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Abstract: Prostate cancer is a significant cause of morbidity and mortality in the USA. In this paper, we
develop a computer-aided diagnostic (CAD) system for automated grade groups (GG) classification
using digitized prostate biopsy specimens (PBSs). Our CAD system aims to firstly classify the Gleason
pattern (GP), and then identifies the Gleason score (GS) and GG. The GP classification pipeline is
based on a pyramidal deep learning system that utilizes three convolution neural networks (CNN) to
produce both patch- and pixel-wise classifications. The analysis starts with sequential preprocessing
steps that include a histogram equalization step to adjust intensity values, followed by a PBSs’ edge
enhancement. The digitized PBSs are then divided into overlapping patches with the three sizes:
100 × 100 (CNNS), 150 × 150 (CNNM), and 200 × 200 (CNNL), pixels, and 75% overlap. Those
three sizes of patches represent the three pyramidal levels. This pyramidal technique allows us to
extract rich information, such as that the larger patches give more global information, while the
small patches provide local details. After that, the patch-wise technique assigns each overlapped
patch a label as GP categories (1 to 5). Then, the majority voting is the core approach for getting the
pixel-wise classification that is used to get a single label for each overlapped pixel. The results after
applying those techniques are three images of the same size as the original, and each pixel has a
single label. We utilized the majority voting technique again on those three images to obtain only one.
The proposed framework is trained, validated, and tested on 608 whole slide images (WSIs) of the
digitized PBSs. The overall diagnostic accuracy is evaluated using several metrics: precision, recall,
F1-score, accuracy, macro-averaged, and weighted-averaged. The (CNNL) has the best accuracy
results for patch classification among the three CNNs, and its classification accuracy is 0.76. The
macro-averaged and weighted-average metrics are found to be around 0.70–0.77. For GG, our CAD
results are about 80% for precision, and between 60% to 80% for recall and F1-score, respectively.
Also, it is around 94% for accuracy and NPV. To highlight our CAD systems’ results, we used the
standard ResNet50 and VGG-16 to compare our CNN’s patch-wise classification results. As well, we
compared the GG’s results with that of the previous work.

Keywords: deep learning; classification; grade groups; CAD system; prostate cancer

1. Introduction

The most recent statistics from the American Cancer Society showed that prostate
cancer (PC) is the most prevalent type of cancer with 248,530 (26%) cases, and it is also the
second leading cause of cancer-related death with 34,130 (26%) [1] among men. Prostate
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tumors are like many other cancers in that the initial stage does not cause death or pain.
By time the tumor is recognized, it has advanced to high grade with increase mortality [1].
The pathological evaluation of prostate biopsies determines the best treatment method
of PC [2]. One of the methods used to characterize the heterogeneous tumor growth
patterns is the Gleason grading system, which observes in a biopsy regarding their degree
of discrimination or the Gleason pattern (GP).

The GP practically ranges from GP1 through GP5. The GP1 (stroma) and GP2 (benign)
represent the nonepithelium tissue. While GP3, GP4, and GP5 represent the epithelium
tissue. GP3 indicates moderately differentiated glands compared with that of GP5, which
represents poorly differentiated cells [3,4]. Many factors contribute to determining the stage
of PC, like the prostate-specific antigen (PSA) level. However, the primary factor is the
Gleason score (GS). The GS is the grading system used to determine PC’s aggressiveness
depending on the two most frequent GP observed in the biopsy [5]. Typically, the GS
ranges from 6 to 10, where 6 illustrates low-grade cancer, i.e., the cancer is likely to grow
slowly, and 10 represents high-grade, i.e., the cancer is expected to spread more rapidly.

The GS grading system is often divided into only three categories, 6, 7, and 8–10 [5].
This classification is rather coarse. For example, GS7 could indicate that the most cells are
GP3, followed by GP4, or that most cells are GP4, followed by GP3; however, the latter
case has a much worse prognosis. Similarly, GS9 or GS10 has a worse prognosis than
GS8 despite often being grouped together. Eventually, the 2014 International Society of
Urological Pathology (ISUP) developed a simple grading system for PC: grade groups (GG)
system, based on the visual assessment of cell differentiation and GP predominance [6], see
Figure 1. The GG ranges from GG1 to GG5, with higher GG indicating greater clinical risk.
Table 1 shows the relation between the Gleason grading (GP and GS) and the GG system,
besides the shape of cell tissues for GP and the GG’s risk level.

Table 1. Grading systems for a prostate biopsy specimen are the Gleason grading system, the Gleason pattern (GP) and
Gleason score (GS), as well as the grade groups (GP) system.

Shape of Cell Tissues GP Risk Level GS GG

stroma (connective tissue, non-epithelium tissue) GP1 - - -

healthy (benign) epithelium GP2 - - -

moderately differentiated
Distinctly infiltration of cells

form glands at margins
GP3

Low GP3 + GP3 = GS6 GG1

Favorable GP3 + GP4 = GS7 GG2

moderately and Poorly differentiated
Irregular messes of

neoplastic cells with few glands GP4

Unfavorable GP4 + GP3 = GS7 GG3

High
GP4 + GP4 = GS8
GP3 + GP5 = GS8
GP5 + GP3 = GS8

GG4

Poorly differentiated
Lack of or occasional glands,

sheets of cells
GP5 High

GP4 + GP5 = GS9
GP5 + GP4 = GS9

GP5 + GP5 = GS10
GG5

Figure 1. Examples of GP labels.

The discordance in GG diagnosis by different pathologists using the same biopsy is be-
tween 30–50% [3,7,8]. Agreement is greater among pathologists with urologic subspecialty
training and high experience than among pathologists in general [9]. Accurate diagnosis of
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prostate biopsy specimens helps physicians to make essential treatment decisions [9,10].
Due to expert subspecialists’ availability, the development of an automated system for
assessing prostate biopsy specimens with expert-level performance could improve prostate
biopsy’s clinical utility.

In recent years, extensive research work was developed to diagnose the tumorous
lesions for many organs, especially the prostate [11–14]. Deep learning (DL) combined
with histopathology and radiology imaging, particularly magnetic resonance imaging
(MRI), plays an essential role in grading the prostate’s cancerous tissues [4,15–17]. For
histopathology, Arvaniti et al. [18] developed a DL approach to identify automated Gleason
grading of prostate cancer tissue microarrays with Hematoxylin and Eosin (H&E) staining.
This model’s advantages were that it was trained by a dataset of about 641 patients and
tested on an independent cohort of 245 patients annotated by two pathologists. Cohen’s
quadratic kappa statistic was used to the interannotator agreements between the model and
each pathologist. The authors reported the results for the GP and GS. However, they did
not mention the final classification of the GG that is considered the simple grading system
for PC. Also, Bulten et al. [19] introduced automated grading prostate biopsies using a DL
system. They focus on classifying the GP for the prostate biopsies, and then identifying the
GS depending on the GP predominance. Their DL approach was developed using 5834
biopsies from 1243 patients. The authors did not report the overall accuracy of the GP
classification; they reported only the final results for the GG. Similarly, Nagpal et al. [4]
used a DL approach to improve GS for whole-slide images of prostatectomies. The system
was developed using 112 million pathologist-annotated image patches from 1226 slides
and tested on an independent validation dataset of 331 slides. The author considered the
GG4 with GG5 as one class and did not report the individual results for both of them. The
view tissue for the GG5 is very similar to the GG4, and it is considered the big challenge to
differentiate between them.

According to the previous studies, the general technique to classify the GG, (see e.g.,
the work in [19]) is that the DL systems are developed to segment digitized prostate biopsy
specimens (PBSs) into regions according to GP, after which the GG is identified depending
on the GS and GP grade and its predominance. However, no study reported the overall
accuracy of the GP segmentation. They reported only the final results for the GG. Our
work develops a DL-based computer-aided diagnostic (CAD) system for reading digitized
PBSs sections and dealing with GP as a classification problem, not as a segmentation task
using patch- and pixel-wise classification methodology. This is the first time this ideas was
applied, to the best of our knowledge. Finally, GP labels are used to determine the GS and
GG, and their performance is comparable to expert subspecialists.

The rest of the paper is structured as follows. Section 2 describes in details the
proposed DL pipeline. The performance metrics used for evaluation and the details of
experimental results are given in Section 3. The limitation and highlights for our pipeline
are discussed in Section 4. Finally, Section 5 concludes the work.

2. Methods

This work’s primary objective is to develop a CAD system for accurate GG diagnosis of
PBSs. The proposed overall CAD system performs GP classification, as well as identifies the
GS and GG. The GP classification pipeline consists of three stages: a DL system consisting
of fusion three convolution neural networks (CNN); namely, a pyramidal CNN. Also, a
patch and pixel-wise classification that divided the original image into patches and labeled
them according to GP, the majority voting techniques is used in this step to merge the
patches images into the original size, see Figure 2. Finally, identifying the GS and GG
depends on the classification of the GP.
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Figure 2. The proposed pipeline for our CAD system.

2.1. Deep Learning System

The CNN plays an essential role in many fields of medical image analysis, especially
in the segmentation [12,20,21], and classification [22,23]. Our DL system has a pyramidal
architecture containing three CNNs, see Figure 2. The overall framework for our DL
system is depicted in Figure 3 , which shows the training and testing phases for for
patch-wise classification. For the training model, the preprocessing step is applied to
prepare the input data for the CNN. The preprocessing includes histogram equalization
followed by edge enhancement [24,25]. The edge enhancement is applied to make the
edges visible prominently by increasing the contrast of the pixels around the specific edges.
The convolution matrix, namely, mask or kernel, is utilized to enhance the edges [24,25].
Figure 4 shows the effect of applying edge enhancement and histogram equalization on the
original prostate patch. After that, the PBSs images are divided into overlapping patches
with three different sizes: 100 × 100, 150 × 150, and 200 × 200 pixels, see Figure 2. The
overlap between successive patches is 75%. The generation of overlapped patches provides
different image viewpoints that enhance the DL framework’s training and validation. We
select for training those patches with no more than 30% of their area labeled as background
in the ground truth. Each patch is assigned a single label, being the ground truth GP of
most pixels in the patch. If the winning label matches the value of the center of the given
patch, then this patch is selected for training. Otherwise, we remove it from the CNN
training. Algorithm 1 presents all details about the preprocessing step.

The pyramidal CNN is composed of three CNNs, and each one has a different patch
size, as shown in Figure 2. We designed the three CNNs such that they have the same
architecture but with different sizes. The prominent architecture of any DL-CNN base
consists of input layers, hidden layers, and an output layer [26]. Our CNN’s input layer is
fed with the patches from the first step (preprocessing) for our proposed framework. The
small CNN (CNNS) is fed with 100 × 100 patches, the medium CNN (CNNM) is fed with
150 × 150 patches, and the large CNN (CNNL) is provided with 200 × 200 patches. The
core of CNN is the hidden layers that contain the number of CNN parameters and weights.
The architecture of the hidden layers of our CNN is represented by a series of convolution
layers (CLs) intervened by max-pooling layers (MPLs) and dropout layer, followed by two
fully connected layers (FCls). Finally, there is a soft-max layer to give the probability for
the five classes.

In the CL, the image is convolved with kernels (multiple kernels in each layer) to
extract prominent features that describe the object of interest in the input patch; these
features are called feature maps. Therefore, each CL results in a volume of feature maps.
In our implementation, we use kernels of size 3 × 3. In MPLs, the spatial dimensions are
reduced by a factor of two. Benefits are twofold: firstly, keeping only the most prominent
features, discarding those less essential, and secondly, reducing computational cost and
training time. In our implementation, the stride is equal to one for all layers.
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Algorithm 1: Preprocessing step of developing input data for a convolution
neural network (CNN). Value of N is 100, 150, or 200.

Input: Prostate biopsy specimens digitized.
Output: Classified selected patches into Gleason pattern labels .
1. Apply the histogram equalization and edge enhancement on the PBSs.
2. Divide the PBSs into overlapping patches, with size N × N pixels

and 75% overlapping.
3. Selecting appropriate patches for training

• Calculate the majority voting for the pathological patch, WL←Winning
Label.

• Estimate two variables for corresponding label path, RB←ratio of
Background and CV←Center value.

• If (WL == CV)&(RB ≤ 0.3)
Select the patch

Else
Remove the patch

Figure 3. Proposed pipeline for patch-wise classification, while PBSs is prostate biopsy specimens
and Gleason pattern labels (GP).
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Figure 4. Example for applying prepossessing step on original patch: histogram equalization and
edge enhancement.

The CNN contains four convolution layers, and the number of CLs filters is 16, 32, 64,
and 128. The dropout layers weight 0.1, 0.1, 0.3, 0.3. The number of units for the FCLs is
64 and 512, respectively. The training seeks to minimize the cross-entropy loss between
the predicted probabilities and the ground truth labels. The dropouts layers follow FCLs
to minimize network overfitting, and the dropout rate is set to 0.15 for both layers. The
total and trainable parameters for CNNS, CNNM, and CNNL, are 264,421, 534,757, and
952,549, respectively, and there are no nontrainable parameters for all of them. The labeled
patches are used to train the proposed CNN. During the training, the CNN uses iterative
optimization to learn its weights to maximize the number of correctly classified samples
during prediction.

Our DL model has numerous parameters. Therefore, we utilized a hyper-parameter
tuning with a random search (RS) technique that helps to reduce overfitting and improves
our model’s performance. Our system’s accuracy is assessed by performing training,
validation, and testing for the patches. The curves for the accuracy and loss of training the
CNNL, the best accuracy among three CNN, are presented in Figure 5. Also, the validation
(accuracy and loss) curves are shown in Figure 5. By increasing the number of epochs, the
validation accuracy rises until it reaches around 0.78, and the validation loss decreases
until it gets around 0.7.

Figure 5. Training loss and accuracy as well as validation loss and accuracy in dataset for our
proposed CNNM.
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2.2. Patch- and Pixel-Wise Classification

The goal for the patch-wise technique is to label all patches generated from the
digitized PBS. We apply the patch-wise classification for all three CNNs individually
during the test to assign each overlapped patch a label from one to five as GP categories.
After that, a pixel-wise classification is applied to obtain three images of the same size as
the original. The pixel-wise technique utilizes the output from the patch-wise classification,
labeled patches generated from the three CNNs, to give all pixels that contain this patch
the same label. Most of the pixels appear in several batches due to overlapped batches.
Therefore, overlapped pixels have multiple labels depending on their position in the image.
The majority voting is the core approach for the pixel-wise classification to get a single
label for each overlapped pixel. The two techniques, patch- and pixel-wise, are used on the
output of the three CNNs. The results after applying those techniques are three images of
the same size as the original (each pixel has three labels); then, we applied majority voting
again on those three images to obtain the final pixel-based classification.

2.3. Grade Groups System

The identification of the GG label is considered our goal in this work. Each digitized
PBSs has labels between 1–5 according to its GP. We utilize Table 1 that demonstrates the
relation between three measurements (GP, GS, and GG) to generate the GS from GP. Thus,
identifying the GG from GS.

3. Results

The proposed framework is trained, validated, and tested on 416, 96, and 96, respec-
tively, with whole slide images (WSIs) of the digitized PBSs from the Radboud Univer-
sity Medical Center, USA, and it was analyzed by the University of Louisville Hospital,
USA [19,27]. A semiautomatic labeling technique was utilized to circumvent the need for
full manual annotation by pathologists. Expert pathologists defined the GP, GS, and GG
for all WSIs, and the digitized PBSs are divided into overlapping patches for patch and
pixel-wise classification according to the GP ground truth. Our CAD software is primarily
implemented in Python and Matlab programming environments. The experimental results
were also performed on a Dell Precision workstation with an Intel Xeon eight-core CPU
running at 3.31 GHz and 128 GB RAM.

The total number of patches for each CNNS, CNNM, and CNNL are around 5.8, 3.6,
and 1.7 million, respectively. Those patches belong to 608 (416, 96, and 96) of the WSIs of
the digitized PBS. The WSIs, 608, are separated into training, validation, and testing before
generating the patches that means the model doesn’t see the validation or testing patches.
We face a big challenge to train our model with a balanced dataset because the occurrence
of the GP1 is very high with around 60% of the PBS, and the other four types (GP2, GP3,
GP4, GP5) have almost 40%. Therefore, we utilized all batches generated from the four GP
(GP2, GP3, GP4, GP5) during our training and randomly selected the number of patches
from the GP1 that made the number of patches very close. The CNNS, CNNM, and CNNL
were trained with around 130, 45, and 25,000 patches, respectively, for each group.

Our goal for this automated system is to identify the GG. Therefore, there are many
steps, and each one has its results before reaching our target. We show first the accuracy
for each CNN, pyramidal CNN, especially the patch-wise classification, see Tables 2 and 3.
After that, we demonstrate the system’s accuracy for the GG. More details are presented in
the following two subsections.
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Table 2. Patch-wise classification accuracy for our proposed CNNS and CNNL using precision, recall, F1-score, accuracy,
macro-averaged, and weighted-averaged.

CNNS CNNM CNNL

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Class 1 0.86 0.97 0.91 0.92 0.97 0.94 0.96 0.94 0.95

Class2 0.74 0.79 0.76 0.77 0.80 0.78 0.81 0.82 0.81

Class3 0.66 0.63 0.76 0.68 0.62 0.65 0.75 0.68 0.71

Class4 0.66 0.44 0.52 0.63 0.55 0.59 0.64 0.66 0.65

Class5 0.53 0.66 0.59 0.46 0.63 0.53 0.42 0.53 0.47

Accuracy 0.70 0.70 0.70 0.73 0.73 0.73 0.76 0.76 0.76

Macro-averaged 0.68 0.70 0.69 0.69 0.71 0.70 0.72 0.73 0.72

Weighted-average 0.70 0.70 0.70 0.73 0.73 0.72 0.77 0.76 0.76

Table 3. Patch-wise classification accuracy for our proposed CNNL and VGG-16 network using precision, recall, F1-score,
accuracy, macro-averaged, and weighted-averaged.

CNNL VGG-16 ResNet50

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Class1 0.96 0.94 0.95 0.87 0.82 0.85 0.94 0.93 0.94

Class2 0.81 0.82 0.81 0.76 0.56 0.64 0.74 0.93 0.82

Class3 0.75 0.68 0.71 0.65 0.58 0.62 0.75 0.65 0.70

Class4 0.64 0.66 0.65 0.51 0.63 0.56 0.72 0.54 0.61

Class5 0.42 0.53 0.47 0.35 0.59 0.44 0.58 0.76 0.66

Accuracy 0.76 0.76 0.76 0.65 0.65 0.65 0.75 0.75 0.75

Macro-averaged 0.72 0.73 0.72 0.63 0.64 0.62 0.75 0.76 0.75

Weighted-average 0.77 0.76 0.76 0.68 0.65 0.65 0.77 0.76 0.76

3.1. Patch-Wise Classification for Each CNN

The overall diagnostic classification accuracy is evaluated using the accuracy metrics
precision, recall, F1-score, accuracy, macro-averaged, and weighted-averaged [28,29]. The
F1-score is computed by the formula:

F1-score =
2× (precision× recall)
(precision + recall)

(1)

The overall accuracy is the proportion of correctly classified samples out of all the samples;
then, it must be equal for all metrics: precision, recall, F1-score. To summarize, the following
always holds for the micro-F1.

micro-F1 = micro-precision = micro-recall = accuracy (2)

since for the micro-averaging case, they are also equal to their harmonic mean; in other
words, the micro-F1 case. The macro-average is also calculated for each metric and com-
puted as simple arithmetic means of our per-class. The weighted average is the weighted
of each class by the number of samples from that class.

The patch-wise classification results for our proposed pyramidal CNN are reported in
Tables 2 and 3. For CNNS, CNNM, and CNNL, the classification accuracy is in the range
0.70–0.76. The macro-averaged and weighted-average metrics are found to be around
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0.68–0.77. To highlight the advantages of using our DL (CNN), the accuracy of our pipeline
is compared against standard ResNet50, and VGG-16 [22,30]. The input patches are resized
into 224 × 224 pixels to fit with the image input size of the ResNet50 and VGG-16. The
F1-score of VGG-16 is in the range of 0.58–0.70. In addition, the macro-averaged and
weighted-average metrics are both found to be 0.63. The accuracy of our CNNL is high
compared with that of the VGG-16 (0.65) and almost the same with that of ResNet50 (0.75),
see Table 3. Besides the high accuracy for our CNN, there are two reasons for creating this
CNN. Firstly, the computational cost for the RestNet50 and VGG-16 is high compared with
that of our CNN. The number of parameters for ResNet50 and VGG-16 is almost 23 and
27 million, respectively, and our CNN is approximately one million. The second reason
is that our pyramidal CNN needs a flexible size for the CNN, and a standard CNN like
ResNet50 is a fixed-size that is 224 × 224.

3.2. Grade Group Results

After applying the patch- and pixel-wise classification for each CNN, we merge the
CNN outputs to obtain the production of the digitized PBS as the exact size of the original
one. The new digitized PBS defines the results for GP from our automated system. We
identify the GS and GG, the goal of our pipeline, using the fundamental converting that
presents in the Table 1. Figure 6 shows the GG examples for our automated system results,
which compare the reference standard and the predicted GG from our system using the
distribution of GG.

The overall GG diagnostic accuracy is summarized in Table 4, which presents the
accuracy metrics precision, recall, F1-score, accuracy, and negative predictive value (NPV).
Also, the confusion matrices for the grade groups results are shown in Figure 7. To validate
our CAD system’s results and demonstrate its value, we compared our results with the
pathologists’ estimated results, and previous work[19]. Firstly, the discordance for diagnos-
ing the GG from the same biopsy is between 30% and 50% for various pathologists [3,7,8].
Therefore, our CAD system’s accuracy compared with that of pathologists’ estimated
results is acceptable because our results are about 80% for precision, between 60–80% for
recall and F1-score, and around 94% for accuracy and NPV. Secondly, the average accuracy
and NPV for our automated CAD system to identify GG are 0.8767 and 0.9167, respectively,
while the previous work [19] has 0.8500 and 0.9100, respectively. The obtained results show
that our results compared with that of previous work are higher than two percent for an
average of accuracy and almost the same for the NPV.

Table 4. Grade groups classification of our CAD system using precision, recall, F1-score, accuracy,
and negative predictive value (NPV).

Precision Recall F1-Score Accuracy NPV Cases

Benign 0.75 0.75 0.76 0.92 0.95 8

GG1 0.71 0.71 0.71 0.92 0.95 7

GG2 0.75 0.50 0.60 0.92 0.93 6

GG3 0.71 0.45 0.56 0.84 0.86 11

GG4 0.23 0.50 0.32 0.80 0.92 6

GG5 0.73 0.67 0.70 0.86 0.89 12
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Figure 6. Examples of GG results from our system. In zoomed regions, system’s GP prediction is
shown as an overlay on tissue; B (benign).

Figure 7. Confusion matrices on grade groups.

4. Discussion

The treatment for prostate cancer over the years improved for men with low-risk
diseases. Notably, for patients with localized prostate cancer, active surveillance is safer
compared with radical prostatectomy, as verified by many trials [31]. According to the
American Society of Clinical Oncology, the GG and GP grading are considered the decision-
maker according to the guideline of the American Society of Clinical Oncology [32]. The
consults were recommended to enhance the consistency and quality of care due to the
interobserver variability for the Gleason system [32,33]. Therefore, our automated CAD
system could be a valuable decision support tool for patients’ GG with localized disease
and give significant downstream treatment implications.
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For that purpose, we developed an automated DL architecture for classifying the GG
of digitized PBS. The ground truth of our datasets was performed using many experienced
urologic subspecialists. They have around 25 years of experience with diverse backgrounds,
and accessed several histologic sections and immunohistochemically stained sections for
every specimen. The overall accuracy for our CAD system showed a similar rate compared
with that of general pathologists, which is 70%. According to [34,35], the DL system
can be used to alert pathologists of what might be missed. Otherwise, defining small
tissue regions depends on a pathologist’s judgment that leads to overrule of false-positive
categorizations. Therefore, our DL-CAD system has benefits for bolstering the selection of
treatment modalities, especially for patients with localized disease.

Developing a framework with high accuracy is our ultimate goal in which DL, patch-,
and pixel-wise classification were performed. The accuracy of the diagnostic results for
the proposed framework using pyramidal CNN presents that CNNL had higher accuracy
than that of CNNS and CNNM, see Tables 2 and 3 and Figure 5 , which show the valida-
tion curves for the CNNL. The comparison between the best CNN against the standard
ResNet50 and VGG-16 [22,30], shown in Table 3, emphasizes the benefits of using the
hyper-parameter tuning and the RS technique. Besides, using the new idea to identify the
problem as classification one, not a segmentation, developed high accuracy.

The proposed CAD system can be helpful in healthcare systems in several ways,
such as decreasing the consultation-associated costs, enhancing grading consistency, and
reducing treatment-related morbidity for men with low-risk diseases. The performance
metrics for GG estimation are higher for G1 and G2 grades compared with that of G3, G4,
G5. Therefore, our automated system could be accurately classifying low-risk cases that
are eligible for more conservative management.

The GG classification plays an essential role in prostate cancer treatment [31,36]. Still,
it is not a straightforward task to the extent that there is no match the results between the
subspecialists and the general pathologists’ for the GG classification. The subspecialists’
grading is more concordant than the general pathologists’ grading [37]. However, due to
the difficulty of GG and inherent subjectivity, there is discordance between subspecialists.
Therefore, it is critical to enhance the risk stratification for prostate cancer by overcoming
those disagreements. Developing a system with high precision that human graders and
predict clinical risk is our priority. Machine learning, especially DL, models could distin-
guish novel histoprognostic signals that the human eye can not discover [38,39], as well as
assistance in stratifying patient risk like existing molecular tests [40].

Despite the promising results, our automated DL system has some limitations. Firstly,
our DL model was trained and tested from a single institution. Therefore, using an external
test dataset for the different centers and WSI with various staining protocols should further
enhance the robustness of our automated system. Secondly, our DL models, as well the
pathologists who made the ground truth labeling, treated each biopsy as an independent
sample. In clinical practice, multiple biopsies are sampled from various regions of the
prostate. Therefore, an update to our model could take multiple biopsies into account
and give a grade group prediction at the patient level. Finally, our study concentrated on
the grading of acinar adenocarcinoma in prostate biopsies. However, prostate biopsies
can contain other tumor types and foreign tissue, such as colon glands. The biopsies
could also include additional prognostic information, such as the detection of intraductal
carcinoma [41].

5. Conclusions

This paper introduced a Deep Learning-based CAD system to classify the grade
groups (GG) system using digitized prostate biopsy specimens (PBSs) using pyramidal
CNN, with patch- and pixel-wise classifications. The proposed pipeline results highlight
our system’s potential to classify all five GG of the PBSs in comparison with that of other
standard CNNs. The agreement between our CAD system and pathologists is comparable
to inter-rater reliability among pathologists. In future work, because the digitized PBSs do
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not have the same direction, adding a new preprocessing step to overcome this challenge
will fit our results. This processing rotates the overlapped patches with angles 45 and 90,
and flipping them will enhance our pyramidal CNN accuracy. In addition, to highlight our
model, we will try to test our model with a dataset from another institution.
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