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A B S T R A C T

Background: Rheumatoid arthritis (RA) is a chronic inflammatory condition characterised by reduced heart rate
variability (HRV) of unknown cause. We tested the hypothesis that low HRV, indicative of cardiac autonomic
cardiovascular dysfunction, was associated with systemic inflammation and pain. Given the high prevalence of
hypertension (HTN) in RA, a condition itself associated with low HRV, we also assessed whether the presence of
hypertension further reduced HRV in RA.
Methods: In RA-normotensive (n = 13), RA-HTN (n = 17), normotensive controls (NC; n = 17) and HTN
(n = 16) controls, blood pressure and heart rate were recorded. Time and frequency domain measures of HRV
along with serological markers of inflammation (high sensitivity C-reactive protein [hs-CRP], tumour necrosis
factor-α [TNF-α] and interleukins [IL]) were determined. Reported pain was assessed using a visual analogue
scale.
Results: Time (rMSSD, pNN50%) and frequency (high frequency power, low frequency power, total power)
domain measures of HRV were lower in the RA, RA-HTN and HTN groups, compared to NC (p= 0.001).
However, no significant differences in HRV were noted between the RA, RA-HTN and HTN groups. Inverse
associations were found between time and frequency measures of HRV and inflammatory cytokines (IL-6 and IL-
10), but were not independent after multivariable analysis. hs-CRP and pain were independently and inversely
associated with time domain (rMMSD, pNN50%) parameters of HRV.
Conclusions: These findings suggest that lower HRV is associated with increased inflammation and in-
dependently associated with increased reported pain, but not compounded by the presence of HTN in patients
with RA.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory condition as-
sociated with substantially increased cardiovascular mortality and risk
(Solomon et al., 2003; Pujades-Rodriguez et al., 2016). In a large epi-
demiological study RA was associated with increased risk of myocardial
infarction (adjusted incidence ratio [IRR] = 1.43, 95% confidence in-
terval [CI] 1.21–1.70), heart failure (IRR = 1.61,1.43–1.83), cardiac

arrest (IRR = 2.26, 1.69–3.02) and unheralded coronary death
(IRR = 1.60, 1.18–2.18) (Pujades-Rodriguez et al., 2016). Low heart
rate variability (HRV) indicative of reduced cardiac parasympathetic
function predicts mortality risk following myocardial infarction (Bigger
et al., 1992; La Rovere et al., 1998) and hence may contribute to the
increased cardiovascular risk seen in RA. Studies to date have shown
that HRV is reduced in RA, compared to healthy controls (Adlan et al.,
2014), although the mechanisms are not known.
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Animal studies have identified direct and reciprocal relationships
between parasympathetic activity and inflammatory cytokines
(Borovikova et al., 2000; Bernik et al., 2002; Fairchild et al., 2009).
Intra-peritoneal administration of the pro-inflammatory cytokine tu-
mour necrosis factor-alpha (TNF-α) in mice, reduced a HRV derived
index of parasympathetic activity (Fairchild et al., 2009) while phar-
macological (Borovikova et al., 2000; Bernik et al., 2002) and electrical
(Borovikova et al., 2000) stimulation of the vagus nerve attenuates the
release of inflammatory cytokines. In healthy humans acute in-
flammation (precipitated by an influenza vaccine) attenuated heart rate
recovery following exercise (marker of parasympathetic activity) (Jae
et al., 2010). However, studies of RA patients that have examined the
associations between inflammation and cardiac parasympathetic ac-
tivity have been limited (e.g., cytokine concentrations not assessed) and
reported equivocal results (Adlan et al., 2014). Another possible ex-
planation for the observed reduction in HRV in RA patients is increased
patient-reported pain. Central pain pathways are known to overlap with
areas of autonomic control (e.g., nucleus of the solitary tract)
(Benarroch, 2006) and in a recent meta-analysis HRV was found to be
lower in patients with chronic pain (Tracy et al., 2016). Despite this, the
associations between pain and cardiac autonomic function in RA re-
main unknown. Furthermore, given the high prevalence of hyperten-
sion in RA (Panoulas et al., 2007), and that HRV is reduced in hy-
pertension (Singh et al., 1998), it remains to be proven/seen whether
the presence of hypertension in RA exacerbates the reductions in HRV.
Vasoconstrictor sympathetic nerve activity is elevated in RA patients
and associated with pain and inflammation (Adlan et al., 2017). In the
absence of direct intraneural recordings of cardiac autonomic activity
in humans, HRV analyses have provided a useful indirect surrogate.
However, the target-organ specific control of pre-motor and motor
neurones (Polson et al., 2007; Simms et al., 2007) along with local
modulation of receptor signalling, means that observations from one
region (e.g., peripheral vasculature) cannot be generalised to another
(e.g., heart). Therefore, important questions remain regarding the
consequences of RA to cardiac autonomic regulation as assessed with
HRV, and the underlying mechanisms.

The autonomic nervous system plays a key role in orchestrating the
cardiovascular response to stressors (Dampney, 1994; Wehrwein and
Joyner, 2013). Cardiovascular responses to mental stress (Matthews
et al., 2004) or a cold pressor test (CPT; immersion of a limb into cold
water) (Treiber et al., 2003) can predict the development of cardio-
vascular disease. Impaired cardiovascular responses to stressors have
been demonstrated in the majority of prior studies in RA patients (e.g.,
orthostasis, deep-breathing, Valsalva manoeuvre and handgrip) (Adlan
et al., 2014). The diastolic blood pressure response to CPT in RA pa-
tients has been examined in one study and were reported as being at-
tenuated (Bidikar and Ichaporia, 2010), while the cardiovascular re-
sponses to mental stress have been conflicting (Geenen et al., 1996;
Veldhuijzen van Zanten et al., 2005; Motivala et al., 2008; Veldhuijzen
van Zanten et al., 2008). These conflicting results may reflect opposing
effects of inflammatory cytokines on vascular resistance responses to
mental stress. Inflammatory cytokines have vasodilatory actions
(Takizawa et al., 1997; Clapp et al., 2005), but may also exaggerate
vasoconstrictor pathways (Wassmann et al., 2004; Veldhuijzen van
Zanten et al., 2008). The vascular responses to mental stress are also
regionally differentiated (Folkow et al., 1964), but it is not known how
the arm and leg vascular responses to mental stress are affected by RA,
and if these responses are related to inflammatory cytokine con-
centration or patient-reported pain.

In this observational, case-control study of patients with RA and
matched-control participants we determined how HRV and cardiovas-
cular responses to CPT and mental stress (paced auditory serial addition
test; PASAT) were associated with pain (visual analogue scale, VAS)
and baseline serum inflammatory cytokine concentrations. We hy-
pothesised that HRV derived indices of cardiac parasympathetic would
be attenuated and cardiovascular reactivity would be greater in

individuals with increased inflammatory cytokine concentrations and
more reported pain. We further hypothesised that the presence of hy-
pertension in RA would exacerbate the cardiovascular autonomic al-
terations.

2. Materials and methods

2.1. Participants

The study was approved by the National Research and Ethics
Service Committee West Midlands - Edgbaston (11/WM/0298). Written
informed consent was obtained from all participants, in accordance
with the Declaration of Helsinki (2013). A total of sixty-six participants
were recruited, the general and clinical characteristics of which are
provided in a previous study testing other hypotheses (Adlan et al.,
2017). Thirty patients with a diagnosis of RA (based on the 1987
American College of Rheumatology criteria (Arnett et al., 1988)) were
recruited from the rheumatology clinics at Russells Hall Hospital,
Dudley, UK and Sandwell General Hospital, West Bromwich, UK in-
cluding normotensive (RA n= 13, mean age ± SD 56 ± 12 yr, 8
women, body mass index [BMI] geometric mean 28, 95% confidence
interval 25–30 kg/m2) and hypertensive (RA-HTN n= 17, age
61 ± 10 yr, 12 women, BMI 30, 26–33 kg/m2). Thirty-three normo-
tensive and hypertensive control participants of a similar age and BMI
were recruited from the hospitals and surrounding areas (NC n = 17,
age 54 ± 13 yr, 10 women, BMI 26, 24–29 kg/m2; HTN n = 16, age
60 ± 10, 11 women, BMI 26, 25–27 kg/m2). Exclusion criteria in-
cluded: age< 18 or> 75 years; atrial fibrillation or other heart
rhythm disorder, significant valvular disease, coronary artery disease,
diabetes, ischemic stroke, chronic renal failure, liver impairment, hor-
mone replacement therapy and those who are pregnant or who might
be pregnant. NC participants were free from major illnesses, whilst HTN
participants either had a prior diagnosis of hypertension or BP≥ 140/
90 mm Hg.

2.2. Experimental protocol

Following an overnight fast (from food, caffeine and alcohol), par-
ticipants attended the research laboratory at 09:00 h. Medications were
withheld on the morning of testing. A detailed clinical history was
taken and physical examination performed in RA patients to count the
number of swollen and tender joints in order to determine the disease
activity score (DAS28-CRP) (Wells et al., 2009). A visual analogue scale
(VAS) was used as a measure of pain (Huskisson, 1974). Height and
weight was measured, and BMI was determined (weight/height2).
Subsequent measurements were performed in a temperature-controlled
room under uniform conditions with participants resting quietly in the
supine position.

2.3. Measurements

HR was continuously recorded using a lead II ECG (BioAmp,
ADInstruments, Bella Vista, Australia). Beat-to-beat BP was recorded
using finger photoplethysmography (Portapres, Finapres Medical
Systems, Amsterdam, The Netherlands) and was calibrated with bra-
chial BP recordings using an automated sphygmomanometer (Omron
705IT, Omron Corporation, Hoopddorp, The Netherlands). Leg blood
flow (venous occlusion strain gauge plethysmography, Hokanson EC-6
plethysmograph, D E Hokanson, Bellevue, United States of America,
USA) (Joyner et al., 2001) was recorded during rest, test and recovery
phases of the CPT and PASAT, as described in detail elsewhere (Adlan
et al., 2017). During the PASAT, forearm blood flow was also recorded.
Leg and forearm vascular conductance (LVC, FVC) were calculated as
Blood flow (ml/100 ml/min)/Mean BP (mm Hg) × 1000. Blood sam-
ples for inflammatory markers were centrifuged immediately and
plasma stored at −80 °C. Commercially available ELISA kits were used
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to determine hs-CRP (MP Biomedicals, California, USA) and cytokines
(IL-6, TNF-α, IL-10; BioSupply UK, Bradford, UK).

2.4. HRV

In accordance with guidelines from the Task Force of the European
Society of Cardiology and the North American Society of Pacing
Electrophysiology (TaskForce, 1996) time domain, frequency domain
(fast Fourier transform) and non-linear (SD1 and SD2 standard devia-
tions of the Poincare plot) indices of short-term HRV were determined
from a 10 min resting period (Kubios HRV, Kuopio, Finland). Data was
pre-screened for ectopics and these were corrected using the Kubios
software (accounted for< 1% of all recordings) (TaskForce, 1996).
HRV indices of cardiac parasympathetic activity included RMSSD
(square root of the mean of the sum of successive differences), pNN50%
(proportion of RR intervals differing by> 50 ms from previous RR in-
terval) and high frequency power spectral density (HF, 0.15–0.4 Hz).
Power spectral density at the low frequency range (LF, 0.04–0.15 Hz)
was used as a combined index of cardiac sympathetic and para-
sympathetic activity. The LF/HF ratio has been used as an estimate of
‘sympathovagal balance’, however this concept has been debated
(Parati et al., 2006; Taylor and Studinger, 2006). Indices of total HRV
included SDNN (standard deviation of all RR [NN] intervals) and total
power (TP range, 0–0.5 Hz). SD1 provides an estimate for short term
HRV whilst SD2 is representative of long term HRV (Woo et al., 1994)
and is influenced by both parasympathetic and sympathetic activity
(Mourot et al., 2004). The detrended fluctuation analysis short-term
coefficient (DFA-α1) was included in light of suggested utility in
quantifying short-term changes in HRV due to autonomic activation,
but relative insensitivity to respiratory rate (Sassi et al., 2015). Esti-
mates of the respiratory rate (ECG-derived respiration, EDR) were also
obtained (Kubios HRV).

2.5. Cardiovascular reactivity

The CPT and PASAT were preceded by 4-minute resting baseline
and followed by 4-minute recovery measurements. During the CPT the
right hand was immersed completely in a container of cold water at 4°C
for 2 min. During the PASAT stress test a series of single digit numbers
were presented to the participants for 6 min using a pre-recorded audio
file on a computer. Participants were instructed to add each number
they heard to the previous number presented to them, and retain the
last number to add to the next number they heard (Veldhuijzen van
Zanten et al., 2005). In order to make the task progressively more
challenging the numbers were presented every 3.5 s, 3.0 s and 2.5 s
respectively, in three consecutive blocks each lasting 2 min. An ex-
perimenter checked their responses against the correct answers and
alerted the participant with a loud buzzer noise with each incorrect
answer, hesitation or once during every 10 additions if no mistakes
were made. Finally, in order to increase social evaluation participants
were instructed to view themselves in a mirror for the duration of the
mental stress test. Pain and stress ratings (10-point scale) were taken
after the CPT and PASAT, respectively.

2.6. Data and statistical analysis

Data was acquired using the Powerlab 16/35 data acquisition
system and a personal computer equipped with LabChart Pro software
(ADInstruments, Bella Vista, Australia). Cardiovascular variables were
sampled at 1 kHz, and beat-to-beat values of HR, systolic BP, diastolic
BP and mean BP calculated. Cardiovascular variables were averaged
during rest, test and recovery phases to provide absolute values.
Differences between baseline, test and recovery phases of CPT and
PASAT were reported as absolute change. Some participants declined or
were unable to complete the cardiovascular reactivity tests, thus these
were omitted from the analyses and participant numbers are stated in
the legend of each Table and Figure. BP, HR, forearm and leg blood
flow and FVC, LVC were averaged during rest, test and recovery phases,

Table 1
Haemodynamic and heart rate variability data.

RA RA-HTN NC HTN P value

N 13 17 17 16
HR, bpm 66 ± 10*† 65 ± 10* 57 ± 7 60 ± 7 0.008
Systolic BP, mm Hg 128 (123–135)†‡ 153 (145–161)* 123 (118–128) 146 (134–158)* < 0.001
Diastolic BP, mm Hg 79 ± 6‡ 87 ± 10* 75 ± 6 84 ± 11* < 0.001
Mean BP, mm Hg 95 (91–100)†‡ 109 (104–114)* 89 (82–95) 105 (98–112)* < 0.001
Leg blood flow, ml/100 ml/min 2.0 (1.5–2.6)* 2.0 (1.4–2.8)* 1.2 (0.9–1.7) 1.4 (1.0–1.8) 0.047
LVC, units 21 (15–27) 18 (12–26) 14 (10–19) 13 (10–17) 0.148
Forearm blood flow, ml/100 ml/mina 2.8 (1.9–4.1) 3.5 (2.2–5.5) 2.5 (1.9–3.3) 2.4 (1.9–3.0) 0.541
FVC, unitsa 29 (20–42) 31 (18–51) 27 (21–36) 23 (17–30) 0.782
rMSSD, ms 25 (18–36)* 20 (13–29) * 48 (38–60) 29 (20–40) 0.003
pNN50, % 5 (2−12)* 3 (1–7)* 18 (11–29) 5 (2–12)* 0.005
SD1 18 (13–26)* 14 (9–21)* 38 (27–43) 20 (14–29) 0.003
SD2 48 (36–63)* 46 (35–61)* 79 (67–94) 58 (45–76) 0.005
DFA-α1 1.0 (0.9–1.2) 1.2 (1.0–1.4) 1.0 (0.9–1.3) 1.1 (1.0–1.3) 0.136
HF, ms2 256 (131–500)* 116 (52–260)* 759 (436–1322) 240 (116–496)* < 0.001
LF, ms2 272 (153–482)* 245 (132–456)* 1097 (746–1612) 357 (186–683)* 0.001
VLF, ms2 556 (304–1020)* 567 (315–1017)* 1431 (951–2151) 946 (552–1621) 0.025
TP, ms2 1135 (631–2042)* 1014 (569–1807)* 3104 (2010–4793) 1665 (943–4793) 0.010
HF, nu 49 ± 15‡ 34 ± 14 42 ± 15 41 ± 15 0.053
LF, nu 51 ± 15‡ 67 ± 14 58 ± 15 59 ± 15 0.053
LF/HF ratio 1.1 (0.7–1.5)‡ 2.1 (1.5–3.0) 1.5 (1.0–2.1) 1.5 (1.0–2.1) 0.049
EDR, Hz 0.218 ± 0.032 0.222 ± 0.050 0.202 ± 0.051 0.232 ± 0.047 0.336

Normally distributed data are expressed as mean ± standard deviation. Non-normally distributed data are displayed as geometric mean (95% confidence intervals). Statistical dif-
ferences were tested using a one-way ANOVA with post hoc LSD or Kruskal Wallis with post hoc Dunn-Bonferroni.
Significance p ≤ 0.05. Post hoc p ≤ 0.05 * v NC, † v HTN, ‡v RA-HTN.
BMI = body mass index, BP = blood pressure, DFA = detrended fluctuation analysis, EDR, ECG derived respiration, HF = high frequency power (0.15–0.4 Hz), HR = heart rate,
LF = low frequency power (0.04–0.15 Hz), RA = rheumatoid arthritis, pNN50 = NN50 as a percentage of all NN intervals, rMSSD = root mean square of successive differences, TP, total
power (0.04–0.5 Hz), VLF = very low frequency power (0–0.04 Hz).

a Forearm blood flow and FVC were determined during the rest period of the PASAT. RA n = 10, RA-HTN n = 10, NC n = 16, HTN n= 14.
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and change from rest was calculated.
Statistical analysis was performed using SPSS software, version 19

(SPSS Inc., Chicago, Ilinois). Continuous variables were tested for
normality using the Shapiro-Wilk test. Non-normally distributed data
were logarithmically transformed and the distribution re-checked with
a Shapiro Wilk test. Data that were normally distributed were then
assessed using an ANOVA (least significant difference [LSD] post-hoc)
for continuous variables, while data that were still not normally dis-
tributed were analysed with a Kruskal Wallis test (using original, non-
log transformed data). For cardiovascular reactivity, an ANOVA with
repeated measures (Bonferroni adjustments for multiple comparisons)
was used to test for significant differences between groups and phase
(rest, test, recovery) during CPT and PASAT. Post-hoc LSD analysis was
performed if significant group x phase interactions were found. Group
differences in changes from baseline (Δtest, Δrecovery) in HR, BP, leg
and forearm blood flow, LVC and FVC were tested using a one-way
ANOVA. Associations between autonomic parameters and inflamma-
tion were assessed before (Pearson product/Spearman's rank

correlation coefficient) and after adjustment for potential confounders
(including age, sex, BMI, presence of hypertension, RA diagnosis and
haemoglobin concentration) using regression analyses. Normally dis-
tributed data are expressed as mean ± SD and non-normally dis-
tributed data are displayed as geometric mean (95% CI); and frequency
(%) for categorical variables. A p value of< 0.05 was considered sta-
tistically significant.

3. Results

Resting HR was similar in RA and RA-HTN groups but higher
compared to NC and HTN controls (p= 0.008, Table 1). BP was similar
in RA-HTN and HTN groups but higher than RA and NC (p < 0.001).
Leg blood flow was higher in RA and RA-HTN groups compared to NC
(p = 0.047) and similar to HTN controls. There were no significant
differences in resting LVC (p= 0.148), forearm blood flow (p = 0.541)
or FVC (p = 0. 782) between the groups.

3.1. HRV

Time domain (rMSSD, pNN50%), frequency domain (HF, LF) and
non-linear (SD1, SD2) parameters of HRV were similar in RA, RA-HTN
and HTN groups and lower compared to NC (Table 1) (HTN vs. NC,
p = 0.092). Very low frequency (VLF) and TP were also lower in RA
and RA-HTN groups compared to NC. RA normotensive patients had
higher normalised HF power (p= 0.053), but lower normalised LF
power (p = 0.053) and LF/HF ratio (p < 0.05) compared to RA-HTN.
Time domain (rMSSD and pNN50), frequency domain (TP, LF power,
HF power) and non-linear (SD1, SD2) parameters of HRV were in-
versely associated with hs-CRP (Table S1). Ln (hs-CRP) was in-
dependently associated with rMSSD, pNN50, LF power, HF power, SD1,
SD2, following adjustments for multiple variables (i.e., age, sex, BMI,
presence of hypertension, RA diagnosis and serum haemoglobin con-
centration) (Table 2). Inflammatory cytokines were inversely associated
with HRV parameters (IL-6 and rMSSD, LF power, SD1, SD2; IL-10 and
LF/HF ratio; trend for TNF-α and LF power) although these associations
were no longer present after multivariable analysis. Pain was in-
dependently and inversely associated with time domain (rMSSD,
pNN50) and non-linear (SD1, SD2) parameters of HRV. LF power and
HF power HRV indices were inversely associated with pain, although
attenuated following multivariable adjustment. EDR was not different
between groups (Table 1), and re-analysis performed after omitting six
participants (3 NC and 3 RA) with a respiratory frequency > 0.15 Hz
provided similar results (data not shown).

3.2. Cardiovascular reactivity

As expected HR, BP, leg blood flow, forearm blood flow and FVC
rose during the PASAT in all groups. There were no significant differ-
ences in HR, BP, LVC or leg blood flow responses to PASAT between the
groups (Fig. 1). No difference in self-reported stress was found between
groups (4.9 ± 3.7, 5.3 ± 3.7, 5.3 ± 3.3, 4.4 ± 2.7 max score 10;
p = 0.962). ΔSystolic BP PASAT was inversely associated with IL-6
(Table S2), while there were trends for positive association between leg
vascular responses to PASAT and inflammation (hs-CRP, IL-6). Fol-
lowing multivariable analysis IL-10 and Ln (IL-10) were independently
positively associated with ΔHR PASAT (p= 0.020 and 0.029), ΔFVC
PASAT (p = 0.039 and 0.048), while Δmean BP PASAT was in-
dependently associated with the number of tender joints (p= 0.029,
Table 3).

During the CPT, HR and BP increased while LVC was reduced and
leg blood flow unchanged (Fig. 2). The HTN group had a significantly
greater rise in HR compared to NC and RA-HTN (p = 0.049). There
were no statistically significant differences in BP or LVC responses be-
tween the groups. RA, RA-HTN and HTN patients tended to have higher
pain rating (RA geometric mean 8.3, 95% CI 6.1–9.5; RA-HTN 7.8,

Table 2
Association between inflammation, pain and heart rate variability before and after
multivariable adjustment.

N Univariablea Multivariableb

Rho P R2 F P

Dependent variable: rMSSD
hs-CRP 57 −0.420 0.001 0.334 3.036 0.088
Ln (hs-CRP) 0. 490 10.481 0.002⁎

IL-6 62 −0.258 0.043 0.216 0.230 0.633
Ln (IL-6 + 1) 0.307 0.309 0.581
VAS 63 −0.437 < 0.001 0.303 7.015 0.011⁎

Ln (VAS + 1) 0.384 7.045 0.010⁎

Dependent variable: pNN50
hs-CRP 57 −0.430 0.001 0.388 3.270 0.077
Ln (hs-CRP) 0.458 10.060 0.003
VAS 63 −0.419 0.001 0.356 7.179 0.010⁎

Ln (VAS + 1) 0.526 7.364 0.009⁎

Dependent variable: LF power
hs-CRP 57 −0.371 0.004 0.210 1.703 0.198
Ln (hs-CRP) 0.356 5.408 0.024⁎

VAS 63 −0.367 0.003 0.167 2.496 0.120
Ln (VAS + 1) 0.283 4.105 0.048⁎

IL-6 62 −0.270 0.034 0.130 0.093 0.761
Ln (IL-6 + 1) 0.230 0.099 0.755

Dependent variable: HF power
hs-CRP 57 −0.348 0.008 0.311 1.417 0.240
Ln (hs-CRP) 0.446 5.848 0.019⁎

VAS 63 −0.371 0.003 0.209 1.928 0.171
Ln (VAS + 1) 0.313 3.043 0.087

Dependent variable: LF/HF ratio
IL-10 62 −0.262 0.040 −0.01 2.639 0.110
Ln (IL-10 + 1) 0.125 3.891 0.054

Dependent variable: SD1
hs-CRP 57 −0.420 0.001 0.334 3.038 0.088
Ln (hs-CRP) 0.490 10.484 0.002⁎

IL-6 62 −0.258 0.043 0.216 0.230 0.633
Ln (IL-6 + 1) 0.307 0.309 0.581
VAS 63 −0.437 < 0.001 0.303 7.017 0.011⁎

Ln (VAS + 1) 0.384 7.046 0.010⁎

Dependent variable: SD2
hs-CRP 57 −0.344 0.009 0.236 2.341 0.132
Ln (hs-CRP) 0.370 5.462 0.024⁎

IL-6 62 −0.313 0.013 0.164 0.125 0.725
Ln (IL-6 + 1) 0.259 0.095 0.760
VAS 63 −0.390 0.002 0.227 4.531 0.038⁎

Ln (VAS + 1) 0.317 4.625 0.036⁎

a Spearman's rank.
b After adjustment for age, sex, BMI, presence of hypertension, RA diagnosis and

haemoglobin concentration.
⁎ p < 0.05
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6.1–9.5; NC 5.6, 4.3–7.2; 7.4, HTN 7.4, 5.4–8.6 max score 10; p= 0.10)
compared to NC. ΔHR CPT was positively and independently associated
with the inflammatory cytokines TNF-α and IL-10 (Table S2; Table 4).

4. Discussion

In this study, we observed a reduction in time and frequency do-
main measures of HRV in patients with RA, and show for the first time
that inverse associations exist between HRV and inflammation (hs-CRP,
IL-6), with the association between Ln (hs-CRP) and HRV persisting
after adjustment for potential confounders (e.g., age, sex). Notably,
HRV (rMMSD, pNN50%) was independently and inversely associated
with reported pain, but the presence of HTN in RA did not compound
the reduction in HRV.

The underlying mechanisms for reduced HRV observed in RA have
hitherto remained obscure. Cytokines may reduce HRV via afferent
pathways, efferent pathways, or central sites of integration. Intra-
peritoneal administration of the pro-inflammatory cytokine TNF-α in
mice, reduced a parasympathetic index of HRV (i.e., SDNN) (Fairchild
et al., 2009). Furthermore, direct administration of IL-6 into the nucleus
of the solitary tract (a key autonomic cardiovascular regulatory site)
reduced baroreflex sensitivity in rats (Takagishi et al., 2010). We have
previously identified that the cardiac baroreflex sensitivity is reduced in
RA (Adlan et al., 2017). In the present study, we observed a weak in-
verse association between HRV indices and serological markers of in-
flammation (hs-CRP, IL-6, TNF-α), and a significant independent asso-
ciation between Ln (hs-CRP) and HRV after adjustment for potential
confounders (e.g., age, sex, BMI). hs-CRP, an acute phase reactant and

Fig. 1. Cardiovascular reactivity to the PASAT mental stress task.
Heart rate (Panel A), mean blood pressure (Panel B), leg vascular conductance (Panel C), leg blood flow (Panel D), forearm vascular conductance (Panel C), forearm blood flow (Panel D)
during rest, mental stress test (PASAT) and recovery. Data represented as group means ± SEM. Times series is shown on the left. Significance for phase (rest, PASAT and recovery), group
(RA, RA-HTN, NC and HTN) and interaction were assessed using ANOVA with repeated measures. Bar charts on the right represent changes from baseline. Significant group differences
were assessed using a one-way ANOVA. *p≤ 0.05. RA n= 10, RA-HTN n= 10, NC n= 16, HTN n = 14. For leg blood flow and leg vascular conductance RA-HTN n= 9.
BP = blood pressure, CPT = cold pressor test, FVC = forearm vascular conductance, HTN = hypertensive, LVC = leg vascular conductance, NC = normotensive control,
PASAT = paced auditory serial arithmetic task, RA = rheumatoid arthritis.
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non-specific inflammatory marker that predicts cardiovascular mor-
tality in healthy humans (Kuller et al., 1996; Ridker et al., 1997), has
been shown to be inversely associated with HRV in healthy humans
(Aeschbacher et al., 2017). The relatively day-to-day stability of hs-
CRP, compared to other cytokines (IL-6, TNFα), may explain why it is
the inflammatory marker that demonstrates the most robust association
with HRV.

A strong independent and inverse relationship was found between

Table 3
Association between inflammation, pain and mental stress responses before and after
multivariable adjustment.

N Univariablea Multivariableb

Rho P R2 F P

Dependent variable: ΔHR PASAT
IL-10 50 0.187 0.194 0.203 5.831 0.020⁎

Ln (IL-10 + 1) 0.191 5.107 0.029⁎

VAS 50 −0.244 0.088 0.119 1.257 0.269
Ln (VAS + 1) 0.103 0.493 0.487

Dependent variable: ΔMean BP PASAT
Number of tender joints 20 −0.376 0.102 0.610 5.996 0.029⁎

Dependent variable: ΔSystolic BP PASAT
Number of tender joints 20 −0.403 0.078 0.529 4.455 0.055

Dependent variable: Δ leg blood flow
hs-CRP 45 0.287 0.056 0.133 0.451 0.506
Ln (hs-CRP) 0.152 1.297 0.262

Dependent variable: ΔLVC
hs-CRP 45 0.246 0.103 0.083 0.337 0.565
Ln (hs-CRP) 0.112 1.580 0.217
IL-6 49 0.237 0.101 0.085 0.473 0.495
Ln (IL-6 + 1) 0.108 1.545 0.221

Dependent variable: Δ forearm blood flow
IL-10 50 0.198 0.168 0.220 5.435 0.025⁎

Ln (IL-10 + 1) 0.188 3.563 0.066
DAS28-CRPc 20 −0.394 0.086 0.434 2.008 0.182
Tender 20 −0.394 0.110 0.407 3.253 0.095

Dependent variable: ΔFVC
IL-10 50 0.250 0.080 0.197 4.555 0.039⁎

Ln (IL-10 + 1) 0.190 4.151 0.048⁎

DAS28-CRPc 20 −0.402 0.079 0.361 1.627 0.226

a Spearman's rank.
b After adjustment for age, sex, BMI, presence of hypertension, RA diagnosis and

haemoglobin concentration.
c After adjustment for age, sex, BMI, presence of hypertension, haemoglobin con-

centration and RA duration.
⁎ p < 0.05.

Fig. 2. Cardiovascular reactivity to the cold pressor test.
Heart rate (Panel A), mean blood pressure (Panel B), leg vascular conductance (LVC) (Panel C) and leg blood flow (Panel D) during rest, cold pressor test (CPT) and recovery. Data
represented as group means ± SEM. Times series is shown on the left. Significance for phase (rest, CPT and recovery), group (RA, RA-HTN, NC and HTN) and interaction were assessed
using ANOVA with repeated measures. Bar charts on the right represent changes from baseline. Significant group differences were assessed using a one-way ANOVA. *p≤ 0.05. RA
n = 12, RA-HTN n= 16, NC n = 16, HTN n = 16. For leg blood flow and leg vascular conductance RA-HTN n= 15, HTN n = 15.
BP = blood pressure, CPT = cold pressor test, HTN = hypertensive, LVC = leg vascular conductance, NC = normotensive control, RA = rheumatoid arthritis.

Table 4
Association between inflammation, pain and cold pressor test responses before and after
multivariable adjustment.

N Univariablea Multivariableb

Rho P R2 F P

Dependent variable: ΔHR CPT
TNF-α 60 0.254 0.050 0.175 4.715 0.034⁎

Ln (TNF-α + 1) 0.199 6.392 0.015⁎

IL-10 60 0.299 0.020 0.196 6.192 0.016⁎

Ln (IL-10 + 1) 0.199 6.425 0.014⁎

DAS28-CRPc 28 −0.308 0.111 0.399 0.901 0.354

Dependent variable: ΔMean BP CPT
TNF-α 60 0.232 0.074 0.094 0.724 0.399
Ln (TNF-α + 1) 0.118 2.160 0.148
IL-10 60 −0.179 0.171 0.143 3.783 0.057
Ln (IL-10 + 1) 0.119 2.223 0.142

Dependent variable: ΔSystolic BP CPT
IL-10 60 0.112 0.395 0.133 3.396 0.071
Ln (IL-10 + 1) 0.089 0.701 0.406

Dependent variable: ΔDiastolic BP CPT
TNF-α 60 0.245 0.059 0.077 1.664 0.203
Ln (TNF-α + 1) 0.105 3.339 0.073
IL-10 60 0.212 0.103 0.109 3.536 0.066
Ln (IL-10 + 1) 0.101 3.086 0.085

a Spearman's rank.
b After adjustment for age, sex, BMI, presence of hypertension, RA diagnosis and

haemoglobin concentration.
c After adjustment for age, sex, BMI, presence of hypertension, haemoglobin con-

centration and RA duration.
⁎ p < 0.05.
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reported pain and HRV. These findings are broadly in agreement with
studies showing that HRV is reduced in chronic pain conditions, such as
fibromyalgia (Tracy et al., 2015). Intriguingly, in patients with fi-
bromyalgia, resistance exercise training related increases in HRV were
correlated with reductions in pain (Figueroa et al., 2008). Furthermore,
experimentally induced pain in healthy individuals causes a reduction
in HRV consistent with a fall in cardiac parasympathetic activity
(Koenig et al., 2014) and increased sympathetic nerve activity (Bruehl
and Chung, 2004). Indeed, intramuscular infusion of hypertonic saline
increases muscle sympathetic nerve activity in some individuals but
decreases in others during an hour of muscle pain, yet that there are no
differences in HRV between groups (Kobuch et al., 2015). A complex
functional interaction exists between neural structures implicated in the
regulation of the autonomic nervous system and the sensation of pain
within the central and peripheral nervous systems (Benarroch, 2006).
Convergent inputs from nociceptors and viscerosensory receptors are
received by multiple brain regions that are highly interconnected with
central autonomic regulatory sites (e.g., insula, amygdala, parabrachial
nucleus, nucleus of the solitary tract, ventrolateral reticular formation)
and choreograph an autonomic cardiovascular response upon stimula-
tion (Paton et al., 2005). Inflammatory cytokines can modulate pain
perception, and in RA patients central nociceptive activity and limbic
system activation have been shown to be acutely blocked by TNF-α
inhibition (Hess et al., 2011).

Given the widespread prevalence of HTN in RA, the inclusion of
separate RA groups with and without HTN, and a HTN group without
RA, is a strength of our study. Cardiac parasympathetic regulation (i.e.,
HRV and cardiovagal baroreflex sensitivity) is reportedly reduced in
HTN patients (Singh et al., 1998) and independently predict all-cause
mortality in this condition (Ormezzano et al., 2008). It is possible that
the concomitant presence of RA and HTN would compound the re-
duction in HRV, however we observed no HRV differences between
those RA patients with or without HTN, or indeed patients with HTN
alone. Exaggerated cardiovascular responses to CPT and mental stress
have been identified in HTN (Deter et al., 2007; Delaney et al., 2010). A
more pronounced increase in HR during CPT was noted in HTN pa-
tients. However, RA, RA-HTN and HTN patient groups exhibited similar
responses to mental stress, suggesting that the presence of both RA and
HTN in an individual does not compound the cardiovascular response
to this stressor.

The mechanisms underlying mental stress-induced vasodilation are
not fully understood and include: regional sympathetic withdrawal
(Halliwill et al., 1997), β-adrenergic mediated vasodilation (Halliwill
et al., 1997), flow (shear stress) and nitric oxide mediated vasodilation
(Joyner and Tschakovsky, 2003) and circulating factors (e.g. including
adrenaline (Lindqvist et al., 1996). Another potential factor is the in-
fluence of inflammatory cytokines. Of note, serum IL-10 concentration
was positively and independently associated with forearm vasodilatory
responses to mental stress. During acute inflammation the release of
serum pro-inflammatory cytokines stimulates the production and re-
lease of IL-10 (Sabat et al., 2010). Although IL-10 inhibits the synthesis
and actions of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) elevated
circulating IL-10 is likely to represent inflammation. This is likely given
the strong positive association between IL-10 and other cytokines (TNF-
α, IL-6) (Adlan et al., 2017). The release of inflammatory cytokines
during acute sepsis is thought to contribute to hypotension via vascular
hyporeactivity through a number of suggested mechanisms (Takizawa
et al., 1997; Bucher et al., 2001; Bucher et al., 2003; Clapp et al., 2005;
Liang et al., 2014). However, while prior studies have shown that TNF-
α and IL-1β reduce vascular reactivity to noradrenaline and pheny-
lephrine in animals (Bucher et al., 2003; Liang et al., 2014), to the
authors' knowledge no studies have assessed the effects of IL-10 on the
vasculature. Future studies are needed to establish the relationship
between inflammation and vascular reactivity in healthy humans and
disease (including RA).

The cross-sectional design is a limitation of the present study and

prevents the establishment of causality between inflammation and
HRV, and cardiovascular reactivity. In addition, the use anti-hy-
pertension medication by the RA-HTN and HTN groups was provided
according to clinical indication and therefore we cannot exclude the
possibility that this influenced HRV and cardiovascular reactivity. We
did not ask participants to breathe at a paced rate to ensure that re-
spiratory frequency was in the HF band (i.e., > 0.15 Hz), which could
potentially affect the correct interpretation of the frequency domain
HRV analyses. However, an estimate of respiratory frequency was de-
rived from the ECG using proprietary software (Kubios) and in the vast
majority of participants (57 of 63) it was> 0.15 Hz and
only< 0.15 Hz by ~0.009 Hz in the others. Importantly, with the
latter participants omitted from our analyses there were no major
changes to the study findings. We acknowledge the redundancy be-
tween RMSSD and SD1 (Brennan et al., 2002). We also acknowledge the
relatively small sample size, raising the potential for a type II error,
which may contribute to the lack of independent associations in mul-
tivariable analyses. Interventional studies using biological agents to
inhibit inflammatory pathways are required in RA to confirm whether
elevated concentrations of inflammatory cytokines contribute to the
autonomic dysfunction reported in such patients. In addition, studies
are required to establish the prognostic implications of reduced HRV in
RA.

In summary, HRV is reduced in RA and reductions in HRV are in-
dependently and inversely associated with reported pain and selected
serological markers of inflammation (Ln (hs-CRP)), however HRV was
not compounded by the presence of HTN. The existence of autonomic
dysfunction in RA (indicated by elevated HR, reduced HRV or cardiac
baroreflex sensitivity and increased sympathetic vasoconstrictor ac-
tivity (Adlan et al., 2017)) likely increases cardiovascular risk, and as
such, attempts to control pain and inflammation in RA patients may
ameliorate this risk.
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