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SUMMARY
We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations
for SARS-CoV-2. Our approach optimizes the presentation likelihood of a diverse set of vaccine peptides
conditioned on a target human-population HLA haplotype distribution and expected epitope drift. Our pro-
posed SARS-CoV-2MHC class I vaccine formulations provide 93.21%predicted population coverage with at
least five vaccine peptide-HLA average hits per person (R 1 peptide: 99.91%) with all vaccine peptides
perfectly conserved across 4,690 geographically sampled SARS-CoV-2 genomes. Our proposed MHC class
II vaccine formulations provide 97.21% predicted coverage with at least five vaccine peptide-HLA average
hits per person with all peptides having an observed mutation probability of % 0.001. We provide an
open-source implementation of our design methods (OptiVax), vaccine evaluation tool (EvalVax), as well
as the data used in our design efforts here: https://github.com/gifford-lab/optivax.
INTRODUCTION

An effective vaccine for SARS-CoV-2 is urgently needed. For a

peptide to be effective in a vaccine to induce cellular immunity,

it must first bind within the groove of a major histocompatibility

complex (MHC) class I or class II molecule. Second, it must be

immunogenic; that is, it must activate T cells when it is bound

by MHC proteins and displayed. Immunogenicity is therefore

dependent on the sequence of the peptide displayed, the protein

sequences of an individual’s MHC genes, and the affinity be-

tween the two. A challenge for the design of peptide vaccines

is the diversity of human MHC gene alleles that each have spe-

cific preferences for the peptide sequences they display. The hu-

man leukocyte antigen (HLA) loci, located within the MHC,

encode the HLA class I and class II molecules; an individual’s

HLA type describes the alleles that he or she carries at each of

the three classical class I loci (HLA-A, HLA-B, and HLA-C) and

three class II loci (HLA-DR, HLA-DQ, and HLA-DP).

To create effective vaccines, it is necessary to consider the

HLA allelic frequency in the target population as well as linkage

disequilibrium between HLA genes to discover a set of peptides

that is likely to be robustly displayed. Human populations that
Ce
originate from different geographies have differing frequencies

of HLA alleles, and these populations exhibit linkage disequilib-

rium between HLA loci that result in population-specific

haplotype frequencies. However, previous computational pep-

tide vaccine design and evaluation methods do not utilize the

distribution of HLA haplotypes in a population, and thus, cannot

accurately assess the coverage provided by a vaccine. Present

population-based methods, such as iVax (Moise et al., 2015)

and SARS-CoV-2-specific efforts (Fast et al., 2020), do not

take into account haplotypes and rare HLA allelic combinations.

The immune epitope database (IEDB) population coverage tool

(Bui et al., 2006) estimates peptide-HLA binding coverage and

the distribution of peptides displayed for a given population

but assumes independence between different loci, and thus,

does not consider linkage disequilibrium.

Here, we utilize human HLA haplotype frequencies of three

major populations, those self-reporting as having White, Black,

or Asian ancestry, to compute population coverage of SARS-

CoV-2 peptides with high predictedHLA binding affinity for inclu-

sion in MHC class I or II vaccine formulations. We examined

4,690 geographically sampled SARS-CoV-2 genomes to

exclude peptides with undesired mutation rates. Recent
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Figure 1. The OptiVax and EvalVax Machine Learning System for Combinatorial Vaccine Optimization and Evaluation

These methods can be used to design new peptide vaccines, evaluate existing vaccines, or augment existing vaccine designs. Peptides are scored by machine

learning and immunogenicity data for population coverage optimization and evaluation.
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advances in machine learning have produced models that can

predict the presentation of peptides by hundreds of allelic vari-

ants of both class I and class II MHC molecules (Zeng and Gif-

ford, 2019; Jurtz et al., 2017; O’Donnell et al., 2018; Jensen

et al., 2018; Peters et al., 2020). These models were evaluated

on their ability to accurately predict data that are not observed

during their training on hundreds of HLA alleles. Given the fact

that different models may be more or less accurate for different

sequence families and can make idiosyncratic errors, we used

an ensemble of models for vaccine design. We evaluated

completed designs using eleven models to provide a conserva-

tive evaluation of vaccine peptide presentation.

Using conservative metrics of peptide-HLA binding, we find

that our optimization methods provide both a higher likelihood

of peptide display as well as a larger number of associated pep-

tides than other published SARS-CoV-2 peptide vaccine

designs with fewer than 150 peptides. Our proposed SARS-

CoV-2 MHC class I vaccine formulations provide 93.21%

predicted population coverage with at least five vaccine pep-

tide-HLA average hits per person (R 1 peptide: 99.91%), with

all vaccine peptides perfectly conserved across 4,690 geograph-

ically sampled SARS-CoV-2 genomes. Our proposed MHC class

II vaccine formulations provide 97.21% predicted coverage with

at least five vaccine peptide-HLA average hits per person with

all peptides having an observed mutation probability of %

0.001. We also show that OptiVax can be used to augment S pro-

tein vaccine designs to increase their population coverage.

RESULTS

Our approach to vaccine design uses combinatorial optimization

to select peptides to achieve specific population-level objec-

tives. We provide two methods for peptide vaccine evaluation:

EvalVax-Unlinked, which considers HLA allele frequencies and

assumes independence between HLA loci, and EvalVax-Robust,

which considers haplotype frequencies and computes popula-

tion coverage at minimum levels of high-scoring peptide-HLA

combinations per individual. We employ these evaluation
132 Cell Systems 11, 131–144, August 26, 2020
methods as objective functions for peptide vaccine formulation

by combinatorial optimization in OptiVax-Unlinked and Opti-

Vax-Robust. In our framework, vaccine design proceeds by (1)

starting with an initial proteome, filtering out peptides with unde-

sired properties, (2) scoring which peptides will be presented,

and thus are potentially immunogenic, and (3) selecting an opti-

mized set of candidate peptides, given the frequency of HLA

haplotypes or HLA alleles in a target population. Our filtering

step eliminates peptides that are expected to be glycosylated,

peptides that are expected to drift in sequence, and thus cause

vaccine escape, peptides that are cleaved, and peptides that are

identical to peptides in the human proteome. Vaccine peptides

can be drawn from the entire proteome or from specific proteins

of interest. An overview of our system is shown in Figure 1.

Once candidate peptides are tested, any that are not immuno-

genic in the context of the restricting HLA allotype can be elimi-

nated from the candidate peptide pool. Draft vaccine designs

containing nonimmunogenic peptides can be revised to elimi-

nate them, and the reduced vaccine design can be re-evaluated

with EvalVax to see if the design still meets performance criteria.

If not, the vaccine design process can be repeated with the

revised candidate pool. Immunogenicity data can be incorpo-

rated into the peptide scoring process that is used for both vac-

cine design and evaluation, as shown in italics in Figure 1.

Datasets
A Proteome Is Converted into Candidate Vaccine

Peptides

Given a target proteome as input, we identify all potential T cell

epitopes for inclusion in a vaccine. We extract peptides of length

8–10 inclusive for consideration of MHC class I binding (Rist

et al., 2013) and peptides of length 13–25 inclusive for class II

binding (Chicz et al., 1992) by using sliding windows of each

size over the entire proteome. While peptides presented by

MHC class I molecules can occasionally be longer than 10 resi-

dues (Trolle et al., 2016), we conservatively limited our search to

length 8–10, since MHC class I presented peptides are predom-

inately 8–10 residues in length (Rist et al., 2013).
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Using this sliding-window approach, we created peptide sets

from the SARS-CoV-2 (COVID-19) and SARS-CoV (human SARS

coronavirus) proteomes. SARS-CoV-2 was processed to

discover relevant peptides for a vaccine, and SARS-CoV was

processed to reveal common peptides between the two viruses

during evaluation. The SARS-CoV-2 proteome comprises four

structural proteins (E, M, N, and S) and at least six additional

open reading frames (ORFs) encoding nonstructural proteins,

including the SARS-CoV-2 protease (Finkel et al., 2020; Zhang

et al., 2020a). We obtained the SARS-CoV-2 viral proteome

from GISAID (Elbe and Buckland-Merrett, 2017) sequence entry

Wuhan/IPBCAMS-WH-01/2019, the first documented case. We

usedNextstrain (Hadfield et al., 2018) to identify ORFs and trans-

late the sequence. Our sliding windows on SARS-CoV-2 resulted

in 29,403 candidate peptides forMHC class I and 125,593 candi-

date peptides for MHC class II. We obtained the SARS-CoV pro-

teome from UniProt: UP000000354 (Consortium, 2019). For

SARS-CoV, our procedure created 29,661 and 126,711 unique

peptides for MHC class I and class II, respectively.

HLA Population Frequency Computation

When we compute the probability of vaccine coverage over a

population, we use complementary methods that assume either

independence or linkage between allele frequencies in genomi-

cally proximal HLA loci. In EvalVax-Unlinked, we assume inde-

pendence and useHLA allelic frequencies for 2,392 class I alleles

and 280 class II alleles across 15 geographic regions from the

dbMHC database (Helmberg et al., 2004) obtained from the

IEDB population coverage tool (Bui et al., 2006). For each

geographic region, we normalize the frequencies within each lo-

cus. If the sum of the raw frequencies exceeds one, we normalize

them to one; and if the sum of the raw frequencies is less than

one, the missing frequency is made up by a placeholder allele

that receives no binding. In EvalVax-Robust, we assume linkage

and use observed haplotype frequencies of HLA-A, HLA-B, and

HLA-C loci for class I computations, or observed haplotype fre-

quencies of HLA-DP, HLA-DQ, and HLA-DR for class II compu-

tations. We observed a total of 2,138 distinct haplotypes for the

HLA class I locus that included 230 different HLA-A, HLA-B, and

HLA-C HLA alleles. We observed a total of 1,711 distinct haplo-

types for the HLA class II loci that included 280 different HLA-DP,

HLA-DQ, and HLA-DR HLA alleles. We have independent haplo-

type frequency measurements for three populations self-report-

ing as having White (European), Black (African), or Asian

ancestry.

HLA class I and class II haplotype frequencies were inferred

using high-resolution typing of individuals from distinct racial

backgrounds. We estimated HLA class I haplotypes from HLA-

A, -B, and -C genotypes of 2,886 individuals of Black ancestry

(46 distinct HLA-A alleles, 70 distinct HLA-B alleles, and 40

distinct HLA-C alleles), 2,327 individuals of White ancestry (38

distinct HLA-A alleles, 64 distinct HLA-B alleles, and 34 distinct

HLA-C alleles), and 1,653 individuals of Asian ancestry (25

distinct HLA-A alleles, 51 distinct HLA-B alleles, and 25 distinct

HLA-C alleles). HLA class II haplotypes were estimated based

on DR, DQ, and DP genotypes of 2,474 individuals of Black

ancestry (10 distinct HLA-DPA1 alleles, 45 distinct HLA-DPB1 al-

leles, 14 distinct HLA-DQA1 alleles, 21 distinct HLA-DQB1 al-

leles, and 38 distinct HLA-DRB1 alleles), 1,857 individuals of

White ancestry (7 distinct HLA-DPA1 alleles, 29 distinct HLA-
DPB1 alleles, 18 distinct HLA-DQA1 alleles, 21 distinct HLA-

DQB1 alleles, and 41 distinct HLA-DRB1 alleles), and 1,675 indi-

viduals of Asian ancestry (7 distinct HLA-DPA1 alleles, 28 distinct

HLA-DPB1 alleles, 16 distinct HLA-DQA1 alleles, 16 distinct

HLA-DQB1 alleles, and 36 distinct HLA-DRB1 alleles). For

each racial background, HLA class I and class II haplotypes

were inferred using Hapferret (hapferret, 2020), an implementa-

tion of the Expectation-Maximization algorithm (Excoffier and

Slatkin, 1995). A total of 1,200, 779, and 440 class I and 920,

537, and 502 class II haplotype frequencies were derived in

Black, White, and Asian populations, respectively.

Peptide Scoring
Computational Models for Candidate Peptide Selection

For a peptide vaccine to be effective, its constituent peptides

need to be displayed, and thus, a computational vaccine design

must be built upon a solid predictive foundation of what peptides

will be displayed by each HLA allele. Incorrect predictions could

lead to failure of a preclinical or clinical trial at great human cost.

To this end, we were concerned about the precision (true posi-

tives divided by all positives) of our predictions such that we

maximize the chance that a peptide predicted to be displayed

would in fact be displayed. We were less concerned with our

ability to recall all of the peptides that would be displayed, as

long as we had a set of suitable size that would be displayed.

We reduced the risk of false positives by employing multiple

computational methods to predict peptide-HLA binding. For

MHC class I vaccine design, we used an ensemble of methods,

and for evaluation of MHC class I and class II vaccines we used

all of the methods separately. See STAR Methods for details.

All models take a HLA-peptide pair as input and output pre-

dicted peptide-HLA binding affinity (IC50) in nanomolar units.

For both MHC class I and class II models, we considered pep-

tides to be binders if the predicted HLA binding affinity was %

50 nM (Sette et al., 1994), providing a conservative threshold

to increase the probability of peptide display. We validated our

computational models on a dataset of SARS-CoV-2 peptides

evaluated for stability (Prachar et al., 2020). We found that

scoring peptides by predicted binding affinity maximized

AUROC as compared with alternative scoring methods, and se-

lecting peptides using a 50 nM binding affinity threshold maxi-

mized precision in classification of stable binders compared to

alternative binding criteria (STAR Methods, Table S1). Our

ensemble of NetMHCpan-4.0 and MHCflurry further increased

AUROC and precision over individual predictors.

Our computational predictions of peptide display include sup-

porting HLA alleles, thus enabling immunogenicity testing of

peptides on HLA-matched individuals. When available, these

data can be used to eliminate peptide support by particular

HLA alleles when the peptides are found to be nonimmunogenic

(Figure 1).

Combinatorial Vaccine Design (OptiVax) and Evaluation
(EvalVax) Use Coverage-Based Objectives
Coverage optimization is performed by OptiVax using beam

search to efficiently select an optimal subset of peptides that

maximizes a desired population coverage objective. Starting

from an empty set, it iteratively expands solutions in the beam

by adding one peptide at a time and keeps the top k solutions
Cell Systems 11, 131–144, August 26, 2020 133



Figure 2. SARS-CoV-2 OptiVax-Robust Selected Peptide Vaccine Sets for (A) MHC Class I and (B) MHC Class II

(a) EvalVax-Robust population coverage at different per-individual number of peptide-HLA hit cutoffs for populations self-reporting as having White, Black, or

Asian ancestry and average values.

(b) EvalVax-Unlinked population coverage on 15 geographic regions and averaged population coverage.

(c) Binding of vaccine peptides to each of the available alleles in MHC I and II.

(d) Peptide viral protein origins.

(e) Distribution of the number of per-individual peptide-HLA hits in populations self-reporting as having White, Black, or Asian ancestry.

(f) Vaccine peptide presence in SARS-CoV.
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over all possible expansions in the beam. OptiVax-Robust uses

the EvalVax-Robust objective function, which aims to find a min-

imal set of peptides that reaches a desired population coverage

at a threshold of n predicted peptide-HLA hits per individual.

EvalVax-Robust utilizes HLA haplotype frequencies for MHC

class I (HLA-A, -B, -C) and MHC class II (HLA-DP, -DQ, -DR)

genes. OptiVax-Unlinked uses the EvalVax-Unlinked objective

function that considers HLA allele frequencies at each HLA locus

independently and computes the likelihood that at least one pep-

tide from a vaccine set is displayed at any locus. Both methods

take into consideration HLA allele frequency, allelic zygosity, and

for EvalVax-Robust, linkage disequilibrium (LD) among loci. Op-

tiVax reduces vaccine peptide redundancy by not selecting pep-

tides with closely related sequences for a vaccine formulation.

EvalVax can be used independently to evaluate candidate pep-

tide vaccine coverage metrics (Figure 1). We use a beam size of

k = 10 for MHC class I and k = 5 for MHC class II. See STAR

Methods for details.

OptiVax-Robust Optimization Results on MHC Class I
and II
MHC Class I Results

We selected an optimized set of peptides from all SARS-CoV-2

proteins using the EvalVax-Robust objective function.We limited
134 Cell Systems 11, 131–144, August 26, 2020
our candidates to peptides with length 8–10 and excluded pep-

tides that have been observedwith anymutation or are predicted

to have non-zero probability of glycosylation. For computation of

the objective function, we used the mean predicted IC50 values

from our NetMHCpan-4.0 and MHCflurry ensemble to obtain

reliable binding affinity predictions for evaluation and optimiza-

tion. After all of our filtering steps, we had 378 candidate pep-

tides. With OptiVax-Robust optimization, we designed a vaccine

with 19 peptides that achieves 99.39% EvalVax-Unlinked

coverage and 99.91% EvalVax-Robust coverage over three

ethnic groups (Asian, Black, and White) with at least one pep-

tide-HLA hit per individual. This set of peptides also provides

93.21% coverage with at least 5 peptide-HLA hits and 67.75%

coverage with at least 8 peptide-HLA hits (Figure 2; Table 1).

The population-level distribution of the number of peptide-HLA

hits in White, Black, and Asian populations is shown in Figure 2,

where the expected numbers of peptide-HLA hits are 9.358,

8.515, and 10.206, respectively.

MHC Class II Results

We limited our candidates to peptides with lengths of 13–25 and

excluded peptides that have been observedwithmutation proba-

bility greater than 0.001or are predicted to have a non-zero glyco-

sylation probability. We used the predicted binding affinity from

NetMHCIIpan-4.0 for optimization and evaluation. After all of our



Table 1. Comparison of Baselines, S-protein Peptides, and OptiVax Designed Peptide Vaccines (Using All SARS-CoV-2 Proteins or SMN Proteins Only) on Various Population

Coverage Evaluation Metrics and Vaccine Quality Metrics (Percentage of Peptides with Mutation rate > 0.001 or with Non-zero Probability of being Glycosylated)

Peptide

Set

Vaccine

Size

EvalVax-

Unlinked

EvalVax-

Robust

p(nR1)

EvalVax-

Robust

p(nR5)

EvalVax-

Robust

p(nR8)

Exp. #

Peptide-

HLA Hits/

Vaccine

Size

Exp. #

Peptide-

HLA Hits

(White)

Exp. #

Peptide-

HLA Hits

(Black)

Exp. #

Peptide-

HLA Hits

(Asian)

Peptides

Glycosy

lated

Peptides

Mutation

Rate

> 0.001

On

Cleavage

Site

Protein

Origins

In

SARS-

CoV

MHC Class I Peptide Vaccine Evaluation

OptiVax

Augmented

Nonredundant

S-Protein

126 + 16 100.00% 100.00% 99.97% 99.27% 20.50% 27.20 27.68 32.44 0.00% 0.00% 0.00% M, N, ORF1a,

ORF1b, ORF3a,

S1, S2

30.28%

S-Protein 3795 99.96% 100.00% 99.17% 98.29% 0.91% 30.84 32.14 41.13 15.57% 29.99% 0.63% S1, S2 29.30%

OptiVax-Unlinked 19 99.79% 99.99% 89.15% 49.59% 40.72% 7.34 6.90 8.97 0.00% 0.00% 0.00% ORF1a, ORF1b,

ORF3a, S1

42.11%

Nonredundant

S-protein

126 99.84% 99.93% 97.37% 91.69% 16.82% 19.20 19.99 24.38 0.00% 0.00% 0.00% S1, S2 27.78%

OptiVax-Robust 19 99.39% 99.91% 93.21% 67.75% 49.26% 9.36 8.52 10.21 0.00% 0.00% 0.00% ORF1a, ORF1b,

ORF3a, ORF9b,

S1

52.63%

OptiVax-Robust –

size 15

15 99.07% 99.89% 86.69% 54.36% 54.47% 8.17 7.20 9.14 0.00% 0.00% 0.00% ORF1a, ORF1b,

ORF9b, S1

53.33%

Nonredundant

S1-subunit

68 99.18% 99.76% 86.53% 56.36% 12.23% 8.31 8.84 7.80 0.00% 0.00% 0.00% S1 8.82%

(Srivastava

et al., 2020)

37 95.86% 99.75% 52.94% 16.00% 13.51% 5.37 4.99 4.64 8.11% 37.84% 0.00% E, M, N, ORF10,

ORF1a, ORF1b,

ORF3a, ORF6,

ORF7a, ORF7b,

ORF8, S1

45.95%

OptiVax-Robust –

S/M/N only

26 97.49% 98.15% 67.37% 26.24% 22.31% 5.31 5.64 6.45 0.00% 0.00% 0.00% M, N, S1, S2 57.69%

(Herst

et al., 2020)

52 90.89% 95.82% 56.52% 19.99% 9.88% 5.20 4.44 5.77 7.69% 34.62% 0.00% N 55.77%

(Herst et al.,

2020) – top 16

16 80.41% 93.46% 9.47% 0.03% 15.73% 2.75 2.60 2.20 12.50% 12.50% 0.00% N 68.75%

Random subset

of binders

19 81.04% 90.33% 25.02% 4.58% 16.74% 3.01 2.83 3.70 0.00% 29.89% 0.00% N/A 40.37%

(Baruah and

Bose, 2020)

5 71.91% 90.10% 0.55% 0.00% 33.60% 1.93 1.44 1.67 0.00% 40.00% 0.00% S1, S2 40.00%

(Fast

et al., 2020)

13 78.66% 85.29% 58.51% 30.56% 44.25% 5.59 4.98 6.69 7.69% 30.77% 0.00% E, M, N, ORF1a,

S1, S2

23.08%

(Poran

et al., 2020)

10 69.12% 85.13% 3.21% 0.01% 19.23% 1.68 1.72 2.37 0.00% 30.00% 0.00% ORF1a, ORF1b,

ORF3a, ORF8, S1

20.00%

(Continued on next page)
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Table 1. Continued

Peptide

Set

Vaccine

Size

EvalVax-

Unlinked

EvalVax-

Robust

p(nR1)

EvalVax-

Robust

p(nR5)

EvalVax-

Robust

p(nR8)

Exp. #

Peptide-

HLA Hits/

Vaccine

Size

Exp. #

Peptide-

HLA Hits

(White)

Exp. #

Peptide-

HLA Hits

(Black)

Exp. #

Peptide-

HLA Hits

(Asian)

Peptides

Glycosy

lated

Peptides

Mutation

Rate

> 0.001

On

Cleavage

Site

Protein

Origins

In

SARS-

CoV

(Vashi

et al., 2020)

51 68.63% 80.80% 1.52% 0.00% 3.12% 1.90 1.70 1.17 11.76% 43.14% 5.88% S1, S2 5.88%

(Abdelmageed

et al., 2020)

10 66.91% 78.49% 23.49% 2.72% 28.34% 2.93 2.50 3.07 10.00% 10.00% 0.00% E 80.00%

(Lee and Koohy,

2020)

13 64.96% 75.75% 39.82% 37.09% 34.15% 4.77 3.69 4.86 0.00% 7.69% 0.00% E, N, ORF1a,

ORF1b, S2

53.85%

(Akhand

et al., 2020)

31 49.46% 71.24% 0.08% 0.00% 3.47% 1.09 1.11 1.02 3.23% 35.48% 0.00% E, M, N, S1 41.94%

(Singh

et al., 2020)

7 53.91% 66.59% 1.38% 0.00% 19.87% 1.34 1.30 1.53 0.00% 28.57% 0.00% E, M, N, S1, S2 71.43%

(Bhattacharya

et al., 2020)

13 44.56% 61.09% 0.00% 0.00% 5.67% 0.79 0.69 0.73 23.08% 46.15% 7.69% S1, S2 23.08%

(Ahmed

et al., 2020)

16 45.25% 52.30% 35.61% 4.15% 15.57% 2.56 2.18 2.73 12.50% 25.00% 0.00% N, S2 100.00%

(Saha and

Prasad, 2020)

5 29.90% 41.77% 0.00% 0.00% 8.86% 0.56 0.36 0.41 0.00% 20.00% 0.00% S1 20.00%

(Gupta

et al., 2020)

7 30.23% 38.91% 21.08% 1.41% 23.92% 1.32 0.55 3.15 0.00% 42.86% 0.00% S1, S2 14.29%

(Khan

et al., 2020)

3 27.14% 34.98% 0.00% 0.00% 17.33% 0.76 0.56 0.24 0.00% 66.67% 0.00% S1, S2 0.00%

(Mitra

et al., 2020)

9 13.97% 23.86% 0.00% 0.00% 2.83% 0.15 0.08 0.54 22.22% 11.11% 0.00% S1, S2 11.11%

MHC Class II Peptide Vaccine Evaluation

OptiVax-

Unlinked

19 91.67% 99.67% 95.94% 83.30% 64.45% 14.37 12.71 9.66 0.00% 0.00% 0.00% M, ORF1a,

ORF1b, S2

52.63%

OptiVax-

Robust

19 90.76% 99.67% 97.21% 88.48% 76.04% 16.64 15.71 11.00 0.00% 0.00% 0.00% M, ORF1a,

ORF1b,

S1, S2

42.11%

OptiVax

Augmented

Nonredundant

S-protein

102 + 26 91.65% 99.67% 98.73% 97.27% 26.81% 43.79 36.06 23.12 0.00% 0.00% 0.00% M, ORF1a,

ORF1b,

S1, S2

29.69%

(Ramaiah and

Arumugaswami,

2020)

134 87.28% 98.88% 90.20% 83.97% 25.18% 45.04 38.25 17.93 20.15% 44.78% 0.00% E, M, N,

S1, S2

30.60%

S-protein 16315 89.80% 98.76% 95.99% 95.73% 2.22% 492.82 385.60 208.34 30.01% 57.50% 1.43% S1, S2 16.06%

(Continued on next page)
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Table 1. Continued

Peptide

Set

Vaccine

Size

EvalVax-

Unlinked

EvalVax-

Robust

p(nR1)

EvalVax-

Robust

p(nR5)

EvalVax-

Robust

p(nR8)

Exp. #

Peptide-

HLA Hits/

Vaccine

Size

Exp. #

Peptide-

HLA Hits

(White)

Exp. #

Peptide-

HLA Hits

(Black)

Exp. #

Peptide-

HLA Hits

(Asian)

Peptides

Glycosy

lated

Peptides

Mutation

Rate

> 0.001

On

Cleavage

Site

Protein

Origins

In

SARS-

CoV

OptiVax-

Robust –

S/M/N only

22 86.34% 98.57% 85.37% 62.49% 42.51% 11.31 9.69 7.05 0.00% 0.00% 0.00% M, N,

S1, S2

36.36%

Nonredundant

S-protein

102 84.91% 98.56% 82.72% 77.19% 16.61% 23.54 17.04 10.23 0.00% 0.00% 0.00% S1, S2 28.43%

Nonredundant

S1-subunit

53 77.14% 95.81% 63.43% 41.82% 16.33% 13.07 8.74 4.16 0.00% 0.00% 0.00% S1 3.77%

Random subset

of binders

19 72.41% 93.61% 58.67% 32.40% 31.59% 7.72 6.49 3.79 0.00% 63.79% 0.00% N/A 23.55%

(Fast

et al., 2020)

13 67.29% 86.99% 15.24% 3.69% 19.69% 3.65 2.26 1.77 30.77% 38.46% 0.00% E, M, N,

ORF1a,

S1, S2

0.00%

(Banerjee et al.,

2020)

9 56.73% 83.51% 12.49% 0.66% 26.65% 3.16 2.35 1.68 22.22% 44.44% 0.00% S1, S2 55.56%

(Tahir ul Qamar

et al., 2020)

11 39.44% 72.75% 0.27% 0.00% 11.62% 1.84 1.46 0.53 0.00% 72.73% 0.00% E, M, N,

ORF10, ORF6,

ORF7a, ORF8

36.36%

(Poran

et al., 2020)

10 42.30% 69.37% 0.00% 0.00% 9.83% 1.47 0.91 0.57 20.00% 90.00% 0.00% ORF1a, ORF1b,

ORF3a, S2

20.00%

(Akhand

et al., 2020)

31 43.90% 60.45% 9.22% 1.01% 6.08% 2.53 2.54 0.59 3.23% 48.39% 0.00% E, M, N, S1 29.03%

(Singh

et al., 2020)

7 41.48% 56.29% 0.96% 0.00% 14.02% 1.44 1.11 0.39 0.00% 28.57% 0.00% E, M, N,

S1, S2

71.43%

(Ahmed

et al., 2020)

5 27.69% 54.96% 0.00% 0.00% 13.08% 0.74 0.72 0.51 0.00% 20.00% 0.00% N, S2 100.00%

(Mitra

et al., 2020)

5 25.46% 47.92% 0.04% 0.00% 13.14% 0.90 0.58 0.49 60.00% 20.00% 0.00% S1, S2 0.00%

(Vashi

et al., 2020)

20 20.78% 35.12% 0.04% 0.00% 3.36% 0.96 0.62 0.44 15.00% 35.00% 5.00% S1, S2 0.00%

(Abdelmageed

et al., 2020)

10 19.15% 28.40% 0.96% 0.00% 4.79% 0.92 0.27 0.24 60.00% 70.00% 0.00% E 30.00%

(Baruah and

Bose, 2020)

3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.00 0.00 66.67% 100.00% 0.00% S1 0.00%

S-protein includes all possible S-protein peptides of lengths 8–10 (MHC class I) and 13–25 (MHC class II). Nonredundant peptide sets are a result of OptiVax analysis of nonredundant displayed

peptides. The table is sorted by EvalVax-Robust p(nR 1). Random subsets are generated 200 times. The binders used for generating random subsets are defined as peptides that are predicted to

bind with affinity % 50 nM to more than 5 of the alleles.
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Figure 3. OptiVax-Robust-Designed Peptide Vaccine Using Peptides for (A) MHC class I and (B) MHC class II from the SARS-CoV-2 S, M, and

N Proteins Only

(a) EvalVax-Robust population coverage at different minimum number of peptide-HLA hit cutoffs for populations self-reporting as having White, Black, or Asian

ancestry and average values.

(b) EvalVax-Unlinked population coverage on 15 geographic regions and averaged population coverage.

(c) Binding of vaccine peptides to each of the available alleles in MHC I and II.

(d) Peptide viral protein origins.

(e) Distribution of the number of per-individual peptide-HLA hits in populations self-reporting as having White, Black, or Asian ancestry.

(f) Vaccine peptide presence in SARS-CoV.
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filtering steps we had 7,977 candidate peptides. With OptiVax-

Robust optimization, we designed a vaccine with 19 peptides

that achieved 90.76% EvalVax-Unlinked coverage and 99.67%

EvalVax-Robust coverage over three ethnic groups (Asian, Black,

andWhite)withat least onepeptide-HLAhit per individual. This set

of peptides also provided 97.21% coverage with at least 5 pep-

tide-HLA hits and 88.48% coverage with at least 8 peptide-HLA

hits (Figure 2; Table 1). The population-level distribution of the

number of peptide-HLA hits per individual in White, Black, and

Asian populations is shown in Figure 2, where the expected pep-

tide-HLA hits are 16.635, 15.708, and 11, respectively.

Designing Vaccines with S, M, N Proteins Only

We also used OptiVax-Robust to design vaccines for MHC class

I and class II based solely upon peptides from the S, M, and N

proteins of SARS-CoV-2 and evaluated vaccine performance.

Grifoni et al. (2020b) found that peptides from the S, M, and N

proteins produced the majority of the CD4+ (86%) and CD8+

(60%) T cell response in 20 convalescent COVID-19 patients.

Since Grifoni et al. (2020b) used megapool-based assays, it is

not possible to use their data to identify individual peptides

that are immunogenic.

As shown in Table 1, our SMN-only MHC class I vaccine with

26 peptides achieves 98.15% coverage over three ethnic groups
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(Asian, Black, and White) with at least one average peptide-HLA

hit per individual. There was an average of at least five peptide

hits in 67.37% of the population, and the expected per-individual

numbers of hits for White, Black, and Asian populations are

5.313, 5.643, and 6.448, respectively. The OptiVax-Robust

MHC class II SMN-only vaccine with 22 peptides achieves

98.57% coverage with an average of at least one peptide-HLA

hit per individual. There was an average of at least five peptide

hits in 85.37% of the population, and the expected per-individual

number of hits inWhite, Black, and Asian populations are 11.309,

9.693, and 7.053, respectively. The detailed vaccine designs are

shown in Figure 3. We observed that it is more difficult to opti-

mize vaccines with S, M, and N proteins only. We suspect this

is because there are fewer candidate peptides to cover all of

our haplotype combinations.

OptiVax-Unlinked Optimization Results on MHC Class I
and II
MHC Class I Results

We limited our candidates to peptides with length 8–10 and zero

predicted probability of glycosylation. We also excluded pep-

tides that have been observed with any mutation. We used the

mean predicted binding affinity values from our ensemble of



Figure 4. OptiVax-Unlinked Selected SARS-CoV-2 Optimal Peptide Vaccine Sets for (A) MHC Class I and (B) MHC Class II

(a) EvalVax-Robust population coverage at different per-individual numbers of peptide-HLA hits cutoffs for populations self-reporting as having White, Black, or

Asian ancestry and average value.

(b) EvalVax-Unlinked population coverage on 15 geographic regions and averaged population coverage.

(c) Binding of vaccine peptides to each of the available alleles in MHC I and II.

(d) Peptide viral protein origins.

(e) Distribution of the number of per-individual peptide-HLA hits in populations self-reporting as having White, Black, or Asian ancestry.

(f) Vaccine peptide presence in SARS-CoV.
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NetMHCpan-4.0 and MHCflurry on 2,392 HLA class I alleles to

obtain reliable binding affinity predictions for evaluation and opti-

mization. After all of our filtering steps, we had 472 candidate

peptides. With OptiVax-Unlinked optimization, we designed a

vaccine with 19 peptides that achieved 99.79% EvalVax-Un-

linked population coverage (averaged over 15 geographic re-

gions). As shown in Figure 4, the 19 vaccine peptides bind to a

diverse range of alleles across the HLA-A, -B, -C loci. Even

though less effective than OptiVax-Robust at providing a higher

number of expected individual peptide-HLA hits in the popula-

tion, the OptiVax-Unlinked peptide set still achieves high

coverage on EvalVax-Robust metrics (99.99% for pðnR1Þ,
89.15% for pðnR5Þ, and 49.59% for pðnR8Þ). The expected

per-individual numbers of peptide-HLA hits for the design are

7.340, 6.899, and 8.971 for White, Black, and Asian populations,

respectively (Table 1).

MHC Class II Results

We excluded peptides that have been observed with a mutation

probability greater than 0.001 or are predicted to have non-zero

probability of being glycosylated. We used the predicted binding

affinity from NetMHCIIpan-4.0 for optimization and initial evalua-

tion. After all of our filtering steps we had 7,966 candidate pep-

tides. With OptiVax-Unlinked, we designed a vaccine with 19

peptides that achieved 91.67% EvalVax-Unlinked population

coverage (averaged over 15 geographic regions). As shown in
Figure 4, the 19 vaccine peptides bind to a diverse range of alleles

across the HLA-DRB, -DP, and -DQ loci. Even though less effec-

tive than OptiVax-Robust in providing a high predicted number of

average peptide-HLA hits in the population, the OptiVax-Unlinked

peptide set still achieves high coverage on EvalVax-Robust met-

rics (99.67% for pðnR1Þ, 95.94% for for pðnR5Þ, and 83.30%

for pðnR8Þ). The expected per-individual number of peptide-

HLA hits for the design is 14.366, 12.711, and 9.657 for White,

Black, and Asian populations, respectively (Table 1).

EvalVax Evaluation of Public Vaccine Designs for SARS-
CoV-2
We used EvalVax to evaluate peptide vaccines and mega-

pools proposed by other publications (Lee and Koohy, 2020;

Fast et al., 2020; Poran et al., 2020; Bhattacharya et al.,

2020; Baruah and Bose, 2020; Abdelmageed et al., 2020;

Ahmed et al., 2020; Srivastava et al., 2020; Herst et al.,

2020; Vashi et al., 2020; Akhand et al., 2020; Mitra et al.,

2020; Khan et al., 2020; Banerjee et al., 2020; Ramaiah and

Arumugaswami, 2020; Gupta et al., 2020; Saha and Prasad,

2020; Tahir ul Qamar et al., 2020; Singh et al., 2020; Yarmar-

kovich et al., 2020; Grifoni et al., 2020a; Nerli and Sgourakis,

2020; Yazdani et al., 2020; Ismail et al., 2020) on metrics

including EvalVax-Unlinked and EvalVax-Robust population

coverage at different per-individual number of peptide-HLA
Cell Systems 11, 131–144, August 26, 2020 139



Figure 5. EvalVax Population Coverage Evaluation, Expectation of Per-Individual Number of Peptide-HLA Hits and Normalized Coverage for

MHC Class I SARS-CoV-2 Vaccines

(A) EvalVax population coverage for OptiVax-Unlinked and OptiVax-Robust proposed vaccine at different vaccine sizes.

(B) EvalVax-Robust population coverage with nR1 peptide-HLA hits per individual, OptiVax-Robust performance is shown by the blue curve and baseline

performance is shown by red crosses (labeled by name of first author).

(C) EvalVax-Robust population coverage with nR5 peptide-HLA hits.

(D) EvalVax-Robust population coverage with nR8 peptide-HLA hits.

(E) Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust and OptiVax-Unlinked, and normalized coverage (hits divided by vaccine

size) at different vaccine size.

(F) Comparison of OptiVax-Robust and baselines on expected number of peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and

baseline performance is shown by red crosses.

(G) Comparison between OptiVax-Robust and baselines on normalized coverage.
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hits thresholds, expected per-individual number of peptide-

HLA hits in White, Black, and Asian populations, percentage

of peptides that are predicted to be glycosylated, peptides

observed to mutate with a probability greater than 0.001, or

peptides that sit on known cleavage sites. We define ‘‘normal-

ized coverage’’ as the mean expected per-individual number

of peptide-HLA hits for a vaccine divided by the number of

peptides in the vaccine.

We evaluated whole-protein vaccines by first converting them

into the nonredundant peptides they display in a given haplo-

type population. Using a windowing strategy to enumerate all

peptides in a whole-protein vaccine produces large numbers

of overlapping redundant peptides that will cause EvalVax to

provide optimistic and unrealistic vaccine metrics. We repre-

sented proteins as peptide vaccines by using OptiVax to create

a vaccine design from the entire protein vaccine payload,

without any limitations on the number of peptides in the vaccine.

OptiVax eliminates highly redundant peptides during design and

chooses the largest set of peptides that maximizes population

coverage (STAR Methods). For example, EvalVax predicts

SARS-CoV-2 S protein vaccines will have nR5 MHC class II

peptide hits in 95.99% of the population on average when

simple windowing is employed resulting in 16,315 redundant

peptides, and 82.72% of the population when nonredundant S

is used, resulting in its representation as 102 peptides that are

not glycosylated and have a mutation probability of % 0:001

(Table 1).
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Figures 5 and 6 show the comparison between OptiVax-

Robust-designed MHC class I and class II vaccines at all vac-

cine sizes (top solution in the beam up to the given vaccine

size) from 1–35 peptides (blue curves) and baseline vaccines

(red crosses) proposed by other publications. We observed

superior performance of OptiVax-Robust-designed vaccines

on all evaluation metrics at all vaccine sizes for both MHC

class I and class II. Most baselines achieved reasonable

coverage at nR1 peptide hits. However, many failed to

show a high probability of higher hit counts, indicating a

lack of predicted redundancy if a single peptide is not dis-

played. We also evaluated randomly selected peptide sets

of size 19 from predicted binders of MHC class I and II, where

a binder is defined as a peptide predicted to bind with %

50 nM to more than 5 of the alleles in the MHC class. We

found that a set of random binders can achieve greater

coverage than some of the proposed vaccines we used as

baselines.

Table 1 summarizes EvalVax results for all baselines with a

vaccine peptide count of fewer than 150 peptides. We also

evaluated an average of 200 random designs for MHC class I

or class II containing 19 random peptides predicted to bind

with % 50 nM to more than 5 of the alleles in the MHC class.

We found that the baseline methods all provide less coverage

than OptiVax-derived sets, and some contain peptides pre-

dicted to be glycosylated or have a high observed mutation

probability (Table 1). We also observed that some baselines



Figure 6. EvalVax Population Coverage Evaluation, Expectation of Per-Individual Number of Peptide-HLA Hits and Normalized Coverage for

MHC Class II SARS-CoV-2 Vaccines

(A) EvalVax population coverage for OptiVax-Unlinked and OptiVax-Robust proposed vaccine at different vaccine sizes.

(B) EvalVax-Robust population coverage with nR1 peptide-HLA hits per individual, OptiVax-Robust performance is shown by the blue curve and baseline

performance is shown by red crosses (labeled by name of first author).

(C) EvalVax-Robust population coverage with nR5 peptide-HLA hits.

(D) EvalVax-Robust population coverage with nR8 peptide-HLA hits.

(E) Expected number of peptide-HLA hits versus peptide vaccine size for OptiVax-Robust and OptiVax-Unlinked, and normalized coverage (hits divided by

vaccine size) at different vaccine size.

(F) Comparison of OptiVax-Robust and baselines on expected number of peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and

baseline performance is shown by red crosses.

(G) Comparison between OptiVax-Robust and baselines on normalized coverage.
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contained peptides that sat on cleavage sites or overlapped with

self-peptides.

OptiVax Augmentation of SARS-CoV-2 S Protein
Vaccines
When predicted population coverage for a whole-protein vac-

cine is judged to be insufficient, OptiVax can perform optimized,

augmented vaccine design to suggest additional peptides to

add to an existing formulation. In this mode, we used OptiVax

to compute the nonredundant displayed peptide set for a protein

vaccine and then used this as the initial set of peptides for Opti-

Vax design. OptiVax then added supplemental nonredundant

peptides to this initial set to improve population coverage. For

example, we used OptiVax augmentation to add 26 peptides

to the SARS-CoV-2 S protein vaccine to increase the predicted

MHC class II population coverage for nR5 peptide hits from

82.72% to 98.73%. For MHC class I, OptiVax augmentation

added 16 peptides to the SARS-CoV-2 S protein vaccine to in-

crease the predicted population coverage for nR5 peptide hits

from 97.4% to 99.9% (Table 1). OptiVax-derived vaccine de-

signs, nonredundant peptide sets, and vaccine augmentations

are presented in Table S3.

EvalVax Results Are Robust to Different Binding
Prediction Models
We evaluated all Table 1 vaccine designs using eleven indepen-

dent peptide-HLA binding prediction methods to ensure that the
performance observed in Table 1 was consistent across predic-

tion methods. For MHC class I prediction, we validated using

seven methods: NetMHCpan-4.0, NetMHCpan-4.1, MHCflurry

1.6.0, PUFFIN, the mean of NetMHCpan-4.0 and MHCflurry

1.6.0 with a 50 nM cutoff on predicted affinity, and NetMHC-

pan-4.0 and NetMHCpan-4.1 with a 99.5% cutoff on EL ranking.

For MHC class II prediction, we used four different methods for

validation: NetMHCIIpan-3.2 and NetMHCIIpan-4.0, each with

either a 50 nM cutoff on predicted affinity or a 98% cutoff on

EL ranking. The result of all eleven EvalVax evaluation metrics

for all Table 1 designs are shown in Table S2. We found that

these results from all eleven evaluation methods show Table 1

contains conservative estimates of vaccine performance.

DISCUSSION

The computational design of peptide vaccines for eliciting

cellular immunity is built upon the imperfect science of predicting

peptide presentation by HLA molecules as a precondition for

their immunogenicity. Peptide vaccine designs also need to

ensure that individuals with rare HLA alleles display vaccine pep-

tides to ensure a high rate of vaccine efficacy over the entire

population.

To mitigate computational model uncertainty, we have taken a

very conservative view of peptide presentation, emphasizing

precision over recall. To provide coverage for individuals with

rare HLA types, we use haplotype frequencies that include these
Cell Systems 11, 131–144, August 26, 2020 141
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types in our evaluations. We provide an evaluation tool, EvalVax,

to permit the flexible analysis of vaccine proposals on key met-

rics, including population coverage and the expected number

of peptides displayed. Not surprisingly, OptiVax vaccine designs

that are optimized with respect to EvalVax objective functions do

well on the same metrics. We also find that OptiVax designs do

well when evaluated on eleven computational models of pep-

tide-HLA binding, providing encouragement that their compo-

nent peptides will be displayed.

The immunogenicity of HLA displayed peptides likely varies

between individuals (Croft et al., 2019), highlighting the desir-

ability of a vaccine recipient displayingmultiple vaccine peptides

to increase the probability of engendering a durable immune

response. EvalVax-Robust’s prediction of the expected number

of peptide hits for each individual provides one metric of this

property, and the probability of a desired number of individual

hits is optimized by OptiVax-Robust.

EvalVax can be used for vaccine designs that are focused on

the expression of entire viral proteins or their subunits to evaluate

the level of viral peptide-HLA presentation that is predicted to

result. We note for SARS-CoV-2 in Table 1 that the S protein is

limited in its predicted ability to provide robust population

coverage for MHC class II display of more than four viral epi-

topes. This suggests that vaccines that only employ the S protein

may require additional peptide components for reliable CD4+

T cell activation across the entire population, and we have intro-

duced specific augmentation methods for this purpose.

At present the World Health Organization lists 79 COVID-19

vaccine candidates in clinical or preclinical evaluation (WHO,

2020) (accessed May 16, 2020), and the precise designs of

most of these vaccines are not public. We encourage the early

publication of vaccine designs to enable collaboration and rapid

progress toward safe and effective vaccines for COVID-19.

All of our software and data are freely available as open source

to allow others to use and extend our methods.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

HLA haplotype population frequency data This paper, Mendeley Data Mendeley Data: https://doi.org/

10.17632/cfxkfy9zp4.1

SARS-CoV-2 vaccine designs This paper Table S3

SARS-CoV-2 proteome GISAID (Elbe and Buckland-

Merrett, 2017)

Sequence entry Wuhan/IPBCAMS-

WH-01/2019

SARS-CoV proteome UniProt (Consortium, 2019) UniProt: UP000000354 (Proteome ID)

HLA population frequency data dbMHC, as obtained from

the IEDB Population

Coverage Tool download

(Bui et al., 2006)

http://tools.iedb.org/population/

Human proteome UniProt (Consortium, 2019) UniProt: UP000005640 (Proteome ID)

SARS-CoV-2 experimental peptide stability data

(Immunitrack)

(Prachar et al., 2020) Data S1. COVID19-Intavis-

Immunitrack-dataset: https://www.

immunitrack.com/wp/wp-content/

uploads/Covid19-Intavis-Immunitrack-

datasetV2.xlsx

SARS-CoV-2 cleavage regions: ORF1a and ORF1b UniProt (Consortium, 2019) UniProt: P0DTD1; https://covid-19.uniprot.

org/uniprotkb/P0DTD1#Protein

%20Processing

SARS-CoV-2 cleavage regions: Spike (S) (Wang et al., 2020) Figure 1

Additional SARS-CoV-2 proteomes for

mutation analysis

GISAID (Elbe and Buckland-

Merrett, 2017)

Acknowledgements and detailed GISAID

accessions in Table S4 (this paper)

Experimental data of Spike N-glycosylation: Cryo-EM (Walls et al., 2020) Table 2

Experimental data of Spike N-glycosylation: tandem

mass spectrometry

(Zhang et al., 2020b) https://www.biorxiv.org/content/

10.1101/2020.03.28.013276v1.

upplementary-material, Figures S5A

and S5B

Baseline vaccine MHC I: (Srivastava et al., 2020) (Srivastava et al., 2020) Figure 2

Baseline vaccine MHC I: (Herst et al., 2020) (Herst et al., 2020) Data S1; Table 6

Baseline vaccine MHC I: (Herst et al., 2020)-top16 (Herst et al., 2020) Table 4

Baseline vaccine MHC I: (Baruah and Bose, 2020) (Baruah and Bose, 2020) Table 1

Baseline vaccine MHC I: (Fast et al., 2020) (Fast et al., 2020) Table 2

Baseline vaccine MHC I: (Poran et al., 2020) (Poran et al., 2020) Table S5

Baseline vaccine MHC I: (Vashi et al., 2020) (Vashi et al., 2020) Table 5

Baseline vaccine MHC I: (Abdelmageed et al., 2020) (Abdelmageed et al., 2020) Table 2

Baseline vaccine MHC I: (Lee and Koohy, 2020) (Lee and Koohy, 2020) Table 4

Baseline vaccine MHC I: (Akhand et al., 2020) (Akhand et al., 2020) Table 2

Baseline vaccine MHC I: (Singh et al., 2020) (Singh et al., 2020) Table 2

Baseline vaccine MHC I: (Bhattacharya et al., 2020) (Bhattacharya et al., 2020) Table 2

Baseline vaccine MHC I: (Ahmed et al., 2020) (Ahmed et al., 2020) Table 2

Baseline vaccine MHC I: (Saha and Prasad, 2020) (Saha and Prasad, 2020) Table 1

Baseline vaccine MHC I: (Gupta et al., 2020) (Gupta et al., 2020) Table 4a

Baseline vaccine MHC I: (Khan et al., 2020) (Khan et al., 2020) Sub-Section 2 in Results of the Main Text

Baseline vaccine MHC I: (Mitra et al., 2020) (Mitra et al., 2020) Table 1(C)

Baseline vaccine MHC I: (Nerli and Sgourakis, 2020) (Nerli and Sgourakis, 2020) Tables S1 and S2

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Baseline vaccine MHC I: (Yarmarkovich et al., 2020) (Yarmarkovich et al., 2020) Table S5 (65 33-mers, to which we

applied sliding windows of lengths

8–10 to obtain the peptide set

considered for MHC class I)

Baseline vaccine MHC I: (Yazdani et al., 2020) (Yazdani et al., 2020) Table 1 (peptides created by sliding

windows of length 8–10)

Baseline vaccine MHC I: (Ismail et al., 2020) (Ismail et al., 2020) Section 3.2 "MEPVC Designing"

(peptides created by sliding windows

of length 8–10)

Baseline vaccine MHC II: (Ramaiah and

Arumugaswami, 2020)

(Ramaiah and

Arumugaswami, 2020)

Table S2 - "Unique Mean HBA T-Cell

Epitopes" for each protein Subunit

Baseline vaccine MHC II: (Fast et al., 2020) (Fast et al., 2020) Table 2

Baseline vaccine MHC II: (Banerjee et al., 2020) (Banerjee et al., 2020) Table 3

Baseline vaccine MHC II: (Akhand et al., 2020) (Akhand et al., 2020) Table 2

Baseline vaccine MHC II: (Poran et al., 2020) (Poran et al., 2020) Table S7

Baseline vaccine MHC II: (Singh et al., 2020) (Singh et al., 2020) Table 2

Baseline vaccine MHC II: (Ahmed et al., 2020) (Ahmed et al., 2020) Table 2

Baseline vaccine MHC II: (Tahir ul Qamar et al., 2020) (Tahir ul Qamar et al., 2020) Table 1

Baseline vaccine MHC II: (Mitra et al., 2020) (Mitra et al., 2020) Table 1(B)

Baseline vaccine MHC II: (Abdelmageed et al., 2020) (Abdelmageed et al., 2020) Table 3

Baseline vaccine MHC II: (Vashi et al., 2020) (Vashi et al., 2020) Table 6

Baseline vaccine MHC II: (Baruah and Bose, 2020) (Baruah and Bose, 2020) Table 2

Baseline vaccine MHC II: (Yarmarkovich et al., 2020) (Yarmarkovich et al., 2020) Table S5 (65 33-mers, to which we

applied sliding windows of lengths

13–25 to obtain the peptide set

considered for MHC class II)

Baseline vaccine MHC II: (Yazdani et al., 2020) (Yazdani et al., 2020) Table 1 (peptides created by sliding

windows of length 13–25)

Megapool MHC I: (Grifoni et al., 2020a) (Grifoni et al., 2020a) Table S6

Megapool MHC II: (Grifoni et al., 2020a) (Grifoni et al., 2020a) Table S3

Software and Algorithms

OptiVax This paper, GitHub https://github.com/gifford-lab/optivax

EvalVax This paper, GitHub https://github.com/gifford-lab/optivax

NetMHCpan-4.0 (Jurtz et al., 2017) http://www.cbs.dtu.dk/services/

NetMHCpan-4.0/

NetMHCpan-4.1 (Reynisson et al., 2020a) http://www.cbs.dtu.dk/services/

NetMHCpan-4.1/

NetMHCIIpan-4.0 (Reynisson et al., 2020b) http://www.cbs.dtu.dk/services/

NetMHCIIpan-4.0/

NetMHCIIpan-3.2 (Jensen et al., 2018) http://www.cbs.dtu.dk/services/

NetMHCIIpan-3.2/

MHCflurry 1.6.0 (O’Donnell et al., 2020) Version 1.6.0, https://github.com/openvax/

mhcflurry

PUFFIN (Zeng and Gifford, 2019);

https://github.com/gifford-

lab/PUFFIN

GitHub commit a63f6c563b7e2f7b04eac28

a6cf09d8078ac3a2a with pre-trained model

Hapferret https://github.com/nilsboar/

HapFerret

GitHub commit e2381dc567cec97373acb

49c09f167e46ea0bb53

Nextstrain (Hadfield et al., 2018);

https://github.com/nextstrain/ncov

GitHub commit 639c63f25e0bf30c900f8d

3d937de4063d96f791

NetNGlyc (Gupta et al., 2004) http://www.cbs.dtu.dk/services/NetNGlyc/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, David K. Gifford

(gifford@mit.edu).

Materials Availability
This study did not generate new materials.

Data and Code Availability
The code and peptide-HLA predictions generated during this study are available at https://github.com/gifford-lab/optivax. Original

data for HLA haplotype frequency data have been deposited to Mendeley Data: https://dx.doi.org/10.17632/cfxkfy9zp4.1.

METHOD DETAILS

Peptide filtering
Removal of Highly Mutable Peptides

We eliminate peptides that are observed to mutate above an input threshold rate to improve coverage over all SARS-CoV-2 variants

and reduce the chance that the virus will mutate and escape vaccine-induced immunity in the future. When possible, we select pep-

tides that are observed to be perfectly conserved across all observed SARS-CoV-2 viral genomes. Peptides that are observed to be

perfectly conserved in thousands of examples may be functionally constrained to evolve slowly or not at all. If functional data are

available, they can be used to supplement observed viral genome mutation rates by increasing mutation rates over functionally

non-constrained residues.

For SARS-CoV-2, we obtained the most up to date version of the GISAID database (Elbe and Buckland-Merrett, 2017) (as of

2:02pmESTMay 13, 2020, see Table S4: GISAID acknowledgements) and usedNextstrain (Hadfield et al., 2018) to remove genomes

with sequencing errors, translate the genome into proteins, and perform multiple sequence alignments (MSAs). We retrieved 24,468

sequences from GISAID, and 19,288 remained after Nextstrain quality processing. After quality processing, Nextstrain randomly

sampled 34 genomes from every geographic region and month to produce a representative set of 5,142 genomes for evolutionary

analysis. Nextstrain definition of a ‘‘region’’ can vary from a city (e.g., ‘‘Shanghai’’) to a larger geographical district. Spatial and tem-

poral sampling in Nextstrain is designed to provide a representative sampling of sequences around the world.

The 5,142 genomes sampled by Nextstrain were then translated into protein sequences and aligned. We eliminated viral genome

sequences that had a stop codon, a gap, an unknown amino acid (because of an uncaled nucleotide in the codon), or had a gene that

lacked a startingmethionine, except for ORF1bwhich does not begin with amethionine. This left a total of 4,690 sequences that were

used to compute peptide level mutation probabilities. For each peptide, the probability of mutation was computed as the number of

non-reference peptide sequences observed divided by the total number of peptide sequences observed.

Removal of Cleavage Regions

SARS-CoV-2 contains a number of post-translation cleavage sites in ORF1a and ORF1b that result in a number of nonstructural pro-

tein products. Cleavage sites for ORF1a andORF1bwere obtained fromUniProt (Consortium, 2019) under entry P0DTD1. In addition,

a furin-like cleavage site has been identified in the spike protein (Wang et al., 2020; Coutard et al., 2020). This cleavage occurs before

peptides are loaded in the endoplasmic reticulum for class I or endosomes for class II. Any peptide that spans any of these cleavage

sites is removed from consideration. This removes 3,739 peptides out of the 154,996 we consider across windows 8–10 (class I) and

13–25 (class II) (~2.4%).

Removal of Glycosylated Peptides

We eliminate all peptides that are predicted to have N-linked glycosylation as it can inhibit MHC class I peptide loading and T cell

recognition of peptides (Wolfert and Boons, 2013; Wrapp et al., 2020). In addition, we do not know how well existing peptide predic-

tion methods function on glycosylated peptides. Finally, any use of peptides that are natively glycosylated in a virus would likely

require that vaccine peptides be identically glycosylated to enable T cell recognition of vaccine primed memory. The use of non-gly-

cosylated vaccine peptides in this case has resulted in vaccine failures (Wolfert and Boons, 2013).

Glycosylation is a post-translational modification that involves the covalent attachment of carbohydrates to specific motifs on the

surface of the protein. We identified peptides that may be glycosylated with the NetNGlyc N-glycosylation prediction server (Gupta

et al., 2004). We verified these predictions for the spike protein by ensuring they were in the same locations as those found using

experimental data of spike N-glycosylation from Cryo-EM (Walls et al., 2020) and tandem mass spectrometry (Zhang et al.,

2020b). A majority of the potential N-glycosylation sites (16 out of 22) were identified in both experimental studies, and further

supported by homologous regions with glycosylation found in SARS-CoV (Walls et al., 2020). We found that all 22 experimentally

identified real or likely N-glycosylation sites from the SARS-CoV-2 spike protein were predicted to be glycosylated with non-zero

probability by NetNGlyc. Therefore, we eliminated all peptides where NetNGlyc predicted a non-zero N-glycosylation probability

in any residue. This resulted in the elimination of 18,957 of the 154,996 peptides considered (~12%).
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Self-epitope Removal

T cells are selected to ignore peptides derived from the normal human proteome, and thus we remove any self peptides from consid-

eration for a vaccine. In addition, it is possible that a vaccine might stimulate the adaptive immune system to react to a self peptide

that was presented at an abnormally high level, which could lead to an autoimmune disorder. All peptides from SARS-CoV-2 were

scanned against the entire human proteome downloaded fromUniProt (Consortium, 2019) under Proteome ID UP000005640. A total

of 48 exact peptide matches (46 8-mers, two 9-mers) were discovered and eliminated from consideration.

Removal of Undesired Proteins

OptiVax can design vaccines using peptides from specific viral or oncogene proteins of interest by removing peptides from undesired

proteins from the candidate pool. Grifoni et al. (2020b) tested T cell responses from COVID-19 convalescent patients and found that

peptides from the S, M, and N proteins of SARS-CoV-2 produce the dominant CD4+ and CD8+ responses when compared to other

SARS-CoV-2 proteins. We used OptiVax to produce additional SARS-CoV-2 vaccines comprised of peptides drawn from only the S,

M, and N proteins.

EvalVax
EvalVax-Robust Considers Linkage Disequilibrium of HLA Genes

EvalVax-Robust computes the distribution of per individual peptide-HLA binding hits over a given population. It accounts for the sig-

nificant linkage disequilibrium (LD) between HLA loci and uses haplotype frequencies for population coverage estimates. We expect

that a vaccine will be more effective if more of its peptides are displayed by an individual’s HLAmolecules, and thus EvalVax-Robust

computes the probability of having at least N predicted peptide-HLA binding hits for each individual in the population.

Assuming for each of the HLA-A, -B, -C loci there are MA, MB, MC alleles, respectively, for a given haploid AiBjCk , the haplotype

frequency is defined asGði; j; kÞ andPMA

i =1

PMB

j = 1

PMC

k = 1Gði;j;kÞ = 1.We assume independence of inherited haplotypes and compute the

frequency of a diploid genotype as:

Fi1 j1k1 i2 j2k2 = F
�
Ai1Bj1Ck1 ;Ai2Bj2Ck2

�
=Gði1; j1; k1ÞGði2; j2; k2Þ (Equation 1)

For each allele a, eðaÞ denotes the number of peptides predicted to bind to the allele with% 50nM affinity, whichwe call the number

of peptide-HLA hits. Then for each possible diploid genotypewe compute the total number of peptide-HLA hits of the genotype as the

sum of eðaÞ of the unique alleles in the genotype (there can be 3-6 unique alleles depending on the zygosity of each locus):

Ci1 j1k1 i2 j2k2 = C
�
Ai1Bj1Ck1 ;Ai2Bj2Ck2

�
=

X
a˛fAi1

;Bj1
;Ck1gWfAi2

;Bj2
;Ck2g

eðaÞ (Equation 2)

We then compute the frequency of having exactly k peptide-HLA hits in the population as:

Pðn = kÞ =
XMA

i1 = 1

XMB

j1 =1

XMC

k1 =1

XMA

i2 = 1

XMB

j2 = 1

XMC

k2 = 1

Fi1 j1k1 i2 j2k21
�
Ci1 j1k1 i2 j2k2 = k

�
(Equation 3)

We define the population coverage objective function for EvalVax-Robust as the probability of having at leastN peptide-HLA hits in

the population, where the cutoff N is set to the minimum number of displayed vaccine peptides desired:

PðnRNÞ =
XN
k =N

Pðn = kÞ (Equation 4)

Whenwe evaluatemetrics on a world population, we equally weight population coverage estimations over three population groups

(White, Black, and Asian) as the final objective function. In addition to the probability of having at least N peptide-HLA hits per indi-

vidual, we also evaluate the expected number of per individual peptide-HLA hits in the population, which provides insight on howwell

the vaccine is displayed on average.

EvalVax-Unlinked Computes Population Coverage by at least One Peptide-HLA Hit

When haplotype frequencies are not available for a population, we can evaluate a vaccine using HLA allele frequencies that assume

independence and compute the probability that at least one peptide binds to any of the alleles at any of the loci. To encourage a

diverse set of peptides to bind to a single HLA allele, we use the predicted binding probability of a peptide to an allele instead of

using a binary indicator of binding. This permits multiple peptides to contribute to the probability score at each allele. Considering

K loci fL1;.;LKg, for each locus there are Mk alleles a1;.; aMk
and the allele frequency is defined as GkðaiÞ and

PMk

i = 1GkðaiÞ = 1.

Given a set of N peptides P = fP1;P2;.;PNg, for each allele (of locus Lk ) the predicted binding probability to peptide Pn is enkðaiÞ.
Assuming no competition between peptides, the probability that allele ai ends up having at least one peptide bound is:

ekðaiÞ = 1�
YN
n= 1

�
1� en

kðaiÞ
�

(Equation 5)

We define the diploid frequency of alleles as Fkðai;ajÞ = GkðaiÞGkðajÞ, and we conservatively assume that a homozygous diploid

locus does not improve the chance of peptide presentation over a single copy of the locus. Thus, the probability that a diploid ge-

notype has at least one peptide bound is defined as:
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Bkðai; ajÞ =
�
1� ð1� ekðaiÞÞð1� ekðajÞÞ; if isj

ekðaiÞ; if i = j
(Equation 6)

Therefore, the probability that a person in the given population displays at least one peptide in the set P at a particular locus Lk is

calculated by:

FkðPÞ =
XMk

i = 1

XMk

j = 1

Fkðai; ajÞBkðai; ajÞ (Equation 7)

To combine different loci assuming no linkage disequilibrium, the probability that a person in the given population has at least one

locus that binds to at least one peptide from P is defined as:

PðPÞ = 1�
YK
k = 1

ð1�FkðPÞÞ (Equation 8)

which is the evaluation metric for EvalVax-Unlinked.

We conservatively only consider peptides with predicted binding affinity% 50 nM. We set values of enkðaiÞweaker than 50 nM pre-

dicted binding affinity to zero. This constraint on peptide binding is in addition to peptide filtering described above.Whenwe evaluate

on a world population, we equally weight population coverage estimates over 15 geographic regions (see Results for the list of re-

gions) as the final objective function.

OptiVax
OptiVax-Robust Searches for a Peptide Set with High Expected Number of Per-individual Peptide-HLA Hits

OptiVax-Robust uses beam search to find a minimal set of peptides that reaches a target population coverage probability at a

threshold of n predicted peptide-HLA hits for each individual. We start from an empty set of peptides and n = 0, and iteratively

expand the solution by one peptide at a time and retain the top k solutions until the population coverage probability for the current

n reaches the target population coverage probability threshold for that n. We then repeat the same process for n+ 1. If it not possible

to reach the target population coverage probability threshold for n then the current coverage is accepted and we repeat the

process for n+ 1. At the expense of increased computational cost, beam search improves upon greedy optimization by considering

k possible solutions at each step. During each iteration, the population coverage probability threshold at the present n controls the

robustness of coverage. Increasing the target population coverage probability increases the difficulty of the optimization task. The

iterative process stops when the target population coverage at the desired n is achieved. In early rounds of optimization, OptiVax

uses a high population coverage probability to provide better individual coverage. In subsequent rounds, the target population

coverage probability is reduced on a fixed schedule.

OptiVax-Unlinked Searches for a Peptide Set that Covers a Population

OptiVax-Unlinked uses beam search to find a minimal set of peptides that reaches a desired population coverage probability that

each individual on average displays at least one vaccine peptide. We iteratively expand solutions in the beam by adding one peptide

at a time to reach the population coverage objective, and keep the top k solutions over all possible expansions in the beam.

OptiVax Improves Vaccine Sequence Diversity

OptiVax reduces vaccine sequence redundancy by not selecting peptides with closely related sequences for a vaccine formulation.

This issue arises because sliding a window over a proteome produces overlapping sequences that are very similar in HLA binding

characteristics. When any version of OptiVax selects a peptide during optimization, it eliminates from further consideration all unse-

lected peptides that are within three (MHC class I) or five (MHC class II) edits on a sequence distance metric from the selected pep-

tide. The distance metric computation aligns two peptides not allowing gaps and mismatches and the distance metric is the sum of

the lengths of any end overhangs where the opposite peptide sequence is absent.

Computational Peptide-HLA Prediction Models
Computational Models

For MHC class I design, we use an ensemble that outputs the mean predicted binding affinity of NetMHCpan-4.0 (Jurtz et al., 2017)

andMHCflurry 1.6.0 (O’Donnell et al., 2020, 2018).We find this ensemble increases the precision of binding affinity estimates over the

individual models on available SARS-CoV-2 experimental data (Table S1). For MHC class II design, we use NetMHCIIpan-4.0 (Rey-

nisson et al., 2020b). For evaluation, we use our ensemble estimate of binding (MHC class I), as well as use binding predictions from a

wide range of prediction algorithms (MHC class I: NetMHCpan-4.0 (Jurtz et al., 2017), NetMHCpan-4.1 (Reynisson et al., 2020a),

MHCflurry 1.6.0 (O’Donnell et al., 2020), PUFFIN (Zeng and Gifford, 2019); MHC class II: NetMHCIIpan-3.2 (Jensen et al., 2018),

NetMHCIIpan-4.0 (Reynisson et al., 2020b), PUFFIN (Zeng and Gifford, 2019)) to ensure that all methods agree that we have a

good peptide vaccine. We validate our computational models on a dataset of SARS-CoV-2 peptides evaluated for stability (Prachar

et al., 2020). We find scoring peptides by predicted binding affinity maximizes AUROC as compared to alternative scoring methods,

and selecting peptides using a 50 nM binding affinity threshold maximizes precision in classification of stable binders compared to

alternative binding criteria (Table S1). Our ensemble of NetMHCpan-4.0 and MHCflurry further increases AUROC and precision over

individual predictors.
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All models take as input a (HLA, peptide) pair and output predicted peptide-HLA binding affinity (IC50) on a nanomolar scale. For

bothMHC class I and class II models, we consider peptides to be binders if the predicted HLA binding affinity is% 50 nM (Sette et al.,

1994). This provides a conservative threshold to increase the probability of peptide display. Where our methods require a probability

of peptide-HLA binding (as in Equation 5), affinity predictions are capped at 50000nM and transformed into ½0;1� using a logistic

transformation, 1� log50000ðaffÞ, where larger values correspond to greater likelihood of eliciting an immunogenic response (Sette

et al., 1994; Buus et al., 2003; Nielsen et al., 2003). The % 50 nM binding affinity threshold corresponds to a threshold of R 0.638

after logistic transformation. We explored other criteria to classify peptides as binders and found using predicted binding affinity

with a 50 nM threshold to satisfy percentile rank criteria and maximize precision on available SARS-CoV-2 experimental data (Table

S1).

Criteria for Predicted Binding
NetMHCpan-4.0 (Jurtz et al., 2017) and NetMHCIIpan-4.0 (Reynisson et al., 2020b) output predicted binding affinity (BA), percentile

rank of predicted BA compared to a set of random natural peptides, and percentile rank of an eluted ligand (EL) score compared to a

set of random natural peptides. Default parameters for thesemethods suggest EL percentile rank thresholds of 0.5% and 2% rank for

classifying peptides as strong and weak binders, respectively, for MHC class I and thresholds of 2% and 10% for strong and weak

binders, respectively, for MHC class II.

To identify binders for our vaccine designs, we used a 50 nM predicted binding affinity threshold. We found binders selected

with this criterion are also considered binders under alternative criteria based on percentile rank. Across our set of all candidate

SARS-CoV-2 MHC class I peptides, we found 91.0% of peptide-HLA hits with % 50 nM predicted binding affinity by NetMHC-

pan-4.0 were also considered binders using BA percentile rank % 0.5% (100.0% have BA percentile rank % 2%). Using percentile

rank for EL scores, 67.6% of peptide-HLA hits with% 50 nM predicted binding affinity have EL percentile rank% 0.5% (92.6% have

EL percentile rank% 2%). Across all candidate SARS-CoV-2 MHC class II peptides, we found 86.1% of peptide-HLA hits with% 50

nM predicted binding affinity by NetMHCIIpan-4.0 were also considered binders using BA percentile rank % 2% (100.0% have BA

percentile rank% 10%). Using percentile rank for EL scores, 26.1% of peptide-HLA hits with% 50 nM predicted binding affinity have

EL percentile rank % 2% (63.1% have EL percentile rank % 10%).

Binders selected using percentile rank metrics were generally not considered binders under a 50 nM predicted binding

threshold. Across our set of all candidate SARS-CoV-2MHC class I peptides, we found 17.5% of peptide-HLA hits with EL percentile

rank% 0.5% have% 50 nM predicted binding affinity by NetMHCpan-4.0. Across all candidate SARS-CoV-2 MHC class II peptides,

we found 11.3% of peptide-HLA hits with EL percentile rank% 2.0% have% 50 nM predicted binding affinity by NetMHCIIpan-4.0.

Validation on SARS-CoV-2 Experimental Stability Data

We evaluate peptide-HLA binding predictions on a set of experimentally assessed SARS-CoV-2 peptides whose peptide-HLA com-

plex stability was assessed in vitro across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1 HLA-DRB1) (Prachar et al., 2020). Pra-

char et al. (2020) suggests peptideswith at least 60%of the stability of a reference peptide in aNeoScreen assay are likely high affinity

binders. For MHC class I alleles, the dataset contains 912 unique peptide-HLA pairs, of which 185 peptides are considered stable (R

60% stability). For MHC class II, the dataset contains 93 total peptides, of which 22 are stable. We use our computational models to

predict peptide-HLA binding and evaluate themusing various binding criteria against the experimental peptide stabilitymeasurement

(Table S1). We compare classification performance using different binding criteria as described above and find in general that clas-

sifying binders using predicted binding affinity maximizes AUROC and a 50 nM binding affinity threshold maximizes precision (Table

S1). We find our mean ensemble of NetMHCpan-4.0 and MHCflurry further improves classification AUROC and precision over the

individual models for predicting MHC class I epitopes. On MHC class II data, we note NetMHCIIpan-4.0 achieves AUROC 0.848

and precision 0.625 using a 500 nM threshold (Table S1). While NetMHCIIpan-4.0 with a 50 nM threshold does not identify any pep-

tides in this dataset as binders, we use this stricter threshold in our vaccine designs as it is more conservative and less likely to admit

false positive binders. In general, we find performance of PUFFIN with a 50 nM binding threshold comparable to alternative methods

on both MHC class I and class II data and use PUFFIN as part of our vaccine design evaluation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Classification performance of peptide-MHC scoringmodels was calculated using scikit-learn (Pedregosa et al., 2011) in Python using

the sklearn.metrics.roc_auc_score (AUROC), sklearn.metrics.average_precision_score (Average Precision), sklearn.metrics.preci-

sion_score (Precision), and sklearn.metrics.classification_report (Sensitivity and Specificity) functions. AUROCand average precision

are computed using raw predictions, and the remaining metrics are computed using binarized predictions based on the respective

binding criteria.
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