factor
is the predictability of future transmission and our abil-
ity to resolve differences in risk across sites. Yet, even
where unpredictability is very high, models offer a

valuable structure for exploring trial design decisions
while integrating infectious disease epidemiological
insights.5 In particular, models can help investigators
optimize site selection and the number and size of parti-
cipating sites.
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