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Abstract

Given a compound, how can we effectively predict its biological function? It is a fundamentally important problem because
the information thus obtained may benefit the understanding of many basic biological processes and provide useful clues
for drug design. In this study, based on the information of chemical-chemical interactions, a novel method was developed
that can be used to identify which of the following eleven metabolic pathway classes a query compound may be involved
with: (1) Carbohydrate Metabolism, (2) Energy Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism, (5) Amino Acid
Metabolism, (6) Metabolism of Other Amino Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism of Cofactors and
Vitamins, (9) Metabolism of Terpenoids and Polyketides, (10) Biosynthesis of Other Secondary Metabolites, (11) Xenobiotics
Biodegradation and Metabolism. It was observed that the overall success rate obtained by the method via the 5-fold cross-
validation test on a benchmark dataset consisting of 3,137 compounds was 77.97%, which is much higher than 10.45%, the
corresponding success rate obtained by the random guesses. Besides, to deal with the situation that some compounds may
be involved with more than one metabolic pathway class, the method presented here is featured by the capacity able to
provide a series of potential metabolic pathway classes ranked according to the descending order of their likelihood for
each of the query compounds concerned. Furthermore, our method was also applied to predict 5,549 compounds whose
metabolic pathway classes are unknown. Interestingly, the results thus obtained are quite consistent with the deductions
from the reports by other investigators. It is anticipated that, with the continuous increase of the chemical-chemical
interaction data, the current method will be further enhanced in its power and accuracy, so as to become a useful
complementary vehicle in annotating uncharacterized compounds for their biological functions.
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Introduction

Metabolism refers to a collection of chemical reactions in vivo,

which keep an unceasing supply of matter and energy for living

organisms to maintain life (e.g., growth and reproduction) [1].

These energy-using and energy-releasing chemical reactions

catalyzed by enzymes are organized into many metabolic

pathways. Some compounds/small molecules play major roles in

these pathways and are vital for many activities essential for life.

For example, during the digestion, the energy rich molecules (i.e.

carbohydrate) are broken apart to provide energy, which is then

used by cells to build up complex molecules from simple

molecules, such as utilizing amino acids to synthesize new proteins

that the body needs. Identifying the biological functions of

compounds is an effective way to study the mechanisms of many

basic biological processes [2]. On the other hand, small molecules

are the cause, and the cure, for many diseases. For example,

diabetes mellitus is a metabolic disease caused by insufficient or

inefficient insulin secretary response and elevated blood glucose

level [3]. Compounds such as sulfonylureas [4], acarbose [5],

biguanides, thiazolidinediones [5], and sitagliptin [3] have been

used as effective drugs for diabetic therapy. Therefore, it is

essential to annotate the bioactivities of compounds, which will

benefit drug design and disease treatment.

Besides the conventional biochemical experiments, computa-

tional methods are alternative ways to annotate the biological

functions of compounds. In recent years, various bioinformatics

and structural bioinformatics [6] tools were developed to address

this issue, such as Quantitative Structure Activity Relationship

(QSAR) [7,8], pharmacophore modeling [9], molecular docking

[10], and Monte Carlo simulated annealing approach [11,12].

Different from these methods, Lu et al. [1] and Cai et al. [2]

analyzed the biological functions of compounds by mapping them

to the corresponding metabolic pathway classes, which are

strongly associated with the biological functions of compounds.

The functional group composition was used to represent the

compounds, and the Nearest Neighbor Algorithm and AdaBoost

learner [13] were used to construct the prediction models by Cai et

al. [2] and Lu et al. [1], respectively. Both the two prediction

methods achieved quite promising results on their own datasets.
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However, none of their datasets contained the ‘‘multi-function’’

compounds that belong to two or more metabolic pathway classes.

Since these authors were only focused on addressing the single-

label classification problem, their methods could not be used to

deal with the ‘‘multi-function’’ compounds. Actually, according to

KEGG [14], among all the compounds with functional annota-

tions, the ‘‘multi-function’’ compounds occupy about 8%.

Particularly, these multi-function compounds may play some

unique role intriguing to both basic research and drug develop-

ment and hence are worthy of our special attention.

Recently, the systems biology methods based on protein-protein

interactions have been widely applied for predicting protein

attributes [15,16,17,18,19]. These algorithms suggest that inter-

active proteins are likely to share the common biological functions

[16,17,18,19], also more likely tending to have the same biological

function than non-interactive ones [20,21]. Likewise, we can

assume that the interactive compounds may tend to share the

common biological functions. In this study, the chemical-chemical

interactions were retrieved from STITCH [22] (Search tool for

interactions of chemicals), where the interaction unit consists of

two chemicals and their interaction weight. The interaction weight

(confidence score) represents the probability that the interaction

occurs between the two chemicals concerned. The interactive

compounds can be classified into the following three categories: (I)

ones that participate in the same reactions; (II) ones that share the

similar structures or activities; (III) ones with the literature

associations [22]. In a metabolism system, chemical reactions are

organized into many metabolic pathways, thus the compounds

involved in the same reactions are in the same metabolic

pathways. Similar structures or activity means that they share

the similar functions, and hence they are likely to be in the same

metabolic pathways. The co-occurrence of two compounds in

many literatures suggests some kinds of direct or indirect

relationships, indicating they have the potential to be in the same

metabolic pathways. Accordingly, it is rational to suppose that the

interactive compounds tend to participate in the same metabolic

pathways.

In this study, we proposed a multi-target model based on

chemical-chemical interactions for predicting the metabolic

pathways where compounds participate in. Our method sorts

the possible metabolic pathways that are associated with the query

chemical, providing a more comprehensive view of the biological

effects of the compound.

According to a recent comprehensive review [23], to establish

a really useful statistical predictor for a biological system, we

need to consider the following procedures: (1) construct or select

a valid benchmark dataset to train and test the predictor; (2)

formulate the statistical samples with an effective mathematical

expression that can truly reflect their intrinsic correlation with

the attribute to be predicted; (3) introduce or develop a powerful

algorithm (or engine) to operate the prediction; (4) properly

perform cross-validation tests to objectively evaluate the

anticipated accuracy of the predictor. Below, let us describe

how to deal with these steps.

Materials and Methods

Benchmark Dataset
The compounds were retrieved from public available database

KEGG [14] (Kyoto Encyclopedia of Genes and Genomes)

compound [ftp://ftp.genome.jp/pub/kegg/release/archive/

kegg/42/ligand.tar.gz] (release 42.0). Subsequently, these com-

pounds were mapped to the following 11 major metabolic

pathway classes that are strongly associated with the biological

functions of compounds (http://www.genome.jp/kegg/pathway.

html#metabolism): (1) Carbohydrate Metabolism, (2) Energy

Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism,

(5) Amino Acid Metabolism, (6) Metabolism of Other Amino

Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism

of Cofactors and Vitamins, (9) Metabolism of Terpenoids and

Polyketides, (10) Biosynthesis of Other Secondary Metabolites,

(11) Xenobiotics Biodegradation and Metabolism. After exclud-

ing those compounds without any metabolic pathway informa-

tion, 4,366 compounds were collected that have clear biological

functions annotated (see Table 1 under the title of Group-I).

From the 4,366 compounds of Group-I, 3,137 compounds were

retrieved that can interact with any of the others as annotated

by STITCH database [22] (see Table 1 under the title of

Group-II).

Of the 4,366 compounds of Group-I, 4,027 are involved in only

one metabolic pathway class, 246 in two metabolic pathway

classes, 54 in three metabolic pathway classes, 24 in four metabolic

pathway classes, 9 in five metabolic pathway classes, 4 in six

metabolic pathway classes, 2 in seven metabolic pathway classes,

and none in eight or more metabolic pathway classes. Of the 3,137

compounds of Group-II, 2,820 are involved in only one metabolic

pathway class, 226 in two metabolic pathway classes, 53 in three

metabolic pathway classes, 23 in four metabolic pathway classes, 9

in five metabolic pathway classes, 4 in six metabolic pathway

classes, 2 in seven metabolic pathway classes, and none in eight or

more metabolic pathway classes.

Note that since one compound may occur in more than one

pathway class, the sum of the compounds over the 11 pathway

classes in Group-I turns out to be 4,860, which is greater than

4,366. Likewise, the sum of the compounds over the 11 pathway

classes in Group-II is 3,606, which is greater than 3,137. This is

quite similar to the case of proteins with multiple location sites, as

elaborated in [24,25].

The chemicals interactions were retrieved from STITCH [22],

a large database of known and predicted interactions of chemicals

and proteins derived from experiments, literature, databases, and

so on. As mentioned in Introduction, there are three types of

associations between two compounds in STITCH: (I) co-

occurrence in reactions, (II) similar structures or activities, and

(III) literature associations. In the downloaded STITCH chemicals

interactions file: chemical_chemical.links.detailed.v2.0.tsv from

http://stitch.embl.de/cgi/show_download_page.pl, there are

337,482 pairs of interactive compounds belonging solely to type

I, 73,598 pairs solely in type II, 2,152,508 pairs solely in type III,

384 pairs in both type I and II, 120,936 pairs in both type I and

III, 10,372 pairs in both type II and III, and 1,990 pairs in the

three types, in total of 2,697,270 interactions. Each of the

interaction is quantified by the interaction confidence score, which

represents the likelihood that the interaction occurs. In this study,

the interactions with both interactive compounds occurring in the

4,366 compounds of Group-I were extracted. As a result, 3,137

compounds with 75,949 interactions were collected to constitute

the benchmark dataset of the current study (see Table 1 under the

title of Group-II).

Besides the 4,366 compounds (cf. Table 1 under the title of

Group-I) with known metabolic pathway classes, there are

11,661 compounds without known metabolic pathway classes in

KEGG. Among these compounds, 5,549 compounds that have

annotated interactions with the compounds of the 4,366

compounds in STITCH were collected. Such 5,549 compounds

are to form an independent dataset, being used to test our

prediction method in hopes to acquire useful information for

further investigation.

Predicting Compounds’ Biological Functions
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Method
As mentioned in Introduction, the interactive compounds tend to

participate in the same metabolic pathways. Accordingly, for a query

compound, the higher interaction confidence score with its interactive

compound, the more likely they are to participate in the same

metabolic pathway. The more its interactive compounds involving in

a certain metabolic pathway, the more likely it is to participate in such

metabolic pathway. Based on these points, we should count not only

the number of compounds interacting with the query compound, but

also the corresponding interaction scores. Thus, the desired predictor

can be formulated via the following procedures.

Suppose the training dataset contains n compounds, which are

denoted as fC1,C2,:::,Cng. The 11 metabolic pathway classes (cf.

Table 1) are expressed as fP1,P2,:::,P11g, where P1 represents

the 1st metabolic pathway class (‘‘Carbohydrate Metabolism’’), P2

the 2nd metabolic pathway class (‘‘Energy Metabolism’’), P3 the

3rd metabolic pathway class (‘‘Lipid Metabolism’’), and so forth.

Thus, the descriptor of metabolic pathway classes to which the

compound Ci belongs to can be formulated as

P(Ci)~½pi,1,pi,2,:::,pi,j ,:::,pi,11�T (i~1,2,:::,n; j~1,2,:::,11) ð1Þ

where

pi,j~
1, if Ci belongs to metabolic pathway class Pj

0, otherwise

�
ð2Þ

Given a query compound Cq, its interaction with the compounds

in the training dataset can be defined as

W (Cq)~½wq,1,wq,2,:::,wq,i,:::,wq,n�T ð3Þ

where wq,i represents the interaction confidence score between Cq

and Ci. T is the transpose operator, and wq,i~0 if no interaction

exists between them. Here, we did not consider the self-

interaction, therefore wq,i~0 when q~i. Accordingly, the

likelihood that the query compound Cq is involved in the j-th

metabolic pathway class can be formulated by the following score

S(Cq[j)~
Pn

i~1 wq,ipi,j (j~1,2,:::,11) ð4Þ

which is the sum of the interaction confidence scores of Cq with its

interactive compounds in the training dataset by counting both the

number of interactive compounds and the interaction confidence

scores. Obviously, the higher the score of Eq. 4, the more likely Cq is

to be involved in the j-th metabolic pathway Cj . Thus, for a given

query compound Cq, we can use Eq. 4 to calculate its 11 scores, with

each associated with one of the 11 metabolic pathway classes. The

class to which the compound Cq most likely belongs should be the

one with the highest score. In other words, the query compound Cq

will be predicted to belong to the mth metabolic pathway class if

m~arg maxj S(Cq[j)jj~1,2,:::,11
� �

ð5Þ

where m is the argument of j that maximize the value of S(Cq[j).

Since the problem in this study is of multi-label classification, we

intend to provide flexible information by predicting some candidate

metabolic pathway classes for the query compounds, rather than

just the most likely metabolic pathway class. Therefore, instead of

Eq. 5, let us consider the following equation containing 11 scores in

a one-column vector:

D; S(Cq[j)jj~1,2,:::,11
� �

~V~

S1

S2

..

.

Sj

..

.

S10

S11

2
66666666666664

3
77777777777775

ð6Þ

Table 1. Distribution of the 4,366 and 3,137 compounds in the 11 metabolic pathway classes.

Class code Metabolic Pathway Number of different compounds

Group-I Group-II

4,366 3,137

1 Carbohydrate Metabolism 444 394

2 Energy Metabolism 129 120

3 Lipid Metabolism 610 383

4 Nucleotide Metabolism 145 132

5 Amino Acid Metabolism 563 483

6 Metabolism of Other Amino Acids 212 154

7 Glycan Biosynthesis and Metabolism 68 43

8 Metabolism of Cofactors and Vitamins 396 309

9 Metabolism of Terpenoids and Polyketides 713 499

10 Biosynthesis of Other Secondary Metabolites 722 519

11 Xenobiotics Biodegradation and Metabolism 858 570

Overall 4,860 3,606

The 4,366 compounds in Group-I were screened from KEGG by selecting the compounds with the metabolic pathway information. The 3,137 compounds in Group-II were
those retrieved from the 4,366 compounds that can interact with any other as annotated by STITCH database. Note that since a compound may occur in more than one
pathway class, the sum of the compounds over the 11 pathway classes is greater than the number of different compounds for the cases of both Group-I and Group-II.
doi:10.1371/journal.pone.0029491.t001
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where D; is a descending operator that sorts the 11 scores of Eq. 4 for

S(Cq[j) according to the descending order (S1§S2§ � � �
§Sj§ � � �§S11). If there is a tie among these scores, a random

order will be made among those with a tie. Consequently, the

predicted metabolic pathway classes for the query compound can be

derived according to the descending order of Eq. 6; i.e., if

S1~S(Pk[6), S2~S(Pk[1), S3~S(Pk[10), then it follows

that the query compound Cq is involved in the 6th metabolic pathway

class (‘‘Metabolism of Other Amino Acids’’) will be ranked as the

highest in the likelihood, that Cq in the 1st metabolic pathway class

(‘‘Carbohydrate Metabolism’’) as the 2nd, and that Cq in the 10th

metabolic pathway class (‘‘Biosynthesis of Other Secondary Metab-

olites’’) as the 3rd. The corresponding results thus obtained are,

respectively, called the 1st-order, 2nd-order, and 3rd-order predicted

metabolic pathway classes. And so forth.

Cross-Validation
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling

(such as 5-fold, 7-fold, or 10-fold cross-validation) test, and

jackknife test [26]. In this study, the 5-fold cross-validation was

employed to examine the performance of our method. The

concrete procedures were that the training dataset were divided

into five groups by splitting each of its subsets into five

approximately equal-sized subgroups. Each of these five groups

was in turn used as a testing dataset and the rest used as training

dataset, thereby generating five different success rates, with their

average representing the success rate by the 5-fold cross-validation.

For the j-th order prediction, the accuracy Wj was calculated by

Wj~
Mj

N
(j~1,2,:::,11) ð7Þ

where Mj is the number of the compounds whose j-th order

predicted metabolic pathway class is one of the true pathway

classes that the compounds are involved with, and N is the total

number of compounds in the dataset. Such 11-order accuracies

were used to evaluate our prediction method. It is obvious

according to the definition of Eq. 7 that, the higher the value of Wj

with a smaller value of j, or the lower the value of Wj with a larger

value of j, the better the prediction quality will be by our method.

In the dataset, the average number of metabolic pathway class

that each compound is involved in is calculated as

H~

PN
i~1

Ei

N
ð8Þ

where Ei is the number of metabolic pathway classes that the

compound Ci is involved with. Hence, another measurement - the

likelihood that the first k order predicted metabolic pathway classes

cover all the true metabolic pathway classes that the compound is

involved in – can be formulated as

Lk~

Pk
x~1

Wx

P11

j~1

Wj

ð9Þ

Usually, k is the smallest integer equal or greater than the average

number of metabolic pathway classes (H). It is obvious from Eq. 9

that the larger the value of Lk, the better the prediction quality will

be by our method.

Prediction process
Given a query compound, according to the information of its

interactions with the 4,366 compounds in Group-I (Table 1)

whose metabolic pathway classes are known, the likelihood of its

belonging to each of the 11 metabolic pathway classes can be

easily calculated according to Eq. 4. And the scores thus obtained

were sorted according to a descending order (Eq. 6) to yield the

predicted metabolic pathway classes according to their different

ranks or orders.

Results and Discussion

Evaluation Results by the 5-fold Cross-validation
In this study, our method was evaluated by the 5-fold cross-

validation on the benchmark dataset that contains 3,137

compounds in Group-II of Table 1. The 11-order prediction

accuracies are shown in Figure 1. The first order (most likely)

prediction accuracy is 77.97%, and the last order (least likely)

prediction accuracy is 0.38%, which indicates a quite good

performance of our method.

The average number of metabolic pathway classes with which

each compound is involved is 1.15 (cf. Eq. 8), meaning that the

average success rate by a random guess would be 1.15/

11 = 10.45%, which is much lower than that by our method.

Accordingly, the parameter k in Eq. 9 was set to (1.15+1) = 2;

i.e., we may select the results of the first two orders of the predicted

metabolic pathway classes for the query compounds. As we can see

from Figure 1, the accuracies of both the 1st and 2nd order

predictions are higher than that of the random guess. According to

Eq. 9 the metabolic pathway classes predicted by the 1st and 2nd

orders have actually covered more than 80% of all the true

metabolic pathway classes, suggesting that, of the results predicted

by the 11 orders, more attention should be paid to those by the

first two orders.

Listed in Table 2 are the accuracies by each of the 11

prediction orders for the 3,137 compounds about their involve-

ment in the 11 metabolic pathway classes using the 5-fold cross-

validation test. The highest accuracy achieved by the 1st-order

prediction was 80.96% for the 1st metabolic pathway class

(‘‘Carbohydrate Metabolism’’). And the results obtained by the

1st and 2nd prediction orders have covered 89.00% of the true

metabolic pathway classes. The second highest accuracy by the 1st-

order prediction was 78.77% for the 11th metabolic pathway class

(Xenobiotics Biodegradation and Metabolism), while the results

obtained by the 1st and 2nd prediction orders have covered 87.00%

of the true metabolic pathway classes. Both the two 1st-order

accuracies are higher than the overall 1st-order prediction

accuracy of 77.97%, and each of their combinations with the

2nd-order predictions is also higher than the overall likelihood of

80.00%. As for the metabolic pathway classes with less

compounds, such as ‘‘Glycan Biosynthesis and Metabolism’’ class

that contains only 68 compounds in Group-I and 43 in Group-II

(cf. Table 1), the predicted accuracies were relatively not as good

as the others. It is anticipated that with more experimental data

are available in future for the compounds in these classes, the

corresponding prediction success rates will be improved. Overall

speaking, the aforementioned results are quite encouraging,

indicating that our approach may become a useful tool to deal

with this kind of very complicated systems.

As stated in the Method section, the interactive compounds

derived from STITCH tend to participate in the same metabolic

Predicting Compounds’ Biological Functions
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pathways. For example, Table 3 lists the interactions of

dihydrouracil with other compounds. Among the 32 interactive

compounds, most of them appear in ‘‘metabolism of cofactors and

vitamins’’ or ‘‘metabolism of other amino acids’’ or ‘‘nucleotide

metabolism’’ pathway class (cf. Table 1) just like dihydrouracil.

Dihydrouracil and uracil participate in pyrimidine metabolism

pathway (belong to ‘‘nucleotide metabolism’’), where 5,6-dihy-

drouracil and NADP+ are catalyzed by dihydropyrimidine

dehydrogenase (DPD) to form uracil and NADPH+H+ [14,27].

They are also co-mentioned in many PubMed Abstracts such as

[28,29,30,31,32,33,34,35,36,37]. Another two interactive com-

pounds - dihydrouracil and dihydrothymine share a very similar

structure, the only difference is that dihydrothymine has a methyl

at the 5th position of the hexatomic ring while dihydrouracil has

not [38]. According to the prediction criteria, when dihydrouracil

was treated as a query compound, the first three order predicted

metabolic pathways that it participates in are ‘‘nucleotide

metabolism’’, ‘‘metabolism of cofactors and vitamins’’ and

‘‘metabolism of other amino acids’’, respectively, which are

consistent with the true metabolic pathways that it is involved in.

Predicted results for the compounds with unknown
metabolic pathway

Encouraged by the quite promising results obtained by the 5-

fold cross-validation test on the benchmark dataset of the 3,137

compounds, we applied the method to the 5,549 compounds

whose metabolic pathways are unknown as mentioned in the

Materials and Methods section. The predicted results thus

obtained are given in Table S1. As discussed above, we selected

the metabolic pathway classes obtained by the 1st and 2nd order

predictions for these compounds, in hoping that the information

thus obtained may provide useful clues for further investigations.

Actually, it is interesting to see that many of our predicted results

have proved to be reasonable according to the reports from other

investigators. For example, N-acetylgalactosamine 4-sulfate and its

interactive compounds with pathway information are shown in

Table 4. N-acetylgalactosamine 4-sulfate can bind to sulfate,

glucuronic acid, galactose, xylose, fucose, Na(+), glycerol, and

phosphate to form complex to perform the biological function

[39]. In PubMed Abstracts, N-acetylgalactosamine 4-sulfate is co-

mentioned with sulfate [40], glucuronic acid [41], galactose [42],

39-phospho.pho. [43], sugar-1-phosph. [44], UDP-GlcNAc [45],

indole-3-glyce. [46], N-acetyl-D-glucosamine [47], and GDP-

mannose [44]. Besides, N-acetylgalactosamine 4-sulfate and N-

acetyl-D-glucosamine share a similar structure and the difference

is that N-acetylgalactosamine 4-sulfate has a sulfate at the position

4 of the ring while N-acetyl-D-glucosamine has not [38]. From

these evidences, N-acetylgalactosamine 4-sulfate is supposed to

participate in the same metabolic pathways as its interactive

compounds. It can be seen from Table 4 that most of the

interactive compounds of N-acetylgalactosamine 4-sulfate belong

to the 1st and 2nd metabolic pathway classes. By considering all the

interactions and the interaction confidence scores, it was predicted

that Carbohydrate Metabolism (the 1st class) and Energy

Metabolism (the 2nd class) would be the possible metabolic

Figure 1. Illustration to show the accuracy by each of the 11 order predictions for the 3,137 compounds by the 5-fold cross-
validation. It can be seen from the figure that from the first order to the last one, the 11 accuracies form a download-slope curve.
doi:10.1371/journal.pone.0029491.g001

Table 2. The accuracy predicted by each of the 11 orders for
the metabolic pathway classes of the 3,137 compounds by
the 5-fold cross-validation test.

Class
code Accuracy (%) predicted by each order

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

1 80.96 8.38 5.08 1.78 1.02 1.27 0.25 1.02 0.00 0.25 0.00

2 31.67 30.00 18.33 7.50 4.17 3.33 0.00 3.33 0.00 0.83 0.83

3 73.89 6.27 6.27 4.44 1.57 2.61 2.35 0.52 0.52 1.31 0.26

4 65.15 11.36 6.82 5.30 3.03 1.52 2.27 0.00 4.55 0.00 0.00

5 61.70 19.88 10.97 5.38 1.04 0.83 0.21 0.00 0.00 0.00 0.00

6 29.87 27.27 11.69 11.69 5.19 5.19 3.90 3.25 1.95 0.00 0.00

7 20.93 25.58 11.63 9.30 6.98 4.65 2.33 4.65 0.00 2.33 11.63

8 61.17 17.15 9.39 4.21 3.24 2.91 0.97 0.32 0.32 0.32 0.00

9 74.35 8.42 4.01 3.41 1.20 1.20 2.20 2.40 1.00 1.20 0.60

10 68.98 8.67 4.62 3.66 5.01 4.24 1.54 1.54 0.77 0.58 0.39

11 78.77 8.42 5.09 2.81 2.63 1.40 0.35 0.35 0.18 0.00 0.00

Overall 77.97 14.19 8.07 4.88 2.93 2.55 1.43 1.28 0.70 0.57 0.38

See Table 1 for the numbers-distribution of the 3,137 compounds among the
11 metabolic pathway classes.
doi:10.1371/journal.pone.0029491.t002
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pathway classes that N-acetylgalactosamine 4-sulfate belongs to.

Actually, as a carbohydrate, N-acetylgalactosamine 4-sulfate reacts

with Chondroitin 4-sulfate to form hydrogen oxide and G12336

(i.e. (GalNAc)2(GlcA)1(S)2), one kind of glycan which can

participate in Carbohydrate and Energy Metabolism. Therefore,

N-acetylgalactosamine 4-sulfate may also participate in Carbohy-

drate and Energy Metabolism. Another example is that cyclopro-

pylamine in Table 4 has 23 interactive compounds with known

pathway information. Cyclopropylamine, cyanuric acid, ammo-

nia, N-cyclopropylammelide, c0761, hydroxyl radicals are in the

same pathway - N-cyclopropylmelamine degradation [48,49],

where N-cyclopropylmelamine first reacts with hydrogen oxide to

form N-cyclopropylammeline and ammonia, and then N-cyclo-

propylammeline also reacts with hydrogen oxide to form N-

cyclopropylammelide and ammonia. After that, N-cyclopropy-

lammelide reacts with hydrogen oxide to form cyanuric acid,

cyclopropylamine and hydroxyl radicals. Finally, cyanuric acid is

transformed into hydrogen oxide and ammonia through cyanurate

degradation. Cyanuric acid, N-cyclopropylammelide, and c0761

are all in the 11th pathway class. Therefore, cyclopropylamine may

also belong to the 11th pathway class (Xenobiotics Biodegradation

and Metabolism). For other interactive compounds, they are co-

mentioned with cyclopropylamine in PubMed Abstracts, such as

polyethylene [50], 1-aminocyclopropane-1-carboxylic acid [51],

cyclopropanecarboxylic acid [52], 3-hydroxyphenylacetic acid

[53], and acetophenone [54]. In Table 4, most of the interactive

compounds of cyclopropylamine belong to the 11th metabolic

pathway classes. According to above analysis, cyclopropylamine is

suggested to participate in the Xenobiotics Biodegradation

Metabolism, which was the 1st-order predicted class for cyclopro-

pylamine by our method. Accordingly, it is quite reasonable to

expect that our method may provide useful information for further

Table 3. Interactions of dihydrouracil with other compounds in the benchmark dataset of Group-II.

KEGG ligand Name

Code of
Metabolic
pathway class KEGG ligand Name

Code of Metabolic
pathway class

Interaction
confidence

C00429 Dihydrouracil 4, 6, 8 C00106 Uracil 4, 6, 8 0.981

C00429 Dihydrouracil 4, 6, 8 C02642 N-carbamoyl-be. 4, 6, 8 0.945

C00429 Dihydrouracil 4, 6, 8 C00006 NADP 2, 6, 8 0.921

C00429 Dihydrouracil 4, 6, 8 C00005 NADP(H) 2, 6 0.902

C00429 Dihydrouracil 4, 6, 8 C00001 Hydroxyl radic. 2, 8 0.899

C00429 Dihydrouracil 4, 6, 8 C00013 Pyrophosphate 2 0.899

C00429 Dihydrouracil 4, 6, 8 C00119 Phosphoribosyl. 1, 4, 5 0.899

C00429 Dihydrouracil 4, 6, 8 C00906 Dihydrothymine 4 0.855

C00429 Dihydrouracil 4, 6, 8 C00178 Thymine 4 0.814

C00429 Dihydrouracil 4, 6, 8 C07649 5-fluorouracil 11 0.744

C00429 Dihydrouracil 4, 6, 8 C00099 Beta-alanine 1, 4, 6, 8 0.650

C00429 Dihydrouracil 4, 6, 8 C00380 Cytosine 4 0.551

C00429 Dihydrouracil 4, 6, 8 C00262 Hypoxanthine 4 0.436

C00429 Dihydrouracil 4, 6, 8 C00299 Uridine 4 0.433

C00429 Dihydrouracil 4, 6, 8 C00295 Orotic acid 4 0.386

C00429 Dihydrouracil 4, 6, 8 C05145 Beta-aminoisob. 4 0.362

C00429 Dihydrouracil 4, 6, 8 C02067 Pseudouridine 4 0.353

C00429 Dihydrouracil 4, 6, 8 C00881 Deoxycytidine 4 0.350

C00429 Dihydrouracil 4, 6, 8 C00147 Adenine 4, 9 0.308

C00429 Dihydrouracil 4, 6, 8 C05100 Beta-ureidoiso. 4 0.286

C00429 Dihydrouracil 4, 6, 8 C03056 2,6-dihydroxyp. 8 0.274

C00429 Dihydrouracil 4, 6, 8 C02565 N-methylhydant. 5 0.272

C00429 Dihydrouracil 4, 6, 8 C00337 Dihydroorotate 4 0.262

C00429 Dihydrouracil 4, 6, 8 C00757 Berberine 10 0.252

C00429 Dihydrouracil 4, 6, 8 C00222 Malonate semia. 1, 11, 6 0.218

C00429 Dihydrouracil 4, 6, 8 C12650 Capecitabine 11 0.214

C00429 Dihydrouracil 4, 6, 8 C12673 Tegafur 11 0.210

C00429 Dihydrouracil 4, 6, 8 C00522 Pantoate 8 0.207

C00429 Dihydrouracil 4, 6, 8 C00864 Pantothenic ac. 6, 8 0.205

C00429 Dihydrouracil 4, 6, 8 C11736 FUdR 11 0.199

C00429 Dihydrouracil 4, 6, 8 C00366 Uric acid 4 0.167

C00429 Dihydrouracil 4, 6, 8 C00219 Arachidonic ac. 3 0.154

See Table 1 for the code of the metabolic pathway class.
doi:10.1371/journal.pone.0029491.t003
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investigating into biological functions of compounds from the

viewpoint of system biology.

Application and improvement
As indicated by the above discussion and analysis, the results

derived from the 1st and 2nd order predictions should be

considered as the candidates for the metabolic pathway classes

with which the query compound may be involved. In view of this,

biochemical experiments should be conducted by mainly focusing

on the targets predicted by the 1st and 2nd order predictions. The

results obtained by the last five order predictions can be ignored

due to their very low likelihood (,2%). Consequently, the current

prediction method can provide useful clues for further validation

by experiments and expedite the research progress by prioritizing

the targets concerned.

It is instructive to note that for the 4,366 compounds in Group-I

of Table 1, there are still 1,229 compounds that can not be

processed by the current method due to lack of the interaction

Table 4. Interactions of N-acetylgalactosamine 4-sulfate and cyclopropylamine with other compounds whose metabolic pathway
classes are known.

KEGG Ligand Name KEGG LigandName

Code of
Metabolic
pathway class

Interaction
Confidence

C16265 N-acetylgalactosamine 4-sulfate C00059 sulfate 2, 4, 5 0.956

C16265 N-acetylgalactosamine 4-sulfate C00333 glucuronic acid 1 0.931

C16265 N-acetylgalactosamine 4-sulfate C15923 galactose 1 0.904

C16265 N-acetylgalactosamine 4-sulfate C01508 xylose 1 0.9

C16265 N-acetylgalactosamine 4-sulfate C01721 fucose 1 0.899

C16265 N-acetylgalactosamine 4-sulfate C01330 Na(+) 2 0.899

C16265 N-acetylgalactosamine 4-sulfate C00116 glycerol 1, 3 0.899

C16265 N-acetylgalactosamine 4-sulfate C00009 phosphate 2, 7 0.899

C16265 N-acetylgalactosamine 4-sulfate C00053 39-phospho.pho. 2, 4, 7 0.47

C16265 N-acetylgalactosamine 4-sulfate C02591 sugar-1-phosph. 1 0.312

C16265 N-acetylgalactosamine 4-sulfate C01170 UDP-GlcNAc 1 0.27

C16265 N-acetylgalactosamine 4-sulfate C03506 indole-3-glyce. 10, 5 0.256

C16265 N-acetylgalactosamine 4-sulfate C01132 N-acetyl-D-glucosamine 1 0.235

C16265 N-acetylgalactosamine 4-sulfate C00096 GDP-mannose 1, 7 0.183

C14150 cyclopropylamine C06554 cyanuric acid 11 0.918

C14150 cyclopropylamine C00014 ammonia 2, 4, 5, 6 0.907

C14150 cyclopropylamine C14149 N-cyclopropylammelide 11 0.899

C14150 cyclopropylamine C14148 c0761 11 0.899

C14150 cyclopropylamine C00001 hydroxyl radicals 2, 8 0.899

C14150 cyclopropylamine C00969 reuterin 3 0.378

C14150 cyclopropylamine C06547 polyethylene 11, 5 0.347

C14150 cyclopropylamine C01234 1-aminocyclopropane-1-carboxylic acid 1, 5 0.29

C14150 cyclopropylamine C00218 methylamine 2 0.29

C14150 cyclopropylamine C16267 cyclopropanecarboxylic acid 11 0.286

C14150 cyclopropylamine C16318 methyl jasmonate 3 0.273

C14150 cyclopropylamine C11512 methyl jasmonate 3 0.273

C14150 cyclopropylamine C05593 3-hydroxyphenylacetic acid 11, 5 0.267

C14150 cyclopropylamine C00261 benzaldehyde 11 0.238

C14150 cyclopropylamine C01054 2,3-oxidosqualene 3 0.236

C14150 cyclopropylamine C01013 3-hydroxypropionate 1, 6 0.224

C14150 cyclopropylamine C01471 acrolein 11 0.208

C14150 cyclopropylamine C01746 calcium channel blocker 10 0.205

C14150 cyclopropylamine C00571 cyclohexylamine 11 0.205

C14150 cyclopropylamine C00144 guanosine monophosphate 4 0.205

C14150 cyclopropylamine C00903 cinnamaldehyde 10 0.171

C14150 cyclopropylamine C07113 acetophenone 11 0.168

C14150 cyclopropylamine C01724 lanosterol 3 0.152

See Table 1 for the code of the metabolic pathway class.
doi:10.1371/journal.pone.0029491.t004
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information with other compounds within the dataset. It is

expected that the problem can be solved by collecting as much

chemical-chemical interaction information as possible from

STITCH, which is a large-scale and well-maintained resource in

chemical biology, including the interactions information for over

2.5 million proteins and over 74,000 small molecules in 630

organisms. With the continuous increase of the interactions

information, the performance of our method will be further

improved.

Conclusion
Based on the chemical-chemical interactions information, a

multi-target model was proposed for identifying the metabolic

pathway classes with which a query compound is involved. Since

some compounds may be involved with more than one metabolic

pathway class, our method is featured by the capacity able to

provide a series of potential metabolic pathway classes for each of

the query compounds investigated, instead of only one metabolic

pathway class. It is anticipated that our method may become a

useful tool in helping annotate the compound for their biological

functions.

Supporting Information

Table S1 Each order predicted metabolic pathway class for the

collected 5,549 compounds without known metabolic pathway

classes. The predicted metabolic pathway class code corresponds

to the code in Table 1. Among the 11 predicted pathway classes,

the first 2 order predicted metabolic pathway classes should be

paid more attention to.
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