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Abstract

Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1uC to 6.4uC
over the next 90 years. In context, a change in climate of 6uC is approximately the difference between the mean annual
temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to
changing climate throughout Earth’s history and their previous biological responses can inform our expectations for future
climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation
paleoclimate models, species’ evolutionary relatedness, and species’ geographic distributions. We use the stable oxygen
isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle
Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A
simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable
oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of
change derived from these reconstructions to predict magnitudes and rates of change in species’ suitable habitat over the
next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We
use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models
for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models.
Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of
magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr).
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Introduction

The Intergovernmental Panel on Climate Change reported that

mean annual temperature will increase anywhere from 1.1 to

6.4uC by the end of the 21st century [1]. A shift in temperature as

large as 6uC is comparable to the mean annual temperature

difference between a glacial and an interglacial climate [2]. Many

species, especially in temperate regions, shift their geographic

distributions dramatically between glacial and interglacial cycles.

These orbitally-forced geographic distribution dynamics influence

speciation, range sizes, and latitudinal patterns [3]. Further, many

species have significantly shifted their geographic distributions in

the past few decades [4,5]. If a species is not able to track its

suitable habitat or adapt to these changing climatic conditions, it

will become extinct [6].

The response of species to climate change has often been

studied in field settings by tracking a species’ geographic

movement through years or decades. In a meta-analysis of 1,700

species compiled from published field studies, habitat tracking

poleward is on average 0.61 km yr21 [7]. This approach provides

a good estimate of the current rate of geographic displacement in

response to climate change; however, it does not provide a

framework for comparison with a background rate of change (an

expected rate). An expectation can be established from estimating

past rates of change and is an important indicator as to whether

the current response is within the range of normality and if it is

sustainable. Here we extend existing methods so that we can

model suitable habitats for species in the geological past through a

series of glacial-interglacial cycles. Our aim is to make use of the

rich, continuous record of changes in global climate through the

Quaternary that has emerged from stable isotope data and

paleoclimate modeling. By using stable oxygen isotope data, we

have derived a geographically explicit climate data set for the

entire late Quaternary of North America by scaling between two

general circulation climate models (GCMs) for glacial and

interglacial periods. These data provide us with a set of North

American paleoclimate maps for the last 300,000 years spaced

,4,000 years apart onto which we have projected phylogenetically

scaled climate envelopes to estimate the geographic distributions of

a clade of eleven rattlesnakes. The rates of historical waxing and

waning of habits through several glacial-interglacial cycles

provides a comprehensive non-anthropogenic context for evalu-

ating current rates of geographic displacement due to anthropo-

genic climate change.

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28554



A climate envelope model generally characterizes a set of

suitable habitats for a species derived from their present

geographic location. The climate envelope models are constructed

from the associations between the geographic position of a species’

occurrence and its climate. Climate envelope models can be

selected, trained, and tested under current climate conditions [8],

but there is difficulty in testing these models under different

climates. Insight can be gained from comparing projections of

climate envelope models on paleoclimate maps with fossil

occurrences [9], from projecting climate envelope models of

invasive species onto continents that are being invaded [10,11], or

from comparing projections of climate envelope models on

paleoclimate maps with traditional molecular genetic phylogeo-

graphic predictions of potential distributional areas [12].

The climate envelope model has been critiqued for disregarding

biotic interactions, dispersal, and evolutionary change [13,14,15].

In addition, climate envelope modeling takes into account species’

occurrences, which only represent their realized niche. The

realized niche is the current space occupied by a species resulting

from biotic and abiotic interactions, where the fundamental niche

is all possible space that supports viable populations within a

species, but in which the species does not necessarily currently

occupy [16]. Review of these criticisms suggests climate envelope

modeling does provide a useful first approximation to study the

dynamics of species’ response to climate change when considered

at the appropriate macro scale [17]. In addition, a study

comparing climate envelope models and mechanistic models in

100 plant species suggest some climate envelope models can be

used to predict changes in a species’ geographic distribution under

alternative climate scenarios [18].

An alternative approach to modeling suitable habitat for a

species is mechanistic modeling [19,20,21]. A mechanistic model is

based on the functional morphology, behavior and physiological

requirements of a species and is independent of the species’

geographic distribution and the climate in which the species lives

[22]. These functional traits are then linked to climate and

environmental variables, which can be mapped in geographic

space. Functional trait data are required as input parameters in

mechanistic models and specifically physiological data, such as

temperature tolerances and energy, water, and mass balance, are

not always readily available for species being studied. Identifying

species’ physiological requirements involves experimentation that

is costly, time consuming, and impractical when dealing with

many species.

Another aspect of climate envelope modeling concerns how to

take phylogenetic effects into account. Phylogenetic comparative

methods (PCM) have been used to account for phylogenetic

relatedness and to elucidate past rates of change of climate

tolerances by reconstructing ancestral climate envelopes

[23,24,25]. The PCM approach models changes in the climate

envelope of a species, without necessarily projecting those changes

into geographic space by use of paleoclimate maps. By projecting

the reconstructed envelope onto geographic space, the past

location and size of the ancestor’s suitable habitat can be

estimated, but a contemporaneous paleoclimate map is needed,

something that has heretofore been unavailable to PCM-based

studies. We extend the PCM approach by modeling evolving

envelopes along the branches of the phylogenetic tree, not just the

ancestral nodes, and we project the evolving envelopes onto the

series of paleoclimatic maps that we generate for every temporal

step along the branch using the oxygen isotope data and GCM

models.

Previous studies have estimated past geographic distributions at

6, 21, and 126 kya by projecting the climate envelopes of extant

species’ models onto GCMs for those times (reviewed in [26]).

These snapshots show how suitable habitats of species are likely to

have shifted geographically with climate change, assuming no

evolution. However, several studies indicate that climatic niches of

species can evolve over short evolutionary time scales [27,28,29],

which suggests past climate envelope modeling that takes into

account phylogeny might be more informative than those that do

not. The further back in time a climate envelope model is

extrapolated, the more critical it is to account for evolutionary

adaptation in its construction [23,30].

GCMs are complex integrations of mathematical functions that

describe atmospheric and oceanic circulation, sea ice, land surface

properties, and atmospheric properties. GCMs use computation-

ally intensive numerical models to simulate past, present, and

future climates, including atmospheric and oceanic temperature

and precipitation. Because of the computationally intensive nature

of GCMs, only a limited set of past global climates have been

modeled. Examples of such paleoclimate models for the

Quaternary are for 0, 6, and 21 kya, produced by the

Paleomodelling Intercomparison Project II [31], and for the last

interglacial ,120–140 kya by Otto-Bliesner et al. [32].

In contrast, nearly continuous high-resolution estimates of

global and local mean annual paleotemperatures are available for

many parts of the world in the form of oxygen isotope values from

sediment and ice cores for the entire Quaternary, and even the

entire Cenozoic [33,34]. In order to estimate temperature and

precipitation for past climates that may not have been modeled

with GCMs, we use stable oxygen isotope values to interpolate

between two time periods when climate is either known (as in the

present) or has been modeled. We used this interpolation to

construct paleoclimate maps at ,4 ky time intervals for the last

320 ky.

Here we developed phylogenetically-informed climate envelope

models for 11 rattlesnake species (Crotalus). We project a

phylogenetically reconstructed climate envelope onto a map of

paleoclimate at many corresponding time intervals over the last

320 ky to determine the potential rate of geographic change in a

species’ suitable habitat. We refer to these models as paleophy-

logeographic models. By synthesizing both the evolutionary history

of climatic tolerances and the climatic history in which these

species evolved, we have arrived at a more detailed understanding

of how they have responded to climate change and we predict how

they might respond in the future.

Materials and Methods

Study System
Snakes are particularly useful for understanding the effects of

climate change on terrestrial vertebrate species because their

ectothermic physiology is highly dependent on the ambient

temperature. We specifically chose rattlesnakes because the

geographic distributions of some species extend north of former

glacial margins, assuring that their geographic distributions have,

in fact, changed over recent geological history [35]. The genus

Crotalus originated in North America, most likely in the mid-

Miocene, 13–15 mya [36], and its subsequent history on the

continent is a complicated combination of dispersal, vicariance,

and speciation in the context of changing climate and geography

[37,38,39,40].

Species’ Occurrences
Detailed geographic distributions of 11 rattlesnake species were

obtained from published range maps [35]. The sampling scheme

of Polly [41] was adopted, which is essentially a point based

Species’ Response to Climate Change
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scheme (available at http://mypage.iu.edu/,pdpolly/Data.html).

First, points spaced by 50 km were laid across North America and

then points that overlap with a species’ geographic distribution

were selected to represent that species’ geographic distribution.

We call these range occurrences. We chose to base our models on

an evenly spaced set of occurrence points sampled using

equidistant 50 km points across each modern species’ geographic

distribution, instead of point occurrence data derived from

museum collection events, such as the Global Biodiversity

Information Facility, www.gbif.org, because our 11 species are

poorly covered, are commonly misidentified in museum collection

records or existing collection records have a strong geographic

bias, especially in Mexico. Geographic distribution maps of these

species [35], primarily stemming from sightings by experts, mark-

recapture studies, and other longitudinal studies that do not

produce museum voucher specimens, may provide a better

representation of their full geographic and climatic ranges. The

use of range polygons for habitat modeling has been criticized

because some species are known to occur only in specific

microhabitats whose climate differs from the surrounding

landscapes encompassed in generalized range maps. We recognize

the potential downfall of using range occurrences, but our goal is

to estimate large-scale geographic changes over long temporal

scales rather than to predict precisely where our species occur or

do not occur on a small or medium scale landscape. Each of our

points sampled at 50 km intervals from a modern geographic

distribution has a coarseness that is appropriately similar to the

geographic resolution of paleoclimate estimates and fossil

assemblages [41,42]. Map building, intersection, extraction and

manipulation were all performed in a combination of ArcGIS,

Mathematica 7.0, and MySQL. All further analyses were

performed in Mathematica 7.0.

Climate Envelope Modeling
We chose climate envelope models to describe potential suitable

habitat for a species because a method for incorporating climate

envelope models with phylogenetic comparative methods has been

established [24,25]. We used 19 climatic variables derived from

the 2.5 arc-minutes WorldClim database Version 1.4 to develop

climate envelope models [43]. These 19 variables describe means

and extremes of temperature and precipitation on a monthly,

quarterly, and annual basis and are referred to as bioclimatic

variables (Table 1). The bioclimatic variables were sampled at the

50 km point occurrences that represent each species’ geographic

distribution.

The specific bioclimatic variables important for each species

differ in type and magnitude, so we included all 19 in the climate

envelope models. One concern for including too many variables to

model a species’ suitable habitat is over-fitting the model to the

data; however, this is not the case here because the climate data

are not being used as independent variables in a statistical model

with the aim of explaining variance in the independent data.

Rather the variables are used to characterize a multivariate

climate space inhabited by the species and the addition of

correlated variables does not have the effect of inflating the climate

envelope. The bioclimatic variables that are most closely

associated with the species’ geographic distribution will be the

ones that emerge as influential in the suitable habitat models,

whereas the ones that are not associated with the geographic

distribution will have little or no effect on the suitable habitat

models.

We evaluated two variants of a rectilinear climate envelope,

BIOCLIM [44], and 5 variants of an ellipsoidal climate envelope,

the generalized linear model, GLM [45], to determine which

algorithm was the best predictor of the assumed known modern

geographic distributions. For BIOCLIM, rectilinear climate

envelopes were calculated for each species based on the maxima

and minima of points in the 19-dimensional multivariate climate

space. In the first variant we used the absolute maximum and

minimum along each axis, in the second variant we used the 5th

and 95th percentiles to minimize effects of climatic outliers. For the

GLM method, a 19-dimensional ellipsoidal climate probability

envelope was calculated, in which a parameter is estimated for

each climate variable for location and affiliation with other climate

variables. This is then transformed into a probability for each

geographic point included in the climate envelope using a logit link

function. The five variants of the GLM method included points in

the distribution of suitable habitat when their p-values were

greater than 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. We did not

use logistic models or genetic algorithms such as GARP [46]

because these approaches are designed to find the best fit of

occurrence data to a specific climate to determine where the

existing climate is appropriate for the species. Because we are

modeling across time, it is expected that correlations between

climate variables will change from what they are in the modern

climate; rectilinear climate envelopes do not rely on absence data

nor do correlations between climate variables affect their

boundaries, making the envelope model more appropriate for

estimating changing suitable habitat distributions in past climates.

Quantitative descriptors of distribution models
We used three statistics to describe geographic distributions for

the purposes of assessing the fit of suitable habitat model

distributions to known distributions and for describing the rate

and degree of change in the paleophylogeographic models. The

three statistics are: 1) the geographic center, measured in longitude

and latitude, and calculated as the mean of each coordinate for all

Table 1. Nineteen bioclimatic variables derived from the
WorldClim database.

Abbreviation Variable Description

BIO1 Annual Mean Temp (C)

BIO2 Mean Diurnal Range (C)

BIO3 Isothermality (100 * BIO2 / BIO7)

BIO4 Temp Seasonality (100 * SD)

BIO5 Max Temp of Warmest Month (C)

BIO6 Min Temp of Coldest Month (C)

BIO7 Temp Annual Range (C) (BIO5–BIO6)

BIO8 Mean Temp of Wettest Quarter (C)

BIO9 Mean Temp of Driest Quarter (C)

BIO10 Mean Temp of Warmest Quarter (C)

BIO11 Mean Temp of Coldest Quarter (C)

BIO12 Annual Precip (mm)

BIO13 Precip of Wettest Month (mm)

BIO14 Precip of Driest Month (mm)

BIO15 Precip Seasonality (CV)

BIO16 Precip of Wettest Quarter (mm)

BIO17 Precip of Driest Quarter (mm)

BIO18 Precip of Warmest Quarter (mm)

BIO19 Precip of Coldest Quarter (mm)

doi:10.1371/journal.pone.0028554.t001

Species’ Response to Climate Change
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points in the distribution; 2) the standard deviation of points in the

distribution relative to the geographic center; and 3) the number of

points included in the distribution.

Selection of the best suitable habitat distribution model
We tested the predictive power of the seven models by

comparing their geographic centers, standard deviations, and

numbers of points to known species’ distributions. We used an

independent two-sample t-test, where the geographic center was

the point of comparison, the standard deviation served as the

variance, and the numbers of points were the degrees of freedom.

This method tests the null hypothesis that the modeled distribution

is not significantly different from the known one. To test the

robustness of the model distributions with respect to the known

distributions and to account for non-normality in the spatially

distributed dataset, we subsampled known species’ distributions

down to 25% of the original occurrences and rebuilt the modeled

distributions 100 times. To further summarize the fit of each

model distribution to the known species’ distribution, we

calculated an index of overlap (twice the number of shared points

by the modeled and known distributions divided by the sum of

number of points in both).

Phylogenetic regression of climate envelopes
To construct the evolving climate envelopes, we regressed the

climate envelopes of 11 rattlesnake species onto a composite

phylogeny [47] based on a mixed model Bayesian analysis [48]

and maximum parsimony [49] (Figure 1). Branch lengths were

calibrated by averaging divergence times suggested by fossil

evidence [36] and genetic distances in molecular phylogeographic

studies [37,38,39,40,50]. We used phylogenetic generalized linear

model regression [51] to regress the 95% BIOCLIM envelopes

onto the phylogeny using the maximum and minimum of the

bioclimatic variables as traits and assuming a Brownian motion

model of evolution [23]. This regression yields reconstructions of

the most likely envelopes at each of the nodes of the tree. The most

likely envelope at any point along a branch of the tree is simply a

linear extrapolation between the envelopes at each end of the

branch, scaled by the relative position of the point along the

branch.

We tested the conformity of the climatic variables with our

assumption of a Brownian motion model. The expected absolute

divergence of a trait scaled to time since divergence is D = rta,

where D is the absolute divergence in the trait, r is a rate

parameter, t is the time since divergence, and a is a coefficient

related to the mode of evolution [52,53,54]. The parameter a

ranges between 0 and 1, where 0 represents stabilizing selection,

0.5 represents perfect Brownian motion (randomly fluctuating

selection or genetic drift), and 1 represents perfect diversifying

selection. We used maximum likelihood to estimate r and a for

each trait from the pairwise differences between the values at two

tips relative to the interval of phylogenetic time connecting the two

tips on the tree [53].

Interpolated paleoclimate maps
We used modern climate [43] and the GCM MICROC3.2

model of the LGM (,21 kya) from PMIP2 [31] to interpolate

climates between and beyond these data. We tested our

interpolated estimates of paleoclimate against independent GCMs

for two times, 6 kya and 120 kya. We estimated mean annual

temperature and annual precipitation by interpolating propor-

tionally between our two end-member climate datasets, scaling the

interpolation by composite benthic stable oxygen isotope ratios

[33]. The stable oxygen isotope ratios are derived from multiple

cores at a site in the North Atlantic Ocean on the western flank of

the Mid-Atlantic Ridge. They are a proxy for northern

hemisphere to global temperature and probably have less noise

than terrestrial cores because they are deposited in a more stable

environment.

We chose to test the climate interpolation at 6 kya because

several GCMs have been used to model climate then (notably

CCSM and MICROC3.2), allowing us to determine whether our

interpolated model is as similar to the GCMs as they are to each

other. We also compared the differences between a GCM from the

last interglacial [32] with our climate interpolation model. Because

our purpose is to facilitate the study of the continental-scale

response of terrestrial animal habitats to climate change, we

restricted our test to North America and used 50 km points as our

level of resolution.

Construction of paleophylogeographic models and their
relationship with change in temperature

Paleophylogeographic models were reconstructed in increments

through the last 320 ky by projecting the phylogenetically-scaled

climate envelopes onto concurrent paleoclimate maps (Figure 2).

Increments were approximately 4 ky, but specifically determined

by age estimates of oxygen isotope values [33]. We calculated the

average change in geographic center (km) and areal extent (km2)

for all incremented time steps that included only phylogenetically

scaled climate envelopes, only paleoclimate models, and both.

Crotalus enyo, C. adamanteus, and C. ruber were excluded because of

their intermittently undetectable suitable habitat at a 50 km scale.

Because these species are modeled to have lost their entire suitable

habitat at a 50 km scale during extreme climate, they are probably

the most vulnerable to excessive climate change and excluding

them from our further analyses provides us with a highly

conservative estimate of geographic shifts due to expected

Figure 1. Composite phylogeny of 11 rattlesnakes in the genus
Crotalus. Phylogenetic relationship of 11 rattlesnake species based on a
composite phylogeny from a mixed model Bayesian analysis and
maximum parsimony. The color offsets on the bar labeled millions of
years ago (mya) are in million year increments.
doi:10.1371/journal.pone.0028554.g001
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evolutionary change or climate change. All pairwise comparisons

of average change in geographic center and areal extent were

linearly regressed on corresponding change in mean annual

temperature (uC) with a bootstrapped estimate of standard error

and a randomization to account for non-normally distributed data.

Verification with the fossil record
To assess the validity of the paleophylogeographic models we

compared the predicted past distribution of Crotalus to known

occurrences in the Pleistocene fossil record by testing the overlap

of past modeled distributions and fossil occurrences. Forty-one

documented occurrences [36] were downloaded from the

Paleobiology Database on 11 May, 2011, using the genus name

‘Crotalus’. Species level identification is not commonly reported

for these rattlesnakes in the Paleobiology Database, so the

comparison was generalized to the genus level. The clade of

rattlesnakes that we modeled only represent about one third of

the recognized species in this genus, so our sample does not

represent the niche diversity of the genus. However, several of the

species within this clade represent the northern extent of the

current known distribution of the genus. Although the species’

suitable habitat at the northern extent of the distribution of the

genus does not necessarily represent the harshest climates (e.g.,

montane species in Mexico live in more extreme climates), they

do represent the northern extent of the genus geographically.

Much of the North American continent is covered by different

species within this genus, so paleodistribution models of the

northern extent of rattlesnake suitable habitat provides a testable

hypothesis. If a fossil occurs north of the northernmost edge of

the modeled suitable habitat, it is clear that the models are

incorrect.

Projection of climate envelopes on future climate
scenarios

Suitable habitats were modeled under two future climate

scenarios for the year 2100 for 11 rattlesnake species. The two

climate scenarios were developed for an increase in mean annual

temperature by 1.1uC and by 6.4uC, the range of possible mean

annual temperature increases reported by the IPCC [1]. Future

climate maps were constructed by the climate interpolation

method described above in ‘Interpolated paleoclimate maps’ using

the change in stable oxygen isotope values as a proxy for change in

temperature.

Results

Selection of the best climate envelope model
BIOCLIM envelope models fared better than GLM envelope

models to quantitatively characterize the 11 rattlesnake species’

known distributions, where all GLM models with varying

parameters were statistically distinguishable from known distribu-

tions (Table S1 and S2). The 95% BIOCLIM model fared best (8

Figure 2. Illustration of a paleophylogeographic model. A, Modern geographic distribution for Crotalus adamanteus. B, Climate envelope for
three bioclimatic variables. The red points represent the climate associated today with each red 50 km point from the modern geographic
distribution in A. The green cube represents the climate envelope, the 5th and 95th percentile of each of the three bioclimatic variables. C, Suitable
habitat modeled from the climate envelope on the modern climate. The green 50 km points on the map all fall within the green climate space in B
and are considered suitable habitat for C. adamanteus today. D, Phylogeny and ancestral reconstructions. Annual Precipitation (mm) is regressed on
the phylogeny. The first three steps of the reconstruction are shown at 4.7 kya, 9.4 kya and 14.1 kya. E, Temperature estimates for the North
American continent derived from a composite oxygen isotope curve. The paleoclimate reconstruction for each step is scaled based on this curve. F,
Phylogenetically scaled climate envelope projected onto isotopically scaled paleoclimate model at 14.1 kya. These 50 km points are considered
suitable habitat for C. adamanteus 14.1 kya.
doi:10.1371/journal.pone.0028554.g002
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of the 11 modeled habitat distributions were statistically

indistinguishable from the documented modern species’ geograph-

ic distribution) and we used it for the remaining analyses (Table S1

and S2).

Evolutionary mode of climate variables
All climate variables considered in our climate envelope models

either evolved under a Brownian motion model of evolution or

under stabilizing selection (Table 2). In either case, a Brownian

Table 2. Maximum likelihood estimate of evolutionary rate and mode.

Bioclimate Variable r P a P Evo Mode

Annual Mean Temp 10.60 0.17 0.66 0.21 Random

Mean Diurnal Range 20.15 0.46 0 1 Stabilizing

Isothermality 3.69 0.58 0.39 0.70 Random

Temp Seasonality 805.38 0.83 0.41 0.49 Random

Max Temp of Warmest Month 7.57 0.38 0.51 0.71 Random

Min Temp of Coldest Month 20.13 0.76 0.55 0.08 Random

Temp Annual Range 26.69 0.95 0.33 0.46 Random

Mean Temp of Wettest Quarter 23.09 0.90 0.39 0.29 Random

Mean Temp of Driest Quarter 20.74 0.33 0.47 0.63 Random

Mean Temp of Warmest Quarter 6.79 0.20 0.65 0.24 Random

Mean Temp of Coldest Quarter 18.07 0.78 0.60 0.70 Random

Annual Precip 579.12 0.99 0 0.99 Stabilizing

Precip of Wettest Month 86.99 0.27 0 1 Stabilizing

Precip of Driest Month 30.57 0.47 0.05 1 Stabilizing

Precip Seasonality 17.27 0.29 0.29 0.99 Stabilizing

Precip of Wettest Quarter 240.34 0.15 0 1 Stabilizing

Precip of Driest Quarter 116.99 0.61 0.02 1 Stabilizing

Precip of Warmest Quarter 208.06 0.60 0 1 Stabilizing

Precip of Coldest Quarter 123.14 0.28 0 1 Stabilizing

Maximum likelihood estimate of evolutionary rate, r, a coefficient related to the mode of evolution, a, and the corresponding evolutionary mode (Evo Mode).
Evolutionary mode is characterized as either stabilizing (stabilizing selection), random (randomly fluctuating selection or genetic drift), or diversifying (diversifying
selection). P values are derived from 10,000 permutations of the maximum likelihood estimate.
doi:10.1371/journal.pone.0028554.t002

Figure 3. Mean annual temperature and annual precipitation modeled for 6 kya. Two general circulation models (GCM1 and 2) and our
interpolation model (IM) are compared. Graphs at the right show histograms of the absolute differences between the two GCMs (yellow bars) and
between our model and each of the GCMs (lines).
doi:10.1371/journal.pone.0028554.g003

Species’ Response to Climate Change
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Figure 4. Mean annual temperature and annual precipitation modeled for ,120 kya. One GCM and an interpolation model (IM) are
compared. Graphs at the right show differences between our model and the GCMs (line) with the differences between the two 6 kya GCMs for
comparison (yellow bars).
doi:10.1371/journal.pone.0028554.g004

Figure 5. Paleophylogeographic distribution models for three species of rattlesnake (Crotalus). A, Phylogeny and modern geographic
distribution models mapped onto modern climatic conditions. The dark gray curve represents the southern extent of glaciers during the LGM. B,
Composite oxygen isotope curve for the last 320 ky inset with four paleophylogeographic reconstructions at four points, two glacial and two
interglacial, to illustrate the effects of climate changes and phylogeny on the distribution of suitable habitats. Phylogenetically scaled climate
envelopes were projected onto isotopically scaled paleoclimate models to generate these maps. Supplemental videos show animations of the
paleophylogeographic distributions through the last 320 ky for these three species (Video S1) and for the remaining species (Video S2 and S3).
doi:10.1371/journal.pone.0028554.g005
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motion model of evolution is adequate to model the most likely

ancestral nodes across a tree and was used to phylogenetically

regress our climate envelope models.

Paleoclimate interpolation
Our interpolated model of mean annual temperature at 6 kya

was consistent with the corresponding GCMs; in that, it was no

more different from either GCM as the two GCMs were from

each other (Figure 3). Note here that we are testing if the difference

distribution between the interpolated model and either climate

model is greater than the difference distribution between the two

GCMs, not if the distributions match. That our interpolated model

of mean annual temperature was accurate (the differences between

the interpolated model and either GCM are less than or equal to

the difference between the two GCMs) is no surprise since the

stable isotope values used to make the interpolation are themselves

a proxy of mean annual temperature, albeit one that does not

contain information about geographic variation of temperature

across the continent. More importantly, our interpolated model of

annual precipitation, which is derived entirely from the spatial

correlation between precipitation and temperature in our two end-

member climate models and our temperature-based interpolation

between them, also compared favorably with the two GCMs

(Figure 3). Furthermore, our climate interpolations for the last

interglacial, which lies outside our two end-member models, were

as similar to the last interglacial GCM as our 6 kya interpolations

were to their corresponding GCMs (Figure 4).

Paleophylogeographic models through time
Figure 5 shows how the paleophylogeographic distribution of

suitable habitats of three rattlesnakes is expected to have changed

through time. The potential for dramatic changes in the location

and areal extent of suitable habitat are particularly apparent in the

paleophylogeographic models for glacial times (Figure 5B). Among

the eleven rattlesnakes species studied here, suitable habitats have

expanded rapidly northward since the LGM in Crotalus adamanteus,

C. enyo, C. horridus, and C. tigris (see Video S1, S2, and S3). At some

times in the past, suitable habitat for a few species (C. adamanteus, C.

enyo, and C. basiliscus) was so constricted that it was undetectable at

the 50 km resolution of our models.

Fossil Record Occurrences
All described occurrences of Crotalus from the Quaternary fossil

record are consistent with the predicted range of our paleophy-

logeographic models as far as temporal control on the fossil sites

permits comparisons (Figure 6). However, we note that the fossil

record of these snakes is poor and does not provide a powerful test

of the details of our models, highlighting the need for further study

of these paleoclimatically informative animals.

Paleophylogeographic models and their relationship to
temperature change

Climate has contributed more to changes in modeled suitable

habitat of these rattlesnakes than evolutionary change by two to

three orders of magnitude over the last 320 ky (Figure 7). The

historical change in mean annual temperature has been strongly

correlated with both change in geographic center

(R2 = 0.91560.002 s.e.; p,0.0001; n = 5,050) and areal extent

(R2 = 0.92460.002 s.e.; p,0.0001; n = 5,050) of these species’

suitable habitats (Figures 7B and 7D). Based on this correlation, we

estimate that the centers of these habitats have on average been

displaced by 34.93 km peruC and their areal extents have changed

by 121,591 km2 peruC. A pairwise comparison of average changes

between time intervals (n = 5,050) reveals a 0.0023 km/year

average rate of displacement.

Projection of climate envelopes on future climate
scenarios

If we extrapolate from our estimates of Pleistocene rates of

change peruC, the average displacement of the centers of species’

suitable habitats in the next 90 years will be 38.31–217.49 km

(0.43–2.42 km/yr) and their areal extents will change by 133,783–

799,963 km2 (Figure 8). The rates of current displacement are two

to three orders of magnitude greater than the rate of change we

measured through the dramatic climatic fluctuations of the last

320 ky, 0.0023 km/year.

Discussion

Reasonable multi-parameter spatial estimates of past Quater-

nary climates can be produced by interpolation from end-member

GCMs using a proxy for a single climate parameter (mean annual

temperature), provided that the end-members represent the

extremes of the paleoclimates that are being estimated. Despite

good agreement of our interpolated paleoclimate models with the

GCM of the last interglacial, it is likely that our method will

produce increasingly inaccurate models the further they are

extrapolated from the end-member climate data. In addition,

interpolated paleoclimate models would have an increased

accuracy with the inclusion stable oxygen isotope geographic

variation. This computationally straightforward tool does not

Figure 6. Fossil occurrences of Crotalus in North America for the
last 320,000 years. Orange points show occurrence sites whose
maximum ages are less than 120 kya, red points show sites with
maximum ages between 120–250 kya, and brown points show sites
with maximum ages between 250–320 kya. The data were downloaded
from the Paleobiology Database (http://pbdb.org) on 22 May 2011,
using the group name ‘Crotalus’.
doi:10.1371/journal.pone.0028554.g006
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replace the need for GCMs, but it facilitates the modeling of

dynamic changes in past climates at a continental scale, which is

especially useful for studies of species’ responses to past climate

change.

During the last 320 ky, three major glacial cycles have come

and gone, the global mean annual surface temperature has varied

by 6 to 8uC, and some of the warmest and coldest global

temperatures of the last million years have occurred, forcing

species to repeatedly shift either their geographic distributions or

their climatic tolerances. We suggest that physiological limits or

climatic tolerances did not shift rapidly, because of the

phylogenetic component of this analysis. The variance in the

bioclimatic variables across the entire clade does not necessarily

encompass the extreme variations of a fixed 50 km point through

the glacial-interglacial cycles (Table 3). For example, the annual

mean temperature in Bloomington, IN is 11.5uC. Several of the

rattlesnakes encompass that temperature as part of the range of the

annual mean temperatures that they currently inhabit. However,

the annual mean temperature during the LGM in Bloomington,

IN was 28.5uC and none of the species come close to including

that temperature within their range of annual mean temperatures.

The same is true for many of the bioclimatic variables and in

Table 3 we show these ranges for annual mean temperature,

minimum temperature of the coldest month, maximum temper-

ature of the hottest month, and temperature seasonality.

Large fluctuations in climate from the glacial-interglacial cycles

did not erase the phylogenetic signal present in bioclimatic

variables describing species’ climate envelopes. We tested the

assumption of a Brownian motion-like model of evolution for the

phylogenetic regression of bioclimatic variables (Table 2). The

mean diurnal range and all variables related to precipitation have

an evolutionary mode of stabilizing selection, suggestive of

phylogenetic niche conservatism [55]. The remaining temperature

variables have between species variation that is consistent with a

Brownian motion-like model of evolution, suggestive of phyloge-

netic signal and not conservatism. In either case, diversifying or

divergent selection was not identified for any bioclimatic variable

describing the climate envelopes, and ancestral climate envelopes

could be reconstructed.

The rate at which climate has forced change in suitable habitat

in the rattlesnakes we studied has been much more rapid than

changes in climate envelopes associated with macroevolution or

Figure 7. Average change in species’ distributions of suitable habitat over the last 320 ky. A, Time series of change in geographic center
(km). Change due to climate and phylogeny are modeled separately to identify the contributions of each in a model incorporating change due to
both climate and phylogeny. B, Change in geographic center as it relates to temperature (uC). C, Time series of change in areal extent (km2). D,
Change in areal extent as it relates to temperature change (uC). The shaded area indicates increase in global temperature by the end of the 21st

century predicted by IPCC 2007.
doi:10.1371/journal.pone.0028554.g007
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speciation (Figure 7). However, our paleophylogeographic models

do not incorporate anagenesis apart from a gradual linear change

since speciation; therefore, the phyletic evolution modeled is

dampened by modeling an average trait value for the climate

envelopes through time. The phylogeny we use to model phyletic

evolution has roughly estimated divergence dates attached to it

and we do not incorporate a range of possible divergence time

estimates in our phylogenetic regression. It is likely that our

calculations of the change in available suitable habitat will

minimally change if we incorporated ranges in divergence times.

We estimate ancestor nodes for divergences that happened

millions of years ago, so the extrapolation to the last 320 ky will

only minutely change the effects of phylogeny from the estimated

ancestor.

In this same regard, the results in Figure 7 are expected because

phylogenetic change is modeled with a constant rate since the spilt

of the last common ancestor millions of years ago. So the modeled

change on 4 ky time increments eventually produces the larger

shifts that we see between species’ climatic envelopes. Although we

would expect this outcome for this particular group of species, due

to the deeper divergences, it is not necessarily known what to

expect for other species groups. Our intention here is to develop

an interdisciplinary framework that can be extended to deeper

time contexts and for other species groups.

The amount of evolutionary change is probably underestimated

in our paleophylogeographic models, because adaptive changes

that accumulate within glacial or interglacial periods may

effectively be erased by the cycling climate and not incorporated

in macroevolutionary change [56]. Accounting for potential

phyletic evolution increases model complexity and is beyond the

scope of this study. Future investigations should incorporate a

stochastic parameter to model within species variation per

generation, because evolutionary dynamics can happen over even

short time scales [57,58]. In addition, future study might

investigate the evolution of dispersal ability, which potentially

has a large effect on the geographic limits of a species’ distribution

Figure 8. Current and future predictions of suitable habitat. Suitable habitat distributions were modeled under two future climate scenarios
for the year 2100 for 11 rattlesnake species. The two climate scenarios are derived from an increase of mean annual temperature by 1.1uC and by
6.4uC. A, B, and C, Phylogeny and modeled suitable habitat distributions by clade.
doi:10.1371/journal.pone.0028554.g008
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[59]. Regardless, the velocity with which climate is now changing

will shift entire biomes rapidly and individual species will have to

shift geographically at very high rates to keep up [60].

The future projected displacements in rattlesnake suitable

habitat we calculated of 0.43–2.42 km/yr are similar to those

observed over recent decades in other species (0.61 km/yr) [7].

Nevertheless, these projected rates are two to three orders of

magnitude greater than the expected or background rate of

displacement in rattlesnakes (0.0023 km/yr) that we modeled

through the dramatic climate fluctuations of the last 320 ky. Those

species whose suitable habitat changed the most markedly through

the Pleistocene climate cycles may be ones that are particularly

sensitive to current climatic fluctuations and habitat alterations.

Our paleophylogeographic models suggest that C. adamanteus, the

Eastern diamondback rattlesnake, is one of these particularly

sensitive species. Conservation studies have already documented a

decline in this species’ abundance in association with habitat

destruction and fragmentation [61,62].

Based on the rate in the fastest changing species (C. horridus),

future displacement of the center of a species’ suitable habitat

could be as high as 144.91–711.32 km (1.61–7.90 km/yr) and a

change in areal extent as much as 257,243–1,526,050 km2.

Geographic displacements of this magnitude are many times

larger than the size of current natural preserves; for example, the

largest US National Park, Wrangell-St. Elias Preserve in Alaska, is

only 53,418 km2. Although suitable habitat may increase (or

decrease) in areal extent as global temperature increases, the

location of that habitat may be displaced faster or farther than a

species is able to track, and may result in a population bottleneck

that could lead to extinction.

Every species has its own particular relation to climate and

environment, of course, but our results are generalizable beyond

rattlesnakes. Any species that has a similar sized geographic

distribution today at similar latitudes will have experienced the

same climatic changes in the past and will experience the same

ones in the near future. We predict that the rapidity and

magnitude of changes in other terrestrial vertebrates will be

similar, on average, to what we found in rattlesnakes, a prediction

that is substantiated by the similar rates of geographic expansion

that have been observed in other species in recent decades (e.g.,

[7], but see [63]).

The modeling of species’ distributions through time illustrates

how dramatically they can contract during glacial periods, expand

in interglacial periods, and fragment and coalesce in complicated

ways in between. The ability of these 11 rattlesnake species to

persist through the last 320 ky, when suitable habitat was

repeatedly fragmented and reorganized, suggests that conservation

strategies that create habitat corridors [64] or rely on managed

relocations may be successful [60,65]. The ways in which species

responded to past climatic shifts provides a framework for how we

expect species to respond in the future. Knowledge about the past

allows for more informed conservation decisions in the present,

which are vital for the preservation of species’ biodiversity in our

rapidly changing global climate.

Supporting Information

Table S1 Quantitative descriptors of known geographic
distributions and climate envelope models for 11
rattlesnake species. Standard errors were estimated by

recalculating each statistic from 100 random subsamples of 90%

of the points in each known distribution. Geographic center (GC)

is the centroid of the geographic distributions reported in latitude

and longitude, WGS 1984. Areal extent is the number of 50 km

points that the geographic distribution covers.

(DOC)

Table S2 Tests for the fit and stability of climate
envelope models. Independent two sample t-tests for departure

of modeled distributions from the known species’ distribution

(Model Fit) and for departure of 100 randomly subsampled

models, each at 25% of the original data, from the known species’

distribution (Model Stability). For model fit, the P values indicate

Table 3. Example of climate fluctuations for Bloomington, IN and species’ ranges.

Annual Mean Temp Min Temp of Coldest Month Max Temp of Warmest Month Temp Seasonality

Bloomington, IN

Present 11.5 27.3 29.9 950

LGM 28.5 229.1 11.6 910

120 kya 9.7 222.8 38.4 1408

Species’ Ranges

C. horridus 2.5 – 21.5 217.9 – 6.9 21.0 – 35.9 562 – 1212

C. viridis 23.8 – 22.1 222.6 – 5.6 15.7 – 38.0 543 – 1245

C. scutulatus 5.9 – 24.2 29.6 – 14.7 14.9 – 43.2 106 – 949

C. enyo 15.2 – 23.9 3.4 – 12.3 25.8 – 37.1 336 – 502

C. molossus 5.9 – 28.2 211.0 – 16.5 14.9 – 41.4 106 – 864

C. basiliscus 15.0 – 28.8 3.1 – 17.7 24.6 – 39.9 141 – 512

C. mitchellii 7.5 – 24.3 26.7 – 12.3 25.4 – 42.2 336 – 913

C. tigris 15.0 – 25.7 21.7 – 11.3 31.7 – 41.2 512 – 827

C. adamanteus 15.9 – 23.8 20.8 – 13.7 31.5 – 33.8 332 – 776

C. atrox 6.7 – 27.6 210.6 – 19.6 23.3 – 42.2 145 – 974

C. ruber 10.1 – 23.9 23.6 – 12.3 25.8 – 38.9 336 – 740

Example of the variance of 4 bioclimatic variables for one 50 km point in the Midwest, Global ID #139912, (Bloomington, IN) and the range of these variables in the
modern climate envelopes for 11 rattlesnake species.
doi:10.1371/journal.pone.0028554.t003
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the probability that the model is identical to the known

distribution apart from chance. An asterisk indicates the model

is significantly different from the known distribution. For model

stability, the P value indicates the mean probability that the

subsampled models are identical to the climate envelope model

except by chance. Overlapping proportion (OP) is the proportion

of points in the model and the known distribution.

(DOC)

Video S1 Paleophylogeographic model for three rattle-
snake species (Crotalus horridus, C. viridis, and C.
scutulatus). A, Phylogeny and suitable habitat models mapped

onto climatic conditions from corresponding time intervals to

illustrate the effects of climate and phylogenetic changes on the

distribution of suitable habitats. Phylogenetically scaled climate

envelopes were projected onto isotopically scaled paleoclimate

models to generate these maps. The dark gray curve represents the

southern extent of glaciers during the LGM. B, Composite oxygen

isotope curve for the last 320 ky inset with a yellow circle to

indicate the oxygen isotope ratio and the time interval used in the

model on the adjacent map.

(GIF)

Video S2 Paleophylogeographic model for three rattle-
snake species (Crotalus enyo, C. molossus, and C.
basiliscus). A, Phylogeny and suitable habitat models mapped

onto climatic conditions from corresponding time intervals to

illustrate the effects of climate and phylogenetic changes on the

distribution of suitable habitats. Phylogenetically scaled climate

envelopes were projected onto isotopically scaled paleoclimate

models to generate these maps. The dark gray curve represents the

southern extent of glaciers during the LGM. B, Composite oxygen

isotope curve for the last 320 ky inset with a yellow circle to

indicate the oxygen isotope ratio and the time interval used in the

model on the adjacent map.

(GIF)

Video S3 Paleophylogeographic model for five rattle-
snake species (Crotalus mitchellii, C. tigris, C. adaman-
teus, C. atrox, and C. ruber). A, Phylogeny and suitable

habitat models mapped onto climatic conditions from correspond-

ing time intervals to illustrate the effects of climate and

phylogenetic changes on the distribution of suitable habitats.

Phylogenetically scaled climate envelopes were projected onto

isotopically scaled paleoclimate models to generate these maps.

The dark gray curve represents the southern extent of glaciers

during the LGM. B, Composite oxygen isotope curve for the last

320 ky inset with a yellow circle to indicate the oxygen isotope

ratio and the time interval used in the model on the adjacent map.

(GIF)
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Locating Pleistocene Refugia: Comparing phylogeographic and ecological niche
model predictions PLoS One 2: e563.

13. Davis AJ, Jenkinson LS, Lawton JL, Shorrocks B, Wood S (1998) Making

mistakes when predicting shifts in species range in response to global warming.

Nature 391: 783–786.

14. Davis AJ, Lawton JL, Shorrocks B, Jenkinson LS (1998) Individualistic species

responses invalidate simple physiological models of community dynamics under

global environmental change. Journal of Animal Ecology 67: 600–612.

15. Lawton JL, ed (2000) Concluding remarks: a review of some open questions.

Cambridge: Cambridge University Press. pp 401–424.

16. Hutchinson GE (1957) Concluding Remarks. Cold Spring Harbor Symposium
on Quantitative Biology 22: 415–457.

17. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the

distribution of species: are bioclimate envelope models useful? Global Ecology
and Biogeography 12: 361–371.

18. Hijmans R, Graham CH (2006) The ability of climate envelope models to

predict the effect of climate change on species distributions. Global Change
Biology 12: 2272–2281.

19. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in

ecology. Ecological Modelling 135: 147–186.

20. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, et al. (1992) A

global biome model based on plant physiology and dominance, soil properties
and climate. Journal of Biogeography 19: 117–134.

21. Haxeltine A, Prentice IC (1996) BIOME3: An equilibrium terrestrial

biosphere model based on ecophysical constraints, resourse availability, and
competition among plant functional types. Global Biogeochemical Cycles 10:

693–709.

22. Kearney M, Porter W (2009) Mechanistic niche modelling: combining
physiological and spatial data to predict species ranges. Ecology Letters 12:

1–17.

23. Vieites DR, Nieto-Roman S, Wake DB (2009) Reconstruction of the climate
envelopes of salamanders and their evolution through time. Proceedings of the

National Academy of Sciences of the United States of America 106:

19715–19722.

24. Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating

phylogenetics and environmental niche models to explore speciation mecha-
nisms in dendrobatid frogs. Evolution 58: 1781–1793.

Species’ Response to Climate Change

PLoS ONE | www.plosone.org 12 December 2011 | Volume 6 | Issue 12 | e28554



25. Hardy CR, Linder HP (2005) Intraspecific variability and timing in ancestral

ecology reconstruction: A test case from the Cape Flora. Systematic Biology 54:
299–316.

26. Nogués-Bravo D (2009) Predicting the past distribution of species climatic

niches. Global Ecology and Biogeography 18: 521–531.
27. Fitzpatrick MC, Weltzin JC, Sanders NJ, Dunn RR (2007) The biogeography of

prediction error: why does the introduced range of the fire ant over-predict its
native range? Global Ecology and Biogeography 16: 24–33.

28. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, et al.
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