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Abstract: Hepatitis B virus (HBV) infection is closely related to hepatocellular carcinoma (HCC)
development. To investigate the mechanism of HBV causing HCC, we previously analyzed the
transcription of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells and identified a
subset of long noncoding RNAs (lncRNAs) differentially expressed between them. In this study, we
focus on lncRNA LINC01010, as it is significantly downregulated in HepG2-4D14 cells and in liver
tissues of HCC patients, and positively correlated with survival. We found that HBV-encoded HBx
can reduce the transcription of LINC01010. Functional analysis showed that the overexpression of
LINC01010 inhibits proliferation, migration and invasion of HepG2 cells while the knockdown of
LINC01010 promotes these processes. By taking the approach of RNA immunoprecipitation (RIP)
and mass spectrometry, we identified that LINC01010 can interact with vimentin. Further studies
demonstrated that LINC01010 negatively affects the vimentin network extension and causes more
rapid subunit exchange and lower stability of vimentin filaments. In addition, LINC01010 can reduce
the amount of insoluble vimentin within cells, which suggests that LINC01010 interfers with vimentin
polymerization. These data indicate that LINC01010 can inhibit the assembly of vimentin filament.
Thus, we revealed that HBV HBx-downregulated LINC01010, which suppresses cell proliferation and
migration by negatively regulating the formation of vimentin filament. Taken together, LINC01010 is
a potential tumor suppressor that may restrain HBV-related HCC development.

Keywords: HBV; LINC01010; vimentin; cell proliferation

1. Introduction

Liver cancer is the fourth most lethal cancer with a low five-year survival rate. Ad-
ditionally, there are about 841,000 new cases and 782,000 deaths annually worldwide [1].
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, accounting for
approximately 80% of it [2,3]. More than 50% of HCC cases are related to hepatitis B virus
(HBV) infection [4–6]. Chronic HBV infection leads to hepatocarcinogenesis through direct
and indirect mechanisms.

HBV contributes to HCC directly via altering the genomic stability [7]. HBV DNA
insertion into the telomerase reverse transcriptase (TERT) promoter activates telomerase
reactivation and promotes cell immortalization [8,9]. HBV insertion targets the cyclin
A gene, resulting chimeric protein and carcinogenesis [10]. HBV contributes to HCC
development indirectly through HBV virus proteins. HBV-encoded HBx is a key regulatory
protein that acts as a transcriptional coactivator and hijacks the host factor, playing a
leading role in the development of HCC [11,12]. HBx interacts with the C terminal of
p53, blocks nuclear import of p53 and impairs p53-mediated apoptosis [13]. HBx binds
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to CBP/P300 and enhances CREB transcriptional activity, which in turn promotes cell
transformation [14]. HBx is also reported to upregulate the stability and transcriptional
activity of the hypoxia-inducible factor 1-alpha (HIF1α) which leads to angiogenesis [15].

As thousands of lncRNAs have been identified, many of them are reported to play
important roles in different kinds of cancers, including HCC [16,17]. LncRNA BCRT1
stabilizes polypyrimidine tract-binding protein 3 (PTBP3) through sponging miR-1303
and promotes breast cancer progression [18]. LncRNA Pvt1b, which is activated by p53,
suppresses the transcription of myc proto-oncogene and represses lung cancer tumorigene-
sis [19]. LncRNA SATB2-AS1 enhances the transcription of SATB2 by binding to growth
arrest and DNA damage-inducible protein GADD45 alpha (GADD45A) and WD repeat-
containing protein 5 (WDR5), which in turn inhibits the metastasis of colorectal cancer [20].
LncRNA HULC promotes the phosphorylation of Y-box-binding protein 1(YB-1) through
extracellular signal-regulated kinase ERK, which accelerates the translation of oncogene
mRNA, eventually resulting in the progression of HCC [21]. HBx-up-regulated lncRNA
MALAT1 promotes the development and metastasis of HCC by stimulating the expression
of latent transforming growth factor β-binding protein 3 (LTBP3) [22]. HBx-associated
lncRNA ATB stimulated by transforming growth factor (TGF)-β promotes cell invasion
and migration by inducing autophagy in primary liver cancer [23]. HBx-downregulated
lncRNA Dreh can bind to vimentin and inhibit the metastasis of HCC [24].

In order to explore the role of HBV-associated lncRNAs in the progression of HCC, we
performed RNA deep sequencing to compare the transcription of HBV-positive (HepG2-
4D14) and HBV-negative (HepG2) cells and identified a series of differentially expressed
lncRNAs [25,26]. In this study, we focus on LINC01010, which is significantly downregu-
lated in HepG2-4D14. We found that the HBV HBx can down-regulate the transcription
of LINC01010. Functional analysis showed that LINC01010 can inhibit the proliferation,
migration and invasion of HepG2 cells. Further investigation demonstrated that LINC01010
interacts with vimentin and inhibits the cell extensions and reduces vimentin filament
assembly. In conclusion, we reveal that LINC01010 is a novel HBV-related lncRNA which
negatively regulates cell proliferation, migration and invasion by interacting with vimentin.
HBx down-regulates the transcription of LINC01010 to attenuate its function, which may
contribute to HCC progression.

2. Results
2.1. HBV HBx-Downregulated lncRNA LINC01010 Is Abnormally Expressed in HCC

In order to identify the genes affected by HBV, we previously compared the tran-
scriptional profiles of the HBV-transgenic cell line HepG2-4D14 and its parental cell line
HepG2 and identified 64 downregulated lncRNAs [25]. Among the top five downregulated
genes, lncRNA LINC01010 is the one correlated with HCC based on the data of the overall
survival and disease-free survival in patients in the TCGA liver hepatocellular carcinoma
(TCGA-LIHC) cohort (Figure 1A). The expression level of LINC01010 was lower in tumor
tissues than in normal tissues in the TCGA-LIHC cohort (Figure 1B). To investigate the
correlation of LINC01010 with HBV, we examined the LINC01010 level in 63 HCC tissues.
The clinicopathologic features of the patients are listed in Figure S1A. The results show
that LINC01010 was obviously lower in tumors with a high HBV virus load than in tumors
with a low HBV virus load (Figure 1C). We also confirmed that LINC01010 was downreg-
ulated in HepG2-4D14 cell lines compared to parental HepG2 cells using real-time PCR
(Figure 1D). At the same time, we found that the level of LINC01010 was lower in the cells
transfected with pcDNA3.1-HBV1.3 than in the control (Figure 1E). These data demon-
strate that LINC01010 was negatively correlated with HBV infection and HCC. Next,
we investigated how HBV downregulates LINC01010. As HBV-encoded HBx is a tran-
scriptional regulator, we checked whether HBx regulates the expression of LINC01010.
The data of real-time PCR show that LINC01010 was lower in the HBx stably expressed
cells than in the control cells (Figure 1F). The luciferase reporter assay demonstrated that
HBx-downregulated the promoter activity of LINC01010 (Figure 1G,H and Figure S1B,C).
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These results indicate that HBx negatively regulated the transcription of LINC01010. We
performed the 5′ and 3′ RACE to confirm that the full length of LINC01010 is 1508 nt
(Figure 1I) and a cell fractionation assay to show that LINC01010 is mainly located in the
cytoplasm (Figure 1J). Previous studies demonstrated that cytoplasmic lncRNAs mainly
exert their roles in modulating protein translation, protein stability or protein–protein
interaction, consequently affecting multiple cellular processes [27,28], which implies that
LINC01010 may affect the function of intracellular proteins.

2.2. LINC01010 Attenuates the Cell Proliferation, Migration and Invasion

To gain insight into the functional role of LINC01010 in the HCC cell, we overex-
pressed LINC01010 in HepG2 and LM3 cells (Figure 2A and Figure S2A). The growth
curve demonstrated that the overexpression of LINC01010 inhibited the proliferation of
HepG2 and LM3 cells (Figure 2B and Figure S2B). Then, we further explored the effects
of LINC01010 on HCC cell migration and invasion since these are two criteria to evaluate
the ability of cancer metastasis. We performed the transwell assay to determine whether
LINC01010 influenced the migration and invasion of HCC cells. These results reveal
that LINC01010 delayed the migration and invasion capabilities of HepG2 and LM3 cells
(Figures 2C and S2C). Then, we used siRNA to knockdown the expression of LINC01010
(Figures 2D and S2D) and performed the abovementioned experiments. The data indicate
that the knockdown of LINC01010 promoted the proliferation, migration and invasion of
HepG2 and LM3 cells (Figures 2E,F and S2E,F). Then, we performed the rescue experiment
using the transwell and CCK8 assay. The results show that LINC01010 can rescue the
proliferation, invasion and migration phenotypes of HepG2 cells due to the knockdown of
LINC01010 (Figure S3A,B). Taken together, these results indicate that LINC01010 inhibits
the proliferation, migration and invasion of HCC cells.

2.3. LINC01010 Interacts with Vimentin

In order to investigate the mechanism of LINC01010 that inhibited the proliferation,
migration and invasion of cells, we attempted to identify the proteins that interact with
LINC01010. We transfected L02 cells with S1-tagged LINC01010 (LINC01010-S1) and S1-
tagged LINC01010 antisense (Antisense-S1). The cell lysates were subjected to S1 pulldown
followed by silver staining and mass spectrometry to identify the potential candidate
proteins. The data show that vimentin was pulled down with LINC01010 (Figures 3A and
S4A). Vimentin, a major cytoskeletal component of the intermediate filament, plays a critical
role in multiple cellular processes, including cell division and stress responses, as well as
tumorigenesis. We chose vimentin for further study. First, we confirmed the interaction
between LINC01010 and vimentin using the S1 pulldown assay. The data indicate that
LINC01010 can interact with vimentin both in L02 and HepG2 cells (Figures 3B and S4B). To
further confirm the interaction of LINC01010 with vimentin, we transfected LINC01010-S1
expressing vector into L02 cells and collected the cell lysates for immunoprecipitation with
vimentin antibodies, followed by real-time PCR with specific primers for LINC01010. The
data show that vimentin can interact with LINC01010 (Figure 3C). To determine whether
LINC01010 can interact with vimentin directly, we performed an RNA pull-down assay
with C-terminal His-tag recombinant vimentin and transcribed LINC01010-S1 in vitro.
The data demonstrate that LINC01010 can directly interact with vimentin (Figure 3D).
In order to determine that LINC01010 exerts biological functions by interacting with
vimentin, we evaluated the effects of LINC01010 in vimentin-deficient cells. We used
shRNA to knockdown the expression of vimentin and performed the CCK8 and transwell
experiments. The data indicate that LINC01010 overexpression does not further inhibit
the proliferation, migration and invasion phenotypes in HepG2 cells in which vimentin
has been knocked down (Figure 3E,F), which suggests that LINC01010 plays a negative
regulatory role in cell proliferation, migration and invasion through vimentin. Next, we
examined whether LINC01010 influenced the expression and stability of vimentin. As
shown in Figure 3G and Figure S4C, the overexpression of LINC01010 did not influence
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the mRNA and protein level of vimentin. Consistently, knocking down of LINC01010
did not affect the mRNA and protein level of vimentin (Figures 3H and S4C). As the
phosphorylation of vimentin at serine 56/72/83 is critical for its reorganization [29–31], we
examined whether LINC01010 would affect the Ser56/72/83 phosphorylation of vimentin.
The data show that LINC01010 did not influence the level of vimentin phosphorylation
at Ser56/72/83 (Figure 3I). These results show that LINC01010 negatively regulates the
proliferation, migration and invasion capabilities of HCC cells via interacting with vimentin
directly but not affecting the level of vimentin and its phosphorylation status.

2.4. Overexpression of LINC01010 Inhibits the Network Extension and Assembly of Vimentin

Normally, vimentin in cells have perinuclear distribution upon plating, and then
extend to cell periphery accompanied with cell spreading in a time-dependent manner [32].
Vimentin-based cell extensions is a highly dynamic procedure which may be affected by
the initial assembly of vimentin filament. Therefore, we examined whether LINC01010
can affect the extension of the vimentin network in HepG2 cells. The data show that the
percentage of cells with an extension of vimentin in LINC01010-overexpressed HepG2 cells
was significantly reduced compared with that in control cells (Figure 4A,B). These data
indicate that LINC01010 inhibited the vimentin network extension. Vimentin filaments
are dynamic in steady-state situations, and there is subunit exchange from dynamic. To
check whether LINC01010 influences the subunit exchange of vimentin filament, we used
the FRAP to monitor HepG2 mCherry-vimentin cells, which were photo-bleached and
recovered for the indicated time. The recovery time was obviously shorter in LINC01010-
overexpressing HepG2 cells than in the control cells (Figure 4C,D). These data demonstrate
that the overexpression of LINC01010 causes more rapid vimentin subunit exchange and
reduces the stability of the vimentin filaments in HepG2 cells. Vimentin monomers cou-
ples with each other to form dimers. Dimers are arranged in an antiparallel manner and
comprise tetramers. Eight tetramers generate the unit length filaments, which then assem-
ble mature filaments. During vimentin polymerization, zinc interacts with vimentin and
promotes the filament assembly [32]. The mature filaments, which are assembled from
soluble vimentin precursors, are insoluble bundles. To examine whether LINC01010 affects
the vimentin filament assembly, we treated the HepG2-LINC01010, HepG2-antisenseand
control cells with ZnCl2 and examined the soluble and insoluble vimentin in cells. Im-
munoblotting analysis showed that LINC01010 reduced the amount of insoluble vimentin
in both ZnCl2-treated and untreated cells (Figure 4E,F), which indicates that LINC01010
inhibited the assembly of vimentin filament. These data show that the overexpression
of LINC01010 reduces the stability of the vimentin filaments and inhibits an assembly of
vimentin filaments, consequently restraining the vimentin network extension in HepG2
cells.

2.5. Knockdown of LINC01010 Promotes the Network Extension and Assembly of Vimentin

Next, we examined the extension of the vimentin network in LINC01010 knockdown
HepG2 cells. The data show that the knockdown of LINC01010 increased the ratio of cells
with an extension of vimentin (Figure 5A,B). Then, we performed FRAP experiments and
found that the fluorescence recovery time was obviously longer in LINC01010 knockdown
cells than in the control cells (Figure 5C,D). The data indicate that the knockdown of
LINC01010 enhances the stability of the vimentin filaments in HepG2 cells. We then treated
the LINC01010 knockdown HepG2 cells and control cells with ZnCl2 and examined the sol-
uble and insoluble vimentin in cells by immunoblotting. The data show that knockdown of
LINC01010 increases the amount of insoluble vimentin in both ZnCl2-treated and untreated
cells (Figure 5E,F), which demonstrated that the knockdown of LINC01010 improves the
assembly of vimentin filament.
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Figure 1. LINC01010 is an HBV-associated lncRNA and downregulated in HCC. (A) Kaplan–Meier analysis of overall
survival (left) and disease-free survival (right) in patients derived from the TCGA-LIHC cohort based on LINC01010
levels. (B) LINC01010 levels in HCC tumor tissues (n = 371) and normal tissues (n = 50) in TCGA-LIHC cohort. (C) The
relative levels of LINC01010 in 63 HCC samples were determined by real-time PCR. The samples were divided into two
cohorts according to HBV copies in serum (low: n = 23, less than 40 copies/mL; high: n = 40, more than 40 copies/mL).
(D) Relative levels of LINC01010 in HepG2 and HepG2-4D14 cells were determined by real-time PCR and normalized
with GAPDH as an internal control. (E) L02 cells were transfected with pcDNA3.1 or pcDNA3.1-HBV1.3 for 72 h. Total
RNA was extracted, and the levels of LINC01010 were determined by real-time PCR. (F) The amount of LINC01010 in
HepG2-GFP and HepG2-GFP-HBx stable cell lines was determined by real-time PCR and normalized with GAPDH as an
internal control. (G) pGL2-LINC01010-luc was transfected into 293T cells, and luciferase reporter assay was performed
after 48 h with pGL2-basic luciferase as control. (H) 293T cells were co-transfected with pGL2-LINC01010-luc and pCMV
FLAG-HBx or pCMV FLAG-vector for 48 h. The cell lysates were collected and subjected to luciferase assays. (I) Total
RNA was extracted from HepG2 cells and subjected to 5′ and 3′ RACE assays for full length of LINC01010. The RACE PCR
products of LINC01010 (left) and sequencing data (right) are shown. (J) The total RNA was extracted from cytoplasmic
(C) and nuclear (N) fractions in HepG2 cells and subjected to real-time PCR to quantify LINC01010 using MALAT1 and
β-actin as controls. The fractionated lysates were immunoblotted with tubulin and lamin B. ** p < 0.01 and *** p < 0.001,
means ± SD are shown.
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Figure 2. LINC01010 inhibits HCC cell proliferation, migration and invasion. (A) HepG2 cells were infected with lentivirus
carrying LINC01010 or control lentivirus. The relative level of LINC01010 was quantified by real-time PCR. (B) The growth
curve of HepG2 overexpressing LINC01010 or control cells were performed by CCK-8 assay. (C) The migration and invasion
of LINC01010-overexpressed HepG2 or control cells were determined by transwell assay. The representative of migration
and invasion assays (top panels) and the corresponding statistical results (bottom panels) are shown. A total of 4 × 104

cells were used for migration assay, and 8 × 104 cells were used for invasion assay. (D) The siRNAs targeting LINC01010
(si-LINC01010#1, si-LINC01010#2) or control siRNA were transfected into HepG2 cells for 48 h. Then, the total RNA was
extracted and subjected to real-time PCR. (E) HepG2 was transfected with si-RNAs of LINC01010 and then subjected to
CCK8 assay. (F) The migration and invasion of LINC01010 knockdown HepG2 cells and control cells were measured
by transwell assay. The representative images (left panels) and the corresponding statistical results (right panels) are
shown. A total of 3 × 104 cells were used for migration assay, and 6 × 104 cells were used for invasion assay. ** p < 0.01,
*** p < 0.001, means ± SD are shown.
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Figure 3. LINC01010 interacts with vimentin. (A) The plasmids expressing LINC01010-S1 or Antisense-S1 were transfected
into L02 cells. The cell lysates were harvested and subjected to the S1 pull-down assay. The pull-downed proteins were
visualized using sliver staining. The band in red box was subjected to mass spectrometry. (B) L02 cells were transfected
with LINC01010-S1, Antisense-S1 expression plasmids or control plasmid. The cell lysates were collected and subjected to
S1 pull-down assay. The bound proteins were immunoblotted with vimentin antibody. (C) L02 cells were transfected with
pll3.7-LINC01010-S1 or control plasmid for 48 h. The cell lysates were collected and subjected to immunoprecipitation with
vimentin antibody or control IgG. The co-precipitated RNA was subjected to real-time PCR with GAPDH as a negative
control. (D) S1 pull-down was performed by using the recombinant vimentin with a C-terminal His-tag and LINC01010-S1
transcribed in vitro or GAPDH-S1 mRNA as the control, followed by immunoblotting with vimentin antibody. (E) HepG2
cells were infected with lentivirus carrying shVim or shR and then transfected with LINC01010 expression plasmid or
control plasmid. Growth curves of indicated cells were measured by the CCK8 assay. (F) HepG2 cells were infected with
lentivirus carrying shVim or shR and then were transfected with LINC01010 expression plasmid or control plasmid. The
cells were then subjected to migration and invasion transwell assays. The representative of migration and invasion assays
(right panels) and the corresponding statistical results (left panels) are shown. (G,H) The relative mRNA level of vimentin
in LINC01010 overexpression (G) or knockdown (H) HepG2 cells was detected by real-time PCR, ns indicates a difference
which is not significant. (I) These protein levels in LINC01010-overexpressed or knockdown HepG2 cells were detected by
immunoblotting with indicated antibodies. * p < 0.05, ** p < 0.01, means ± SD are shown, ns - no significant.
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Figure 4. LINC01010 reduces the stability and formation of the vimentin network. (A,B) The HepG2 cells stably expressing
LINC01010 and control cells were plated on cover glass for 4 h. The plated cells were fixed with 4% paraformaldehyde,
followed by immunofluorescence assays with vimentin antibody. Red fluorescence (vimentin),DAPI staining (nuclei). The
white dotted line indicates the cells with extended vimentin. Scale bars, 25 µm (A). The percentage of cells with extended
vimentin was calculated (B). (C,D) HepG2 cells were co-transfected with mCherry-vimentin and LINC01010, antisense
expression plasmids or control vector. Then, the cells were photo-bleached, and fluorescence recovery was monitored by
acquiring images at time of 5, 10, 15 and 20 min after photo-bleaching with Leica SP8 confocal microscope. The white square
indicates the photo-bleaching regions. Scale bars, 10 µm (C). The fluorescence intensity of the bleached region at the different
time points after quenching was measured by ImageJ software (Ctrl, n = 10; antisense, n = 10; LINC01010, n = 10) (D).
(E,F) HepG2-LINC01010, HepG2-antisense or HepG2-ctrl cells were treated with and without ZnCl2 (30 µM) for 12 h. Then,
the cell lysates were harvested and fractionated into supernatant (S) and pellet (P) and subjected to immunoblotting analysis.
The relative density of vimentin was calculated (E). The percentage of soluble and insoluble vimentin was measured (F).
* p < 0.05 and ** p < 0.01, means ± SD are shown.
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Figure 5. Knockdown of LINC01010 enhances the stability and formation of vimentin network. (A,B) HepG2 cells were
transfected with LINC01010 siRNAs or control siRNA for 48 h and then plated on cover glass for 4 h and subjected to
immunofluorescence assays with vimentin antibodies. Red fluorescence (vimentin),DAPI staining (nuclei). The white
dotted line indicates the cells with extended vimentin. Scale bars, 25 µm (A). The numbers of extended cells were quantified
(B). (C,D) HepG2 cells were transfected with LINC01010 siRNAs or control siRNA for 24 h and then transfected with
mCherry-vimentin. Then the cells were photo-bleached, and fluorescence recovery was monitored by acquiring images
at time of 5, 10, 15 and 20 min after photo-bleaching with Leica SP8 confocal microscope, the white square indicates the
photo-bleaching regions. Scale bars, 10 µm (C). The fluorescence intensity of the bleached region at the different time points
after quenching was measured by ImageJ software (si-NC, n = 10; si-LINC01010#1, n = 10 si-LINC01010#2, n = 10) (D).
(E,F) HepG2 cells were transfected with LINC01010 siRNAs or control siRNA, the cells were treated with or without ZnCl2
(30 µM) for 12 h. Then the cell lysates were harvested and fractionated into supernatant (S) and pellet (P) and subjected
to immunoblotting analysis. The relative density of vimentin was calculated (E). The percentage of soluble and insoluble
vimentin was measured (F). * p < 0.05 and ** p < 0.01, means ± SD are shown.
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In conclusion, we identified that LINC01010 is a novel lncRNA downregulated by
HBV-encoded HBx. We found that LINC01010 inhibits proliferation, migration and invasion
of HepG2 cells. We demonstrated that LINC01010 can interact with vimentin and inhibit
the vimentin network extension and interfere with the assembly of vimentin filament
(Figure 6). Our study revealed that HBx reduces the level of LINC01010 to attenuate
its inhibitory effect on cell proliferation and migration, which may play role in HCC
development.

Figure 6. Model of the function of LINC01010. In normal hepatocyte cells, LINC01010 reduces
vimentin filament assembly via interacts with vimentin to attenuate cell proliferation. In HBV-
infected cells, HBV-encoded HBx downregulates the transcription of LINC01010, which in turn
promotes cell proliferation, migration and invasion, which may contribute to the development of
HBV-related HCC.

3. Discussion

With the current development of genome and transcriptome sequencing technologies,
increasingly more lncRNAs have been identified. The functional studies revealed that
lncRNAs participate in many aspects of pathogenesis of various diseases [16,33,34]. It
has been reported that lncRNAs are abnormally expressed in HCC and are related to
the clinicopathological features and prognosis of HCC patients [35]. LncRNAs regulate
gene expression at the transcriptional and post-transcriptional levels and mediate signal
transduction to participate in various biological processes in the occurrence and progression
of HCC, including proliferation, invasion, metastasis and apoptosis [36]. Interestingly, the
LINC01010 identified in this study can bind to the intermediate filament protein vimentin
to participate in cytoskeletal rearrangement and regulate the proliferation, migration and
invasion of HCC cells.

It has been reported that LINC01010 is a novel biomarker for the diagnosis and
prognosis for cancer. For example, LINC01010 is positively correlated with the survival
of neuroblastoma (NBL) patients and is a potential biomarker of NBL [37]. Cao et al.
found that LINC01010 inhibits the migration and invasion of lung cancer cells [38]. Our
study indicated that LINC01010 is an HBV-associated lncRNA, which is downregulated in
HCC and positively correlated with the survival of HCC patients. Our data demonstrate
that LINC01010 may function as a tumor suppressor in HCC. It might be worth further
investigation to ascertain if LINC01010 could be used as a biomarker for other types of
cancers.

HBV infection is a risk factor of HCC. HBV encodes an oncogenic HBx protein, which
is a multifunctional regulator that modulates signal transduction, transcription, cell cycle
progression, apoptosis and genetic stability by interacting with different host factors [39].
According to previous reports, the expression of vimentin protein is associated with HBx
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in HBV-related tumor tissues. The researcher showed that HBx could enhance vimentin
expression to facilitate EMT in hepatoma cells [40]. Recently, it has been reported that HBx
also regulates the transcription of lncRNAs. For instance, HBx-upregulated lncRNA UCA1
promotes cell growth and tumorigenesis by recruiting histone-lysine N-methyltransferase
EZH2 and suppressing p27Kip1/CDK2 signaling [41]. HBx/ERα complex downregu-
lated LINC01352 promotes the growth and metastasis of HCC cells through activating the
Wnt/β-catenin signaling pathway [42]. HBx-downregulated lncRNA GAS5 inhibits the cell
viability and invasion of hepatocellular carcinoma cell lines by activating Y-box-binding pro-
tein 1/p21 (YBX1/p21) signaling [43]. Our previous study showed that HBx-upregulated
Lnc-HUR1 can promote cell proliferation and tumorigenesis by inhibiting p53 transcrip-
tional activity [25]. HBx-upregulated lncRNA SAMD12-AS1 regulates cell proliferation
and apoptosis by affecting the NPM1–HDM2–p53 axis [26]. In this study, we found out
that HBx-downregulated LINC01010 is involved in the cytoskeleton of cells through its
interaction with vimentin. All these studies demonstrate that HBV HBx regulates the
transcription of a variety of host factors. Further exploration of HBx-regulated lncRNAs
will be helpful to understanding the mechanisms of how HBV promotes the development
of HCC.

It is well known that vimentin is the main component of the intermediate filament family
proteins, which is widely expressed in mesenchymal cells and has the function of maintaining
cell integrity and resisting stress. Importantly, the expression of vimentin in different tumor
cell lines is closely related to cancer cell growth, invasion and migration [44–47]. Vimentin is
also identified as a marker of epithelial–mesenchymal transformation [44]. We found that
LINC01010 can interact with vimentin to inhibit the proliferation, invasion and migration of
HCC cells. A previous study showed that lncRNA Dreh interacts with vimentin. However,
how lncRNA Dreh affects the function of vimentin is not clear [24]. Here, we found that
vimentin filament assembly is markedly affected by the expression of LINC01010. The
overexpression of LINC01010 can hinder cell migration through suppressing cell extension
and reduce the stability of vimentin filaments. Previous studies demonstrated that zinc can
regulate the polymerization of vimentin filaments [32]. Our results show that LINC01010
affects vimentin both in the presence and absence of zinc, with the extent of inhibition
being higher in the absence of zinc than in its presence, suggesting that zinc could protect
vimentin from the inhibition caused by LINC01010.

It has been reported that vimentin could be a potential molecular target for cancer ther-
apy, which opens up a new path for the development of promising therapeutic drugs [44].
At present, there is anticancer chemical compound target vimentin. Burikhanov R. et al.
found that Arylquin 1 can bind to vimentin, which displaces Par-4 from vimentin for
secretion and triggers the apoptosis of diverse cancer cells [48]; Zamay TN et al. devel-
oped a DNA aptamer NAS-24 which targets vimentin and induces apoptosis of mouse
ascites adenocarcinoma cells both in vitro and in vivo [49]; researchers found that dietary
silibinin inhibited the growth of prostate tumors and suppressed tumor progression from
prostatic neoplasia to adenocarcinoma in transgenic adenocarcinoma of the mouse prostate
(TRAMP) model, and interestingly, they observed that silibinin decreased level of vimentin
in plasma [50]; withaferin-A can result in the aggregation of vimentin and induce apopto-
sis [51]; and FiVe1 can irreversibly inhibit the growth of mesenchymal-transformed cancer
cells by binding the vimentin during mitosis [52]. These data indicate that vimentin is a
promising anticancer drug target. The LINC01010 can inhibit the proliferation and migra-
tion of HCC cells by interacting with vimentin, suggesting that LINC01010 may function as
a tumor suppressor and a potential target for treatment. Therefore, if we could find the
molecule(s) to enhance the interaction between LINC01010 and vimentin, they might be
drug candidates for treatment of HBV-related HCC or even other cancers.

In summary, we identified that LINC01010 is a novel HBV-related lncRNA which is
downregulated by HBV-encoded HBx. We found LINC01010 can inhibit the proliferation,
migration and invasion of HCC cells by interacting with vimentin and consequently
influencing the formation of the cytoskeleton. Our results suggest that the downregulation
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of LINC01010 may play an important role in the oncogenesis and metastasis of HBV-related
HCC.

4. Materials and Methods
4.1. Plasmids and Antibodies

The full-length of LINC01010 or LINC01010-S1-tagged (S1 sequence 5′-ACCGACC
AGAATCATGCAAGTGCGTAAGATAGTCGCGGGCCGGG-3′, an RNA aptamer which
binds the streptavidin) genes were cloned into the lentiviral vector pLentilox3.7 to generate
pll3.7-LINC01010 and pll3.7-LINC01010-S1, respectively. The mCherry-Vimentin-7 was a
gift from Michael Davidson (Addgene plasmid#55156) [53]. The promoter region from
–952 to –16 nt in the human LINC01010 gene was subcloned into the pGL2-basic vector to
construct a reporter named pGL2-LINC01010-luc. The following antibodies were purchased
from the indicated companies: rabbit anti-vimentin antibody (Cell Signaling Technology,
Danvers, MA, USA), rabbit anti-Phospho-vimentin (Ser56) antibody (Affinity Biosciences,
Cincinnati, OH, USA), rabbit anti-Phospho-vimentin (Ser83) antibody (Cell Signaling
Technology, Danvers, MA, USA), rabbit anti-Phospho-vimentin (Ser72) antibody (ZEN-
BIOSCIENCE, Chengdu, China), mouse anti-GAPDH antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), mouse anti-tubulin antibody (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), mouse anti-lamin B antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
horseradish peroxidase HRP-conjugated secondary antibodies (The Jackson Laboratory,
Bar Harbor, ME, USA).

4.2. Cell Lines and Cell Culture

The human hepatoma cell line HepG2, human embryonic kidney cell line 293T and
human normal liver cell line L02 were purchased from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). The human hepatoma cell line LM3 was kindly provided
by Chunping Cui (Beijing Institute of Lifeomics, Beijing, China). The HepG2-4D14 cell
lines, derived from HepG2 cells by integrating full-length HBV genome in the cellular
genome, were kindly provided by Dongping Xu at the 302 Hospital of People’s Liberation
Army of China. The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Invitrogen, Carlsbad, CA, USA) with 10% (v/v) fetal bovine serum (FBS, Pan Biotech,
Adenbach, Germany) and maintained in a 37 ◦C humidified incubator with 5% CO2. The
293T cells were transfected with pll3.7-LINC01010 and the lentiviral packaging plasmids
for 48 h. Then the virus particles in the supernatant were harvested to infect HepG2 cells
for 12 h. Stable LINC01010-overexpressing cells were sorted by fluorescence-activated cell
sorting (FACS) using the FACS Calibur flow cytometer instrument (BD Biosciences, San
Jose, CA, USA).

4.3. Tumor Samples

The liver tissues of 63 patients with HCC were collected at the 302 Hospital of People’s
Liberation Army of China. Patients were divided into two cohorts based on the suggestion
of the physician who provided the clinical sample. All patients participating in the study
signed a written informed consent document. Patient samples were assigned arbitrary
identification numbers based on the order of enrollment. The study was performed
according to the rules described by the Ethics Procedures and Guidelines of the People’s
Republic of China and were approved by the Ethics Committee of the 302 Hospital of
People’s Liberation Army of China.

4.4. RNA Interference

Cells were transfected with LINC01010-specific siRNAs or negative-control siRNA
using siRNA-Mate (GenePharma Technology, Shanghai, China) according to the man-
ufacturer’s instructions. The sequences of the LINC01010-siRNAs were as follows: si-
LINC01010#1, GCGACGACGUUGAAUUCUATT; si-LINC01010#2, GCUUUAAGAUCCA-
GAGAUUTT.
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4.5. Rapid Amplification of cDNA Ends (RACE)

To obtain the LINC01010 full-length cDNA, the ends were amplified by 5′- and 3′-
RACE using the SMARTerTM RACE cDNA Amplification Kit following the instructions
of the manufacturer (Clontech, Mountain View, CA, USA). The following LINC01010
specific primers were used: 5′RACE primer 5′-GCTTGCCTATTACCTTG GCCACACGG-3′,
3′RACE primer 5′-CTGAGGAATCGGGGAAAGAATGGAGCT-3′.

4.6. Luciferase Reporter Assay

Cells were cotransfected with the pGL2-LINC01010-luc and pCMV FLAG-HBx or
control plasmid, and with pRL-TK as an internal control for 48 h. Then, the cell lysates were
harvested for luciferase assay using Dual-Luciferase® Reporter Assay System (Promega,
Madison, WI, USA) according to the manufacturer’s instructions. Relative luciferase
activity was determined by normalizing firefly luciferase activity to Renilla luciferase
activity.

4.7. Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated from tissue specimens or cell lines using TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA). The RNA was then reverse transcribed into cDNA using Tran-
Script One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen Biotech, Beijing,
China). qRT-PCR was carried out with the following primers: LINC01010 forward 5′-
GCTGGAGCACACAAATAGCTACA-3′ and reverse 5′-CCTTGGCTTGCC TATTACCTTG-
3′, vimentin forward 5′-AGTCCACTGAGTACCGGAGAC-3′ and reverse 5′-CA TTTCACG
CATCTGGCGTTC-3′, GAPDH forward 5′-TCAAGAAGGTGGTGAAG CAG-3′ and reverse
5′-GAGGGGAGATTCAGTGTGGT-3′, β-actin forward 5′-GGAT CAGCAAGCAGGAG-
TAT G-3′ and reverse 5′-AGAAAGGGTGTAACGCAACTAA-3′, MALAT1 forward 5′-
GACGGAGGTTGAGATGAAGC-3′ and reverse 5′-ATTCGGGG CTCTGTAGTCCT-3′.

4.8. Immunoblotting

The cells were lysed with lysis buffer (20 mM Hepes, pH 7.5; 150 mM NaCl; 1 mM
EDTA; 1% (v/v) Triton X-100; 10% (v/v) glycerol; proteinase inhibitor cocktail) on ice
for 30 min. Cell lysates were harvested and subjected to immunoblotting with indicated
primary antibodies followed by a secondary antibody conjugated with HRP.

4.9. Cell Growth Assay

Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay for the determi-
nation of cell viability (Dojindo Molecular Technologies, Kumamoto, Japan). Cells were
seeded in 96-well plates with 5000 cells per well and cultured in DMEM with 1% (v/v)
serum. Then, CCK-8 solution was added at 0 h, 24 h, 48 h and 72 h after plating. The
absorbance at 450 nm of each well was measured with a microplate reader.

4.10. Migration and Invasion Assays

In vitro migration and invasion of HepG2 and LM3 cells were measured by transwell
assays. Transwell assays were used to test cell migration (without matrigel in Millicell
chambers) and invasion (with matrigel in Millicell chambers). Cells were detached by
trypsin and then resuspended in serum-free medium. Cells were placed in the upper
transwell chambers and maintained at 37 ◦C for 24 h. Cells were fixed with ethanol and
stained with 0.1% crystal violet.

4.11. S1 Pull-Down

LINC01010-S1-expressing cells or control cells were UV cross-linked and lysed with
lysis buffer (10 mM Tris-HCl, pH 7.5; 10 mM NaCl; 10 mM EDTA; 0.5% (v/v) Triton X-100;
1 mM PMSF, 1 mM DTT) containing protease inhibitor and RNase inhibitor on ice for
20 min. The cell lysates were incubated with prewashed streptavidin T1 magnetic beads
(Invitrogen, Carlsbad, CA, USA) at 4 ◦C for 4 h. Then, the magnetic T1 beads were washed
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5 times and boiled in the 2 × SDS loading buffer. The bound proteins were subjected to
immunoblotting.

4.12. RNA Immunoprecipitation (RIP)

Cells were harvested and were washed with PBS. Then, cells were cross-linked by UV
and lysed with RIP lysis buffer containing protease inhibitor (Roche, Basel, Switzerland)
and RNase inhibitor (Thermo Fisher Scientific, Waltham, MA, USA). The cell lysates were
incubated with 2 µg anti-vimentin antibody or mouse IgG antibody and 20 µL protein A
agarose beads (Pierce, Rockford, IL, USA) for 4 h at 4 ◦C. The beads were washed with RIP
lysis buffer, and the bound RNA was extracted from the beads and subjected to qRT-PCR
to determine the amount of LINC01010.

4.13. In Vitro RNA Pull-Down Assay

S1-labeled RNAs were transcribed in vitro using the MEGAscriptTM T7 Transcription
Kit (Invitrogen, Carlsbad, CA, USA). The RNA was heated to 90 ◦C for 2 min and put on
ice for 2 min followed by setting at room temperature for 20 min to allow proper RNA
secondary structure formation. The recombinant vimentin with a C-terminal His-tag was
purchased from Sino Biological Inc. (Cat: 10028-H08B). In vitro-transcribed S1-labeled
RNA was incubated with vimentin protein in binding buffer (140 mM NaCl; 0.5% (v/v)
NP40; 50 mM Tris, pH 8.0; 1 mM EDTA; 1 mM PMSF; proteinase inhibitor cocktail and
RNase inhibitor) at 4 ◦C overnight. Then the prewashed streptavidin T1 magnetic beads
were added and incubated at 4 ◦C for 4 h. The beads were washed, and the bound proteins
were dissolved in SDS loading buffer and subjected to immunoblotting with vimentin
antibody.

4.14. Cell Extension Formation and Immunofluorescence Assays

For estimating the formation of cell extensions that are involve in cell intermediate fiber
reconstruction, the cells were plated on fibronectin-coated glass at 50% to 70% confluency.
After 4 h, the cells were fixed in 4% (w/v) paraformaldehyde for 15 min and permeabilized
with 0.5% (v/v) Triton X-100 for 10 min. The cells were then incubated with rabbit anti-
human vimentin antibody at room temperature for 1.5 h, followed by incubating with
rhodamine-conjugated goat anti-rabbit IgG at room temperature for 1 h. The cells then
were stained with DAPI and observed and photographed under confocal microscope.

4.15. Fluorescence Recovery after Photobleaching (FRAP)

The cells were plated on 35 mm glass bottom dishes at 50% confluency for 18 h and
transfected with pCMV mCherry-vimentin plasmid. Then the cells were photo-bleached,
and fluorescence recovery was monitored by acquiring images 5, 10, 15 and 20 min after
photo-bleaching with Leica SP8 confocal microscope. The Leica SP8 confocal microscope
equipped with a 37 ◦C humidified chamber with 5% CO2 was used. The fluorescence
intensity of bleached region at the different time points after quenching was measured by
ImageJ software.

4.16. Vimentin Solubility Assay

Vimentin solubility assay was performed according to the published procedures [54].
The cells were treated with 30 µM ZnCl2 for 12 h and lysed with lysis buffer (50 mM PIPES,
50 mM NaCl, 5% (v/v) glycerol, 0.1% (v/v) NP-40, 0.1% (v/v) Triton X-100, 0.1% (v/v)
Tween20, 5 mM NaF, 2 mM sodium orthovanadate, 10 mM β-glycerophosphate) with
protease inhibitor for 1.5 min. The cell lysates were centrifugated at 10,000× g for 10 min.
Both supernatants and pellets were collected. The pellets were dissolved in sample loading
buffer without bromophenol blue. The proteins were subjected to immunoblotting with
anti-vimentin antibody. The ratio of soluble and insoluble vimentin was quantified by
Image J.
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4.17. Statistical Analysis

Statistical analysis was performed using GraphPad Prism (version 7.0) software unless
otherwise indicated. Student’s t-test or Mann–Whitney U tests were used to analyze the
data. Values are presented as means ± standard deviation (SD). p < 0.05 was deemed to be
significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222212497/s1.
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