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Abstract: The most prevalent oral cancer globally is oral squamous cell carcinoma (OSCC). The
invasion of adjacent bones and the metastasis to regional lymph nodes often lead to poor prognoses
and shortened survival times in patients with OSCC. Encouraging immunotherapeutic responses
have been seen with immune checkpoint inhibitors (ICIs); however, these positive responses to
monotherapy have been limited to a small subset of patients. Therefore, it is urgent that further
investigations into optimizing immunotherapies are conducted. Areas of research include identifying
novel immune checkpoints and targets and tailoring treatment programs to meet the needs of
individual patients. Furthermore, the advancement of combination therapies against OSCC is also
critical. Thus, additional studies are needed to ensure clinical trials are successful. Mice models are
advantageous in immunotherapy research with several advantages, such as relatively low costs and
high tumor growth success rate. This review paper divided methods for establishing OSCC mouse
models into four categories: syngeneic tumor models, chemical carcinogen induction, genetically
engineered mouse, and humanized mouse. Each method has advantages and disadvantages that
influence its application in OSCC research. This review comprehensively surveys the literature and
summarizes the current mouse models used in immunotherapy, their advantages and disadvantages,
and details relating to the cell lines for oral cancer growth. This review aims to present evidence and
considerations for choosing a suitable model establishment method to investigate the early diagnosis,
clinical treatment, and related pathogenesis of OSCC.

Keywords: oral squamous cell carcinoma; immune checkpoint inhibitors; syngeneic tumor models;
chemical carcinogen induction; genetically engineered mouse; humanized mouse; tumor
microenvironment

1. Introduction

Oral cancer is one of the most common malignant neoplasms in humans, endangering
human health, of which more than 90% are oral squamous cell carcinomas (OSCC).

OSCC is a subtype of head and neck squamous cell carcinoma (HNSCC) with an
estimated incidence of more than 370,000 new cases and 170,000 deaths annually [1–4].
Globally, the main risks of OSCC are tobacco smoking, alcohol drinking, and betel nut
chewing, followed by infection with high-risk human papillomavirus (HPV) [5–8]. OSCC
usually occurs in elderly patients; however, the incidence has increased in young people
and is mainly due to HPV-associated oropharyngeal squamous cell carcinoma [9]. Over
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half of OSCC patients are diagnosed at the T3 or T4 stage of disease progression, during
which cancer invades local bones of the maxilla or mandible or metastasizes to regional
lymph nodes [10]. In addition to lymph node metastasis, local infiltration of submucosa and
bone is a common histological feature of OSCC [11,12]. Different types of bone invasion,
including erosive, infiltrative, and mixed patterns, have been found in OSCC, which have
different histological features and 3-year disease-free incidence. Compared with the erosive
bone invasion pattern of OSCC, infiltrative bone invasive OSCC has a lower rate of 3-year
disease-free status [13].

So far, despite the advanced technology in surgery, chemotherapy, and radiotherapy,
the survival rate has hardly improved in the past two decades. The tumor microenvi-
ronment (TME) contains many different normal cells that have an essential role in tumor
development and progression. The stromal fibroblasts, extracellular matrix, blood vessels,
lymphatic vessels, infiltrating immune cells, growth factors, and cytokines secreted by TME
cells all have positive and negative effects on tumor development [14–18].

Immunotherapy was developed through advances in knowledge of the interaction
between the immune system and tumors and has improved treatment prospects in cancer
patients. The methods of immunotherapy assist the immune components in the TME
to resist the ability of the tumor to escape immune surveillance, by which the innate
immune cells eliminate cancer cells or enhance the anti-tumor immune response [19].
The immune checkpoint blockade (ICB) approach, one of the immunotherapies, aims to
drive the immune system to generate an effective anti-tumor response [20,21]. Immune
checkpoint inhibitors (ICIs) are a new kind of anti-tumor immunotherapeutic agent that can
inhibit many immune checkpoints, especially on cytotoxic T cells [22,23]. Identifying novel
immune checkpoints and targets and tailoring treatment to individual patients is one focus
area in immunotherapy. The immunotherapeutic effects of immune checkpoint inhibitors
have been encouraging; however, only a limited subset of patients respond to monotherapy.
Therefore, it is urgent to carry out further research, develop new combination therapies,
develop more immunotherapeutic drugs, and improve the success rate of clinical trials.

To evaluate the effectiveness of immunotherapy, animal models need to be established
in which human tumors and their microenvironment are genetically, physiologically, and
anatomically modeled in order to faithfully reflect the formation and development of
human tumors. Compared with other animal models, mice have lower costs, shorter repro-
ductive cycles, higher tumor growth rates, and easy genetic modification. Furthermore,
established inbred mice allow for tumor transplantation among the same strain of mice or
cell lines from the same strain of mice. These advantages make the mouse model a good
tool for evaluating the effectiveness of cancer immunotherapy. However, the ability to
transfer encouraging immunotherapy results from preclinical trials to the clinic is now a
challenge because, after promising results in mouse models, high failure rates have been
observed in human clinical trials [24,25].

Oral carcinogenesis is a complex process composed of oral carcinogens (i.e., alcohol,
tobacco, betel nut) and/or human HPV caused by a variety of genetic and epigenetic
changes. The tumor microenvironments in mouse models that mimic the human cancer
growth genetically, physiologically, and anatomically are important for the research of
OSCC immunotherapy [24,26,27]. While a single model cannot recapitulate all aspects of
OSCC, the data gathered from animal models are vital for advancing OSCC diagnosis and
treatment [28,29].

This review presents an overview of current oral cancer mouse models and discusses
the interplay between oral cancer biology and the immune system and regulators. In addi-
tion, we also present phase III trials that have been evaluated using one or a combination
of immune checkpoint inhibitors in HNSCC (Table 1). Moreover, we review the different
immunotherapeutic mouse models in use (Figure 1), (their advantages and disadvantages
(Table 2)) and we detail cell strains used for inducing oral cancer growth (Table 3).
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cinogens) are administered to induce OSCC growth. In mice treated with carcinogens, the tumor 
also forms spontaneously de novo. (C) genetically engineered mouse models use autochthonous 

Figure 1. Murine models for oral tumor immunotherapy research. (A) Syngeneic tumor models use
murine tumor cell lines grown and expanded in vitro that are then injected (subcutaneously or



Int. J. Mol. Sci. 2022, 23, 9195 4 of 25

orthotopically) into immunocompetent hosts. (B) Chemotoxic agent mouse models: Chemicals
(carcinogens) are administered to induce OSCC growth. In mice treated with carcinogens, the tumor
also forms spontaneously de novo. (C) genetically engineered mouse models use autochthonous
tumor cell growth driven by the tissue-specific deletion of tumor suppressors or tissue-specific
expression of oncogenes. (D) The humanized mouse can be further divided into two categories:
(D1) humanized xenograft mice (peripheral blood mononuclear cells (PBMCs) or hematopoietic
stem cells (HSCs) were implanted into immunodeficient mice. After 4–12 weeks, patient-derived
tumors or cell line-derived tumors were implanted into mice orthotopically or subcutaneously to
form humanized patient-derived xenograft (PDX) mice or humanized cell-derived xenograft (CDX)
mice, respectively); (D2) using the expertise in the genetically engineered mouse model (GEMM)
generation by CRISPR/Cas9, human immune checkpoint knock-in (KI) mice were generated that
can be used to test specific molecular interactions between tumor cells and immune cells as well
as within the immune system. The human immune checkpoint KI mice can further be used to
establish human immune system (HIS) mice, resulting in humanized immune checkpoint KI mice.
4-NQO—4-nitroquinoline 1-oxide.

Table 1. Phase III trials evaluating alone or combination of immune checkpoint inhibitors in HNSCC.

Trial (Code) Drugs (Brand Name)
Interventions

Patients
Number

Immune Checkpoint
Tested

KEYNOTE-048
NCT02358031

Pembrolizumab ± chemotherapy vs.
chemotherapy + cetuximab 882 [30] Pembrolizumab: PD-1 First line treatment for

R/M HNSCC

KEYNOTE-040
NCT02252042

Pembrolizumab vs. methotrexate,
docetaxel or cetuximab 495 [31] Pembrolizumab: PD-1 Second line treatment

for R/M HNSCC

CheckMate 141
NCT02105636 Nivolumab vs. chemotherapy 361 [32] Nivolumab: PD-1 Second line treatment

for R/M HNSCC

EAGLE
NCT02369874

Durvalumab ± tremelimumab
vs. chemotherapy 736 [33]

Durvalumab: PD-L1
Tremelimumab:

CTLA-4

Second line treatment
for R/M HNSCC

NCT01836029 Pembrolizumab 195 [34] Pembrolizumab: PD-1 R/M HNSCC

CheckMate 651
NCT02741570

Ipilumumab and nivolumab vs.
cetuximab with platinum

and fluorouracil
947 [35]

Ipilimumab: CTLA-4
Nivolumab: PD-1 First line treatment

for HNSCC

KESTREL
NCT02551159

Durvalumab and tremelimumab vs.
Durvalumab monotherapy 823

Durvalumab: PD-L1
Tremelimumab:

CTLA-4
R/M HNSCC

NCT03673735

Durvalumab before CRT and every
four weeks for six months after CRT.
Control: placebo before CRT and six

months every four weeks after
CRT Radiotherapy

650 Durvalumab: PD-L1 R/M HNSCC

R/M—recurrent or metastatic; PD-1—programmed cell death protein 1; PD-L1—programmed cell death 1 ligand
1; CTLA-4—the cytotoxic T-lymphocyte-associated antigen 4; CRT—chemoradiotherapy.
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Table 2. The pros and cons of murine models for immunotherapy research in oral tumors.

Model Pros Cons

Syngeneic

Low in cost.
Easy to set up.

Rapid tumor development.
Fully functional mouse immune system.

Tumors do not develop a natural
microenvironment.

Tumor heterogeneity is low.
There are major differences between the
immune systems of mice and humans.

May cause vaccination effects.

Chemotoxic agent

Development of precancerous lesions.
Host-tumor cell interactions are conserved.
Tumors form a natural microenvironment.
Fully functional mouse immune system.

Tumor heterogeneity is high.
Easy to use.

Sporadic cancer development.
It can be used in combination with other

tumor induction methods.

High in cost.
Difficult to set up.
Time-consuming.

Laborious.
Tumor formation is not initiated by chronic

inflammation.
Chemical hazards.

Metastasis and bone invasion are rare.
Difficult to monitor tumors.

Variability in tumor progression time.
Due to high heterogeneity, larger sample

sizes were required for data interpretation.

Genetically engineered

Gene expression can be manipulated.
Useful for the study of genetic alterations.

Encompasses natural tumor
microenvironments.

The tumor forms a natural
microenvironment.

Fully functional mouse immune system.
The genetic and histopathological aspects of

all stages of cancer can be recapitulated.
Heterogeneity of the tumor is higher than in

syngeneic models, depending on the
production method.

High in cost.
Overexpression of transgene.

Tumors unrelated to the oral cavity
may develop.

Labor intensive.
Limited accessibility.

Difficult to monitor a tumor.
Low immunogenicity.

Challenging for breeding and
gene manipulation.

Homogeneous in the genomic aspect.

Humanized
Highly reflect promoter methylation in

tumors and reproduced tumor heterogeneity.
Heterogeneity of the tumor is high.

High in cost.
Difficult to set up.

A partial TME is transplanted from the
patient and is dependent on the

transplantation site and donor immune cells.

Hu-PBMC Simple to construct, the T cell transplantation
efficiency is high and it is stable.

Limited study time due to short survival as
well as the occurrence of GvHD.

Hu-HSC
Development of multilineage hematopoietic
cells, including T cells, B cells, NK cells, and

myeloid cells.

T cells are educated by the mouse thymus; T
cells are few and non-functional,

not HLA-restricted.

Humanized Immune Checkpoint
Knock-In Mice

Human gene knock-in mice strains allow for
a robust expansion of human immune cells in

the mouse TME.
Precise humanized gene loci.

Fully functional and potent immune system.

Often the transplant is subcutaneous,
resulting in the surrounding environment

lacking the chronic inflammatory milieu and
organ-specific factors of the tumor.

peripheral blood mononuclear cells (PBMCs); hematopoietic stem cells (HSCs); tumor microenvironment (TME);
graft versus host disease (GvHD).
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Table 3. Mouse models used for immunotherapy in oral tumors.

Model Animal Background Inducer Dosage/Treatment Period
Tumor Harvest/Formation/End

Point/Conclusions/Development Period
(Weeks)

References

Syngeneic

C3H
SQ-1979 (Subcutaneous;
Orthotopic);
SCC7 (Subcutaneous)

5 × 106~1 × 107 cells;
1 × 105~1 × 106 cells

3 weeks [36–39]

C57BL/6 (Orthotopic)(Subcutaneous)

MTCQ1, MTCQ2, MOC-L1,
MOC-L2, MOC-L3, MOC-L4,
NHRI-HN1, NHRI-HN2,
MOC1, MOC2-luc,
MOC2 mKate2

1.5 × 105~5 × 106 cells 2~5 weeks [40–45]

BALB/cAnN.Cg-Foxn1nu/CrlNarl
(Subcutaneous) NHRI-HN1, NHRI-HN2 1 × 106 cells 6 weeks [45]

Chemotoxic
agent

C3H (Orthotopic); C57BL/6
(Orthotopic); BALB/c
CF-1 (Orthotopic); CBA (Orthotopic)

4-NQO 50~100 µg/mL/4~20 weeks 4~70 weeks [46–55]

C57BL/6J (Orthotopic) (male wild-type)
5-Lox knockout 4NQO + Alcohol 100 µg/mL + 8%/8 weeks +

16 weeks [56]

C57BL/6JNarl (Orthotopic) 4NQO + Arecoline 200 µg/mL + 500 µg/mL/
8 weeks [57]

B6C3F1 (Orthotopic)

Tobacco-related
(1) DB(a,l)P
(2) B(a)P
(3)N’-nitrosonornicotine
(NNN)

24 nmol
100 ppm/2 years
8.46 µmoL/2 times/week,
4 weeks

[58–60]
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Table 3. Cont.

Model Animal Background Inducer Dosage/Treatment Period
Tumor Harvest/Formation/End

Point/Conclusions/Development Period
(Weeks)

References

Genetically
engineered

L2D1+ /p53+/− and L2D1+ /p53−/−

(Orthotopic)
Formation of invasive oral–esophageal SCC at
6 months. [61]

LSL-KrasG12D (Orthotopic) K5 or K14-CrePR1 CrePR1

Oncogenic K-ras G12D overexpression induced
in oral epithelium of mice by16–24 weeks
administration of RU486. Formation of
squamous papilloma in the oral cavity.

[62]

Tgfbr1/Pten 2cKO mice (Orthotopic)

Tgfbr1/Pten 2cKO mice induced with 10-week
administration of tamoxifen (tam). Formation of
cancer and precancerous lesions in the
oral epithelium.

[63]

p53R172H;
K5-CrePR1 and p53flflox/flflox; K5-CrePR1
(Orthotopic)

Formation of OSCC at 15–16 months:
p53flflox/flflox;
K5-CrePR1 (25%) and p53 R172H; K5-CrePR1
(16%) mice

[64]

LSL-Kras (Orthotopic); iHPV-Luc
(Orthotopic);
K14-CreERtam mice (KHR mice) and
LSL-Kras (Orthotopic); K14-CreERtam

mice (KR mice) (Orthotopic)

Formation of oral tumors in KR and KHR mice
using tamoxifen. Bioluminescence signal of
KHR mice 74.8 times higher than control mice.

[65]

HPV16 E7iresE6 (Orthotopic); PIK3CA
E545K (Orthotopic);
KRT14-CreERtam mice (Orthotopic)

After the administration of tamoxifen for
6–8 weeks,
oropharyngeal tumors developed with about
40% penetrance (1–2 tumors/tongue).

[66]
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Table 3. Cont.

Model Animal Background Inducer Dosage/Treatment Period
Tumor Harvest/Formation/End

Point/Conclusions/Development Period
(Weeks)

References

Humanized

XactMice (Orthotopic) SHPCs, MSCs [67,68]

(1) BALB/c-Rag2null (Orthotopic);
IL2rgnull (BRG) (Orthotopic)
(2) NOD.Cg-Rag1tm1Mom IL2rgtm1Wjl

Ins2Akita (NRG-Akita) (Orthotopic)
(3) NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG)
(Orthotopic)

CD34+ umbilical cord
blood cells

(1) 1 × 105 cells
(2) 5 × 104 cells
(3) 2 × 105 cells

(1) Total of 300–500 human islets transplanted
subrenal capsule 8–26 weeks post CD34 HSC
engraftment into normoglycemic BRG mice.
(2) Total of 4000 human islets transplanted
subrenal capsule into diabetic NRG-Akita mice.
(3) Total of 3000–4000 human islets transplanted
subrenal capsule into diabetic NSG mice, mice
treated with streptozotocin to induce diabetes
(timing not reported in relation to HSC
engraftment or islet transplantation).

[69]

K5 or K14-CrePR1—keratin 5 (K5) or keratin 14 (K14) tissue-specific promoter used in the overexpression of the oncogene K-rasG12D targeted to the oral epithelium of mice. CrePR1—Cre
recombinase fused to a human progesterone receptor mutant.



Int. J. Mol. Sci. 2022, 23, 9195 9 of 25

2. Syngeneic Mouse Models

Syngeneic OSCC mouse models are produced using allografts of immortalized mouse
tumor cell lines. The models can efficiently prevent tissue rejection or graft-versus-host
disease (GvHD), which results from transplanting tumor cells into mice. In addition, these
models have the inherent advantage of fast establishment, high stability, and high con-
sistency of transplanted tumors. Therefore, they are widely used in immuno-oncology
studies and show great potential in developing novel OSCC treatments, especially im-
munotherapy [70]. Tumor cells can be injected orthotopically or ectopically. The orthotopic
model supplies a more exact tumor microenvironment, while the subcutaneous model
facilitates tumor monitoring and handling. For oral cancer induction, orthotopic models
are performed by injecting tumor cells into the oral cavity, while ectopic models most
commonly receive subcutaneous injections in the flanks [24].

The principle of syngeneic models is similar to the cell-derived xenograft (CDX) model.
Several mouse cell lines can be used to develop syngeneic OSCC mouse models, including
mouse OSCC Sq-1979 cells [36], mouse squamous cell carcinoma SCC7 [37,38], mouse
oral cancer (MOC) cell lines [40], MOC1 [41], and MOC2 [42]. Moroishi et al. [39] have
demonstrated that transplanting SCC7 cells (1 × 105) into both hind flanks of C3H/HeOu
mice resulted in aggressive tumor growth, whereas LATS1/2 dKO SCC7 cells did not
result in tumors. Similarly, Dong et al. [38] injected SCC7 cells (1 × 106) into the abdomen
of C3H/HeJ mice to assess the effectiveness of a tumor-derived autophagosome vaccine
(DRibble). Nagaya et al. [40] studied the effects of near-infrared photoimmunotherapy using
syngeneic models developed through the subcutaneous injection of C57BL/6 mice with
poorly immunogenic MOC2 mKate2 cells (1.5 × 105), moderately immunogenic MOC2-luc
cells (1.5 × 105), and immunogenic MOC1 cells (2.0 × 106). Similarly, Adachi et al. [36]
injected Sq-1979 cells (1 × 107) into the posterior neck area of C3H/HeN mice to determine
the genetic changes that occur throughout OSCC development. These studies demonstrate
that different mouse OSCC cell lines could be successfully used to produce stable syngeneic
OSCC models.

In addition, several researchers use 4-nitroquinoline-1-oxide (4NQO) to induce OSCC
in a mouse and then inject the OSCC obtained from the mouse into another mouse of
the same species to establish a syngeneic model. This is similar to the construction of
patient-derived xenograft (PDX) models. For example, Chen et al. used 4NQO (100 µg/mL
in drinking water) to induce C57BL/6 mice over 16 weeks; the mice were sacrificed at
week 28 to generate the mouse tongue OSCC cell lines MTCQ1 and MTCQ2. Afterward,
the MTCQ1 or MTCQ2 cells were injected into the flank or tongue of new mice to establish
ectopic or orthotopic mouse models, respectively [43]. Compared with human SAS tongue
SCC cell lines, MTCQ cells have lower proliferation ability but far higher abilities of
migration/invasion. Such capabilities are demonstrated through the identification of
extensive cervical lymph node metastasis and lung metastasis resulting from an MTCQ1 cell
subclone. Several therapeutic approaches have been tested using this model, including anti-
PD-L1 immunotherapy, cisplatin therapy, and miRNAs (especially miR-134). In addition,
Chen et al. [44] established a syngeneic model using 4NQO-induced OSCC transgenic
mice. In this model, K14-EGFP-miR-211 transgenic mice were induced using 4NQO
(100 µg/mL in drinking water) over 16 weeks and then sacrificed. Tissue isolated from
OSCC lesions on the dorsal surface of the tongue was then used to produce cell lines MOC-
L1 to -L4. These were subsequently used to create orthotopic xenografts and real-time
in vivo tumor imaging by injecting cells (5 × 106) into the central tongue of C57BL/6 mice.
These cells were also used to measure the efficacy of cisplatin therapy and study distant
metastasis. Chen et al. [45] established the NHRI-HN1 and NHRI-HN2 cell lines from
4-NQO/arecoline-induced murine tongue tumors and further selected for cell stemness
by in vitro sphere culture to evaluate potential immunotherapy for OSCC in East and
Southeast Asia. NHRI-HN1 or NHRI-HN2 cells (5 × 105) in 50 µL in sterile phosphate-
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buffered saline (PBS) were injected into the buccal mucosa of mice that were sacrificed
40 days after injection.

Syngeneic tumor models have also been applied to the investigation of the anti-tumor
activity of ICIs, including anti-programmed death (PD)-1/anti-PD-ligand 1 (L1) antibod-
ies [71,72] and anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) [46]. The time
taken to produce syngeneic tumor models is short, as tumor growth happens within a
few weeks [25,73]. However, such rapid tumor growth can prevent the assessment of im-
munotherapeutics, as the treatment effect is often progressive and estimated by improving
survival [74]. This makes syngeneic models unsuitable for assessing immunotherapy drugs
at the early stages of tumor development [75]. The syngeneic OSCC mouse model is a
viable tool for immuno-oncology. Still, the main problem is that the model only represents
mouse oral cancer and forms mouse tumors with mouse targets. Mice and humans differ
in compositions and mechanisms, and some targets in humans are absent or unresponsive
in mice.

3. Chemotoxic Agent Mouse Models

Chemical carcinogen-induced (CI) tumor models are easier to establish experimen-
tally and the cancers induced by carcinogen treatment are more like sporadic human
cancers [73,76]. The mechanism of action can be divided into genotoxic (GTX) and non-
genotoxic (NGTX). In the part of GTX, carcinogen directly acts on DNA or chromosomes
and injures them [77], while the mechanism of NGTX action is first to trigger many other
cellular effects, thus leading to changes in intracellular signaling pathways [78,79].

GTX carcinogens have electrophilic properties and can covalently bind to DNA to
form DNA adducts and thus cause mutations [80,81]. GTX carcinogens can be said to be
the initiator of cancer. For example, benzo(a)pyrene (BaP), a tobacco-related carcinogen,
can form bulky BaP-DNA adducts and basic sites or, by reactive oxygen species (ROS)
and metabolites generated during metabolism, causes DNA damage [82,83]. In contrast,
NGTX carcinogens do not directly bind to DNA but affect the cell cycle, cause chronic
inflammation [84], activate steroid hormone receptors (SHRs) to activate silent genetic
pathways and generate reactive oxygen species (ROS), or cause immunosuppression [85].
In general, NGTX carcinogens have different actions, including mitogenic promotion
(phenobarbital) [86], affecting the receptor-interacting protein-mediated pathway (2,3,7,8-
tetrachlorodibenzo-p-dioxin) [84,87,88], cytotoxicity (asbestos) [89], or interfering with gap
junction intercellular communication (chloroform) [90]. The epigenetic mechanisms by
these NGTX carcinogens cause genetic instability, which in the corresponding microenvi-
ronment leads to tumorigenesis [91].

CI models are usually established for a long time, but they have great genomic com-
plexity, which accurately reflects the real situation of human tumorigenesis. Furthermore,
with the larger mutational burden, neoantigens with different degrees of immunogenicity
may be generated, thus affecting the immunogenicity of the tumor [92]. The generation
of unknown neoantigens makes it challenging to determine and affect immune responses
using the CI model. As such, these models are rarely utilized to assess the effectiveness of
ICIs. However, the mouse model of oral cancer induced by 4NQO has been established
and used to evaluate the efficacy of the anti-PD-1 antibody [93,94].

Chemical risk factors for OSCC include arecoline, tobacco, and alcohol [95,96]. There
are more than 60 cancer-causing agents in cigarette smoke, including polycyclic aromatic
hydrocarbons (PAHs, such as benzo(a)pyrene), tobacco-specific nitrosamines (such as N’-
nitrosamines (NNN) and 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK)), and
aromatic amines such as 4-aminobiphenyl [97]. These chemicals have been reported
to induce DNA adducts (DNA covalently bound to carcinogens, related substances, or
their metabolites) and to be associated with cancer susceptibility [97,98]. The researchers
have induced oral carcinogenesis in mice using various chemical carcinogens, such as
4NQO [99], dibenzo(a,l)pyrene (DB(a,l)P) [58], benzo(a)pyrene (B(a)P) [59], NNN [60], and
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combinations of arecoline or ethanol with 4NQO [56,57]. Exposure of the mouse oral cavity
to these chemical carcinogens can be used to produce primary OSCC mouse models.

3.1. 4NQO-Induced OSCC Mouse Model

Immunocompetent C57BL/6, BALB/c, CF-1, and CBA mice can be used to gener-
ate 4NQO-induced OSCC mouse models. Most studies applying this approach have
used 6–8-week-old adult mice, but Vincent-Chong et al. noticed that 92% of aged mice
(65–70 weeks of age) developed severe dysplasia/invasive squamous cell carcinoma, com-
pared with 69% of young mice (7–12 weeks of age) [100]. The exposure of C57BL/6 and
CBA mice to 4NQO in drinking water produced multiple precancerous lesions and carcino-
genesis on the esophagus and tongue. CBA mice were more sensitive to 4NQO induction
than the C57BL/6 strain [101,102].

The administration of 4NQO can be either topical or in drinking water. Both methods
successfully establish OSCC mouse models [100,103–107]. Initially, researchers used a
topical daub of 4NQO to induce OSCC, which was the same method as using DMBA
to induce SCC in hamster pouches [103,106]. Schoop et al. applied 4NQO (5 mg/mL)
dissolved in propylene glycol to the tongues of male CBA mice three times a week over
16 weeks [103]. Such treatment produced continued development of hyperplasia; mild,
moderate, and severe dysplasia; and squamous cell carcinoma between weeks 24 to 40.
This method ensured that 4NQO was localized to the oral cavity and reduced digestive
tract exposure. In contrast, using 4NQO-containing drinking water to model OSCC is
considered a more natural mode of administration, faster to model, and less painful to mice
than topical application [100,104,105,107].

The amount and timing of 4NQO used in the drinking water method varied between
studies. The concentrations of 4NQO most commonly used to induce OSCC in drinking
water are 50 and 100 µg/mL [47,48]. A higher 4NQO concentration results in faster OSCC
establishment. Mice are typically exposed to 4NQO-containing drinking water for 16 weeks
(treatment period), followed by normal drinking water for 6–16 weeks (developmental
period) [100,104,105,107]. At present, no standardized method exists for producing 4NQO-
induced OSCC mouse models, and researchers can adjust these parameters according to the
needs of the study. Tang et al. gave CBA mice different concentrations of 4NQO in drinking
water: 100 µg/mL (16 weeks), 100 µg/mL (8 weeks), 50 µg/mL (8 weeks), and 20 µg/mL
(8 weeks). All mice in the 100 µg/mL, and 50 µg/mL groups formed oral lesions, and the
malignancy of oral lesions were 21.0 ± 0.9%, 15.1 ± 0.8%, 10.9 ± 0.8%, and 11.1 ± 0.8%,
respectively [101].

The 4NQO-induced OSCC mouse model is widely used in research, given its sim-
ilarities to human disease at the molecular level and regarding host immune activity,
pathological changes, and pathogenesis. This model is particularly beneficial in the devel-
opment of biomarkers for early diagnosis and translation of the epithelium of the material.
Furthermore, the pathogenesis of OSCC can be studied using 4NQO as it can induce pri-
mary OSCC and mimics tobacco-related gene mutations [108]. The advantages of primary
OSCC is that it closely mimics the tumor microenvironment in humans [100,109] and inter-
acts with cytokines [47], mesenchymal stem cells [110], natural killer (NK) cells [111,112],
microbiomes [113], and angiogenesis [114]. As a result, such lesions can be used to inves-
tigate the early identification and treatment of precancerous OSCC lesions [94,115,116].
In addition, given the similarities in host immune activity, this model allows for tumor
immunology during tumorigenesis and development and related topics such as immuno-
suppression [49,117–119] and immunotherapy to be investigated [99,120,121]. However, a
limitation of this model is the low probability of metastasis and bone invasion, limiting
its use for investigating malignant tumor invasion and metastasis. In conclusion, given
the model’s similarities to human OSCC it is best suited to investigating diagnostic and
prognostic markers of OSCC.
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3.2. Tobacco-Related Chemical Carcinogens-Induced OSCC

Chemical carcinogens associated with tobacco smoke include B(a)P, DB(a,l)P, and
NNN. B(a)P is a member of the family of PAHs found in tobacco smoke, charcoal-grilled
foods, contaminated water, engine exhaust gas, and soil. DB(a,l)P is a potent carcinogen
produced in cigarette smoke. NNN is a nitrosamine generated during the curing and
subsequent processing of tobacco. The researchers used these carcinogens to induce
tumorous formation in mice and found that cancer incidence in other parts of the mouse
body, including the liver, lungs, forestomach, esophagus, and larynx, was higher than in
the tongue, thus limiting their application on OSCC models. (Table 3) [58–60,122–125].

3.3. 4NQO Combined with Other Chemical Carcinogens

Researchers have used 4NQO combined with other carcinogens, such as arecoline or
alcohol to induce oral cancer. Arecoline, a betel nut-derived alkaloid, plays a crucial role
in oral cancer progression. Alcohol is another risk factor for oral cancer. 4NQO, arecoline,
or alcohol alone have little effect on inducing oral cancer in mice, but when arecoline or
alcohol is combined with 4NQO, the incidence of tongue tumors in mice can even reach
100% (Table 3) [56,57,126–129].

In general, carcinogens cannot induce specific genes during oral carcinogenesis nor
can they induce tumors at specific sites, so the CI models can be assisted by xenograft
models or transgenic mouse models to meet individual research needs.

4. Genetically Engineered Mouse Models

Genetically engineered mouse models (GEMMs) include “loss-of-function” and “gain-
of-function” categories. “Loss of function” uses gene knockout or knockdown technology
to deplete or silence target genes such as oncogenes, tumor-suppressor genes, or metabolic
genes. “Gain-of-function” uses the knock-in technique to overexpress oncogenes for the
function study of oncogenes in vivo. According to the particularity, GEMM is divided
into normal GEMM or conditional GEMM. Normal GEMM alters target genes throughout
the entire organism. However, this method is inconsistent with tumor formation, given
that tumorigenesis is triggered by a single cell in which multiple mutated gene loci inhibit
apoptosis and promote proliferation [129,130]. Conditional GEMM is spatiotemporally
specific, and the use of this technique can specifically alter target genes in different tissues
(space) or at different periods (time). The resulting pathological changes were similar to
those of primary human OSCC and mouse OSCC induced by 4NQO. Taking L2D1+/p53+/−

and L2D1+/p53−/− mice as examples, at 5–6 months old, the histological examination
demonstrated hyperplasia, hyperkeratosis, severe epithelial dysplasia, and cancer [61].
GEMM features an immunocompetent environment allowing tumors to grow, making this
model suitable for immuno-oncology research [70]. C57BL/6 was the first mouse strain to
undergo whole-genome sequencing and is considered the “standard” inbred strain that
provides the genetic background for many targeted genes. C57BL/6 is often used in genetic
experiments as a transgenic mouse model to recreate human genetic defects. In addition to
C57BL/6 mice, Balb/c mice can also be used as the genetic background for GEMMs [41,70].

4.1. LSL-KrasG12D Mice

Two oral cancer GEMMs are known to be associated with K-ras mutations. Researchers
use the keratin 14 (K14) or keratin 5 (K5) promoters, which tend to express in the oral cavity,
to drive overexpression of the K-rasG12D oncogene in mouse oral epithelial cells [62,131].
Caulin et al. demonstrated that the K-rasG12D oncogene driven by the K14 or K5 promoter is
distributed in a modified recombinase, Cre, fused to a deletion mutant human progesterone
receptor, which fails to bind its ligand progesterone but can be activated by progesterone
antagonists, such as RU486. The treatment of RU486 caused K-rasG12D overexpression in
mouse oral epithelial cells and developed oral squamous papilloma [62]. In an additional
model, the K5 promoter-driven expression of the K-rasG12D oncogene is controlled by
tet-responsive elements. The administration of doxycycline to mice can also be used to
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induce overexpression of K-rasG12D [131]. Such overexpression results in dysplasia and
SCC affecting the tongue, oral mucosa, esophagus, forestomach, or skin.

4.2. L2D1+/p53+/− and L2D1+/p53−/− Mice

Opitz et al. designed the first GEMM specifically for the development of HNSCC.
They used the ED-L2 promoter (L2) from the Epstein–Barr virus to specifically modify
genes in squamous epithelial cells in the mouth and esophagus. These modifications
produced L2-cyclin D1 (L2D1+) mice, which contained L2 fused to human cyclin D1 cDNA.
These mice were further crossed with p53+/− and p53-/− mice to produce composite mice
predisposed to aggressive oral–esophageal SCC. In addition, cell lines generated from the
oral epithelial cells of these composite mice could be used to induce tumors in athymic
nu/nu mice [61,132].

4.3. Tgfbr1/Pten 2cKO (Tgfbr1flox/flox; Ptenflox/flox; K14-CreERtam) Mice

Tgfbr1/Pten double conditional knockout (2cKO) mice can be induced in 4 weeks with
tamoxifen (tam) to produce hyperplastic changes affecting the oral epithelium. Further-
more, after ten weeks, visible tumors develop that are well-differentiated SCC, mimicking
HNSCC. PTEN is a negative PI3K/Akt pathway regulator and tumor suppressor gene.
The interaction between PTEN and the PI3K/Akt pathway is crucial in HNSCC carcino-
genesis. In contrast, TGF-β signaling is understood to be both tumor-promoting and
tumor-suppressing and affects the carcinogenesis of various cancers. In Tgfbr1/Pten 2cKO
mice, the loss of PTEN produces epithelium hyperproliferation and the loss of Tgfbr1
causes immune suppression and increases inflammation-enhanced angiogenesis. Thus,
this model suggests that HNSCC carcinogenesis is affected by oncogenic epithelial changes
and the tumor microenvironment [63].

4.4. p53R172H; K5.CrePR1 and p53flox/flox; K5 CrePR1 Mice

In the p53R172H; K5.CrePR1 and p53flox/flox; K5 CrePR1 models, cutaneous SCC occurred
more frequently than oral SCC and there were metastases. In contrast, the incidence
of OSCC in p53flox/flox; K5 CrePR1 mice was 25% and only 16% in p53R172H; K5.CrePR1
mice developed OSCC. In both models, deletion of the Cdkn2a gene enhanced skin tumor
formation and promoted metastasis. However, the role of this gene in oral tumors remains
to be explored. The gain and the loss of the p53 function were observed to be associated
with carcinogenesis in HNSCC in both models [64].

In conclusion, the tumor microenvironment of GEMMs in mice differs significantly
from humans due to the presence of transgenes in the stromal cells. Transgene expression
can be localized through oral mucosa-specific promoters, such as the K14 or K5, to increase
the specificity of the model. However, this does not entirely prevent leaky expression in
other tissues. In addition, the natural carcinogenesis of oral cancer is never predominated
by a single gene. Therefore, using specific genes (such as Akt or K-ras) to produce tumors
in transgenic mice may differ to human oncogenic processes. This observation is aptly
demonstrated by the low frequency of K-ras mutations found in human head and neck
cancers [133,134].

5. Humanized Mouse Models

The above syngeneic OSCC mouse models enable mouse tumors with a mouse cell
microenvironment to be established, making it possible to investigate the processes of the
tumor formation and its interaction with the TME cells. However, to assess the effectiveness
of immunotherapeutic treatments, models using both human tumors and immune cells
are required as the mouse immune system does not always correspond to that found in
humans [135]. The demand for such models is seen in the high failure rate of therapeutics
between preclinical mice trials and subsequent human trials [136].

Human xenograft models represent an alternative and are the transplantation of
human cells into an immunocompromised host. Athymic nude mice or severe-combined-
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immunodeficiency (SCID) mice are often used for human xenografts and can be used to
test the effectiveness of cytotoxic drugs [137,138]. However, the lack of immunity makes
this model unsuitable for the direct investigation of immunotherapy.

Athymic nude mice (classic) have severe T cell dysfunction but still have B cells, as
well as neutrophils, dendritic cells (DCs), NK cells, and other components of the innate
immune system [139]. SCID mice are deficient in DNA-dependent protein kinases and thus
affect T- and B-cell development [140]. SCID mice have a higher human tumor engraftment
efficiency than nude mice [141]. In addition, SCID mice are also the first strain to be injected
with PBMCs or to be transplanted with human hematopoietic stem cells (HSCs) for the
development of humanized mouse models [142,143].

Regarding the host of the humanized model, the premise of establishing a humanized
mouse with a human immune system is the construction of immunodeficient mice, followed
by continuous optimization and development, because only by destroying the recipient
mouse’s immune system first can the human tissue or cells transplanted into its body
rebuild a functional human immune system. From the earliest nude mice (nude) to the
later SCID mice and Rag−/− mice to NOD-SCID mice, these early immunodeficient mice,
either due to the presence of innate immunity resulting in a low success rate of human cell
engraftment or due to a high sensitivity to irradiation or due to a shorter life span, all have
limited the application of humanized mice in research in varying degrees [143–147].

The development of immunodeficient mice ushered in a milestone breakthrough
after 2000 AD. It has been found that interfering with the deletion of the interleukin
2 (IL-2) receptor gamma chain (IL-2Rγc) not only causes severe defects in mouse T and B
cells but also interferes with the development of NK cells, which can further improve the
transplantation effect of human cells into mice. On this basis, a variety of more advanced
severe immunodeficiency mice have been bred by researchers around the world and become
the most widely used humanized mouse model hosts for immunotherapies, including
BALB/c-Rag2−/−γc−/−(BRG), NOD/shi-SCID γc−/− (NOG), NOD/SCID-γc−/− (NSG),
etc. [148–151].

Regarding the establishment of a humanized model, according to the reconstruc-
tion method of the human immune system, two types of humanized mouse models are
commonly used:

(1) The Hu-PBMC mouse model
Peripheral blood mononuclear cells (PBMC) are cells in the peripheral blood with a

single nucleus composed of lymphocytes (T or B cells), monocytes, phagocytes, dendritic
cells, and a small number of other cell types. It is an important cellular component of the
body’s immune response function.

The Hu-PBMC model, also known as the Hu-PBL (peripheral blood lymphocyte, PBL)
model, is a simple and economic humanized mouse model of the immune system. Con-
structed by an intraperitoneal (IP) or an intravenous (IV) injection of mature lymphocytes
(derived from PBMC) into immunodeficient host mice, this model is often used to study
the activation of human effector T cells and to evaluate immunosuppressive drugs.

The preparation period for the Hu-PBMC model is short. After PBMC transplantation,
human CD3+ T cells can be detected as soon as one week; in about 2 weeks, the immune
cells will be rapidly reconstituted; in about 4 weeks, about 50% of human CD45+ cells can
be detected in the peripheral blood of mice, about 90% of them are CD3+ T cells, and the
ratio of CD4+:CD8+ T cells is about 1:1. However, the Hu-PBMC model develops lethal
graft-versus-host disease (GvHD), the extent of which is directly related to the engraftment
of human T cells, as assessed by weight loss in mice. GvHD generally occurs 2–3 weeks
after transplantation, so the experimental observation window is short [152].

(2) The Hu-HSC mouse model
Another approach involves the injection of human CD34+ HSCs into immunodeficient

host mice, which requires first sublethal irradiation of the host mice to deplete mouse
HSCs and to facilitate engraftment of human HSCs. Such models, also called hu-CD34+,
or hu-SRC (SCID-repopulating cell) models, have been widely used to study human
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hematopoietic development, cell-mediated immune responses, and viral infectious diseases
such as HIV and EBV.

Hematopoietic stem cells (HSCs) are a type of cell in human hematopoietic tissues that
can self-renew and differentiate into various blood cells. CD34 antigen is widely recognized
as a representative surface marker of hematopoietic stem/progenitor cells. It is a highly
glycosylated type I transmembrane glycoprotein that regulates cell adhesion and promotes
cell adhesion to the bone marrow matrix.

A variety of hematopoietic stem cells can be generated by intravenous (IV) or in-
trafemoral (IF) injection of human CD34+ HSCs from human umbilical cord blood, bone
marrow, G-CSF-activated peripheral blood, or fetal liver into adult immunodeficient mice,
but T cells are produced in small quantities and are not functional. Alternatively, by intra-
venous injection (intracardiac or intrahepatic), the transplantation of human CD34+ HSCs
into neonatal recipient mice (less than 4 weeks old) results in good human cell engraftment
and production of NK cells, macrophages, B cells, T cells, and DCs. Embryonic liver and
umbilical cord blood are the most used sources of human CD34+ HSCs, which are more
likely to colonize immunodeficient mice than adult HSCs [152].

For tumor research, the establishment of a humanized xenograft mouse model that
allows interaction between the human tumor-immune system and the use of novel mouse
models to explore the treatment of immune checkpoint inhibitors are currently emerging
development directions.

5.1. Humanized Xenograft Mice

Humanized mouse models with co-transplantation of the human immune system
and human tumors (xenografts) are effective tools for developing new strategies for tumor
immunotherapy. If classified by the source of the graft, xenograft models include CDX,
which is derived from tumor cells cultured in vitro, and PDX, which is derived from
fresh tumor tissue from patients. If classified by the location of inoculation, xenograft
models include both ectopic and orthotopic. In ectopic models, tumor cells are injected
subcutaneously into the flank or back of the mouse. In contrast, in orthotopic models,
tumor cells are often grafted onto the tongue of the mouse [70,153]. Implanting human
tumor cells, CDX, or tumor tissue, PDX, into humanized mice based on the human immune
system can better simulate the human tumor microenvironment. It is used to study the
growth of tumors in the human immune environment and it can evaluate the efficacy and
related mechanisms of anti-tumor therapy, especially immunotherapy [154]. Tumor cell
or tissue inoculation is performed on the Hu-PBMC model or Hu-HSC model to establish
tumor-bearing humanized mouse models, which can be used to evaluate the therapeutic
effects of immune checkpoint inhibitors or dual checkpoint inhibitors:

(a) Assessing the effects of immune checkpoint inhibitor therapy
A growing number of studies have shown that humanized mouse models of the

immune system have unique advantages in the study of immune checkpoint inhibitors; for
example, inoculating KHOS cells in Hu-PBMC mice to establish a humanized osteosarcoma
mouse model of the immune system. Moreover, using this model to prove that PD-
1 inhibitors can effectively inhibit the lung metastasis of osteosarcoma. The anti-PD-1
antibody reduced tumor size by more than 50% in Hu-PBMC mice inoculated with human
lymphoma SCC-3 cells or glioblastoma U87 cell models. The humanized mouse tumor-
bearing model of the immune system is a good platform for evaluating immune checkpoint
inhibitors [155].

(b) Assess the effect of combination therapy, e.g., dual checkpoint inhibitors
Hu-PBMC mice were inoculated with human colorectal HT-29 cells and gastric cancer

tissue and treated with urelumab (anti-hCD137) or/and nivolumab (anti-PD-1). It was
found that the combination therapy or monoclonal antibody alone can slow down tumor
growth, the combination therapy did not significantly improve the efficacy, and the tumor
grafts increased IFNγ-secreting human T cells and decreased human Treg cells. In the Hu-
HSC model of EBV-associated lymphoma, the combination of PD-1 and CTLA-4 inhibitors
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can effectively inhibit the growth of EBV-induced diffuse large B-cell lymphoma and the
anti-tumor effect is better than that of monotherapy [156,157].

Morton et al. successfully generated the TME in a humanized PDX mouse model of
HNSCC. In xenochimeric mice (XactMice), tumors contained human cells derived from
humanized bone marrow and a dynamic microenvironment containing human B and T cell
populations, cytokine expression, and lymphangiogenesis. These mice accurately repre-
sented the in vivo growth of the original tumor [67]. This HNSCC humanized mouse model
was further optimized by Morton et al. [68]. Through the infusion of mesenchymal stem
cells (MSCs) and human hematopoietic stem and progenitor cells (HSPCs), the percentage
of human immune cells present in the bone marrow of established mice could be doubled
compared with mice only implanted with HSPCs. In addition, a 9–38-fold increase in
mature peripheral human immune cells was seen for the dual infusion, and these mice had
more MSCs, cytotoxic T cells, and regulatory T cells. Therefore, the dual infusion of MSCs
and HSPCs produced a higher degree of humanization, which improved the accuracy of
the model.

The humanized mouse model is an emerging technology and thus still has many
limitations. For example, tissue incompatibility may cause immune responses in humanized
mice [158]. This suggestion is supported by findings that transplanted human immune
cells, predominantly T cells, produce GvHD and attack recipient mice, resulting in death.
As a result, only a short period is available to perform experiments [159]. Nonetheless, the
humanized mouse is the closest to replicating human disease, thus ongoing development
of this technology is needed.

5.2. Humanized Immune Checkpoint Knock-In Mice

Humanized xenografted mice can be prohibitively expensive and laborious to develop.
However, an alternative method is the introduction of knock-in (KI) human immune
checkpoint genes into mice, especially when it comes to testing drugs that target the
immune checkpoints of human immune cells or human tumor cells [160].

An antigenic immune response is regulated by a balance between inhibitory and
stimulatory signals through signaling pathways of receptors and ligands called immune
checkpoints. Several checkpoint molecules, for example CTLA-4 and PD-1, can affect the
functionality of both adaptive and innate immune cells [161]. Tumor cells manipulate
these pathways by either suppressing stimulatory immune regulators or overexpressing
inhibitory immune checkpoints. Immune checkpoints are an area of interest to immuno-
oncology, which seeks to modulate the immune system to identify and destroy cancerous
cells [162]. Immune checkpoint blockers (ICBs) are a novel field in drug research and are
developed to block ligand–receptor binding between T cells and cancer cells [163].

The differences in the immune systems between humans and mice (60% homology)
can cause discrepancies between preclinical and clinical studies. For example, the inhibitory
receptors on NK cells that recognize MHC class I molecules differ and do not exhibit cross-
reactivity (KIRs in humans and Ly49s in mice). Therefore, studying these receptors in
immunocompetent mouse models is challenging; murine Ly49s do not bind to human
MHC and vice versa [163,164]. Therefore, early research into NK/ILC checkpoint inhibitors
depended on immunodeficient mice transplanted with human tumor cells and only one
type of human immune cell. Thus, better preclinical models that mimic human cancer
development and our immune system will provide a more realistic TME to measure the
success of ICBs. To connect the laboratory with clinical translation, several ready-made
mouse models in which human immune checkpoint orthologs and immune regulatory
genes are knocked in to replace all or part of endogenous mouse genes.

Murine cells can be edited to express a human form of a murine protein while still
being regulated by murine elements. Therefore, these edited mice have a single gene
alternation to their immune system, retaining the overall intracellular signaling [165,166].
These mice are called human immune checkpoint knock-in (KI) mice. These mice do not
possess human immune cells, so they are not viewed as human immune system (HIS)
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mice. Nevertheless, these mice can be used to assess the anti-tumor and binding and
efficacy of antibodies against discreet human checkpoint molecules. The human immune
checkpoint KI mice can further be used to establish HIS mice, resulting in humanized
immune checkpoint KI mice. These humanized knock-in immune checkpoint mouse
models are ideal for producing tumor mouse models for drug testing and basic research.
Commercially available mice can be purchased that express human CTLA-4, human PD-1
and CTLA-4, or both human PD-L1 and PD-1 without murine PD-L1 or PD-1 [162]. These
models can help assess the direct and secondary effects of targeted antibody therapies on
tumor growth in vivo, reduce off-target toxicities, and optimize antibody binding kinetics
to reduce the incidence of severe immunotherapy-related adverse events.

The humanized immune-checkpoint mice model has some other advantages
as follows:

Precise humanized gene insertion: mitigates against any possible interference with
the humanized gene expression. The target protein confirmation, in particular the binding
region, remains unaffected.

Highly efficient models: such models undergo comprehensive QC and validation
using clinical-grade checkpoint blockers to ensure adequate expression and correct signal
transduction of human immune checkpoint genes.

Fully functional and potent immune system: the murine immune system is not com-
promised; instead, specific immune cells will express the human version of checkpoints
of interest.

6. Conclusions and Future Perspectives

Immunotherapies are changing the treatment landscape for oral cancer. Compared
with current treatments, immunotherapies improve survival and reduce toxicity. ICIs
have now been advanced from second-line to first-line therapy for recurrent or metastatic
(R/M) oral cancer. The mouse models used in related studies have various advantages and
disadvantages. Syngeneic, GEM, and humanized PDX models all have several limitations.
When it comes to recapitulating the heterogeneous anti-tumor immune responses observed
in immuno-oncology clinical trials, the limitations mentioned above pose challenges for any
single model type. However, further development of more specialized preclinical models
will enable us to define their selection to accurately replicate the human malignancies and
to better assess responsiveness to immunotherapy [74]. Accurately determining the initial
experimental question is crucial when choosing an appropriate model.

Although current research primarily relies on syngeneic tumor models, increasingly
complex GEMMs models can accurately replicate the autochthonous tumor microenviron-
ment, enhancing the predictive value of tumor immunotherapy in the preclinical setting.
Additionally, advancements in humanized PDX models can potentially develop a “co-
clinical” approach to engraft patient tumors into preclinical models of humanized immune
reconstitution to guide treatment decisions [74]. While generating humanized PDX models
has focused on recreating the patient’s immune system, a crucial advancement will be
incorporating microbiome analysis into preclinical models. Given the sensitivity of the
microbiome, which can be affected by, among others, the manufacturer and the study
housing environment, it is important to include these variables when measuring the im-
munotherapeutic response [167].

Another critical area of preclinical tumor models that needs further development is
the accurate modeling of immune-related adverse events (irAEs), as available preclinical
models do not replicate the severity, kinetics, and nature of the toxicities observed in ICB-
treated patients. Because immuno-oncology drugs can present unpredictable patterns of
irAEs in patients, identifying the early biomarkers of irAEs and approaches for reversing
lethal toxicities are crucial for the safety of immuno-oncology combination treatments in the
clinic [168]. Such improvements include using models that have reduced kinetics of tumor
regression (to facilitate the development of irAEs), incorporating novel ways to determine
toxicity, as well as assessing these treatments in models more sensitive to autoimmunity
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(Treg-depleted model systems [169]). Because irAEs can have a multitude of manifestations
in various tumor histologies, incorporating models that correctly present the irAEs seen in
the clinic is of the utmost importance [170].
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