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Abstract: Leptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain
and metabolic homeostasis has been explored for the past two decades. In this review, we have
tried to shed light upon the impact of leptin signaling on health and diseases. At low or moderate
levels, this peptide hormone supports physiological roles, but at chronically higher doses exhibits
detrimental effects on various systems. The untoward effects we observe with chronically higher
levels of leptin are due to their receptor-mediated effect or due to leptin resistance and are not
well studied. This review will help us in understanding the non-anorexic roles of leptin, including
their contribution to the metabolism of various systems and inflammation. We will be able to get
an alternative perspective regarding the physiological and pathological roles of this mysterious
peptide hormone.
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1. Introduction

The discovery of leptin arose simply from suspicion. Researchers noted than an
isolated mutant mice colony lacking the ob gene possessed abnormal characteristics, such as
hyperphagia, decreased energy expenditure, and early-onset obesity [1]. In 1953, a theory
proposed the existence of a circulating molecule secreted by adipose tissue; this molecule
was in direct communication with the hypothalamus and affects food intake, body weight,
and long-term energy balance [2]. It was not until forty years later that this speculated
molecule was characterized and identified. Derived from the mRNA transcript of the ob
gene, this peptide hormone was comprised of 167 amino acids and named “leptin”, from
the Greek work “lepto”, meaning “thin” [3]. Since its discovery, leptin’s pleiotropic effects
have been found to influence hematopoiesis, angiogenesis, blood pressure, bone mass, and
T-lymphocyte function, among other things [1,3]. The perception of leptin just as a peptide
hormone that regulates body weight has evolved to now being seen as a signaling molecule
capable of regulating physiological homeostasis [1,3].

2. Origins and Expression

In humans, the ob gene is expressed primarily in adipocytes; thus, serum leptin
concentration is highly correlated to overall fat content in infants, children, and adults [4,5].
Leptin expression was found to be nearly double in subcutaneous fat relative to visceral and
omental fat, and this principle has been proven true for both lean and obese individuals [4,5].
Leptin circulates either freely or bound to the extracellular portion of its receptor [5–12].
Binding of leptin on to its receptor allows it to cross the blood–brain barrier and admit
access to the central nervous system. Free leptin has also demonstrated to have high
blood–brain permeability, a process facilitated by tanycytes under conditions of capillary
leaks and during debilitated blood–brain barrier integrity [5–12].
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Although six isoforms of the leptin receptor have been identified, the primary recep-
tor is the long form and resides in the arcuate nucleus of the hypothalamus [10,13–16].
If the neurons housing this receptor bind leptin, the receptor dimerizes and initiates a
signaling pathway via cytoplasmic tyrosine kinase such as janus kinase (JAK) [10,13–16].
Following phosphorylation of the intracellular region of the receptor, the STAT proteins
(STAT2 or STAT3) house Src-domains that allow them to anchor to the receptor [9,10,12–19].
Once activated, the STAT protein travels to the nucleus to initiate transcription of the
pro-opiomelanocortin (POMC) gene; POMC has been identified as an anorexigenic pep-
tide [20–22]. In addition, leptin inhibits neurons expressing the antagonist for POMC and
neuropeptide Y (NPY) [20–25]. A lepti- mediated decrease in NPY also contributes to an
anorexic effect, as NPY is a potent centrally acting orexigenic agent [20–25]. Fluctuations
in leptin levels during fasting or starvation is a crucial factor [20,22–25]. In a normal,
“fed” state, leptin levels are proportional to the amount or mass of adipose tissue in the
body [20,22–25]. Aside from an individual’s baseline leptin levels, serum leptin can increase
as much as 40% following an episode of overeating or decrease by 60 to 70% following
chronic fasting [26–28]. Clearly, leptin is in direct communication with the central nervous
system to flag acute changes in energy intake [26–28].

In addition to the CNS regions, there is also distribution of leptin receptors in the
peripheral tissues [29]. This review also sheds light upon the role of leptin receptors
across the physiological system, and the role of their accompanied signaling in regulating
physiological functions.

3. Gastrointestinal System

The outreach of leptin expression extends into the gastrointestinal system and is
continuous in the stomach. Leptin expression was greatest in the fundic region, where chief
cells and parietal cells exhibit high reactivity to the hormone [30–32]. It should be noted
that leptin receptors were detected in both healthy gastric epithelium and cancerous gastric
cells [30–32]. With respect to physiological control of leptin secretion, high fat diets play an
important role. Arita et al. [33] identified that a greater quantity of gastric leptin receptors
became phosphorylated with consumption of a high fat diet [33]. The findings confirm
that leptin secretion and leptin signaling are elevated on such a diet. Tracking down the GI
tract, this report finds the link between leptin and intestinal health [33]. Mice lacking the
leptin receptor were protected from intestinal dysbiosis and high-fat-diet-induced intestinal
metaplasia, which reinforces the link between leptin secretion and gut health [33]. In the
colon, a greater concentration of leptin receptors were found in ulcerative colitis patients
despite serum leptin levels being normal [34,35]. It is worth considering in future research
endeavors the density of leptin receptors in the GI tract, rather than just focusing on serum
leptin levels. These findings characterize serum leptin as a mark of localized inflammation,
especially in the gut.

4. Pancreas

There is an intimate and rather complex relationship between leptin and the secretory
capacity of the pancreas. Leptin signaling induces the K+/ATP membrane receptor. The
ultimate effect achieved is the conductance of K+ increases across the membrane, which
hyperpolarizes islet cells to inhibit insulin secretion [36–39]. Leptin prevents the secretion
of both insulin and glucagon [36–39]. While receptors for leptin are copious on β-islet
cells and δ-islet cells, they are absent from the majority of glucagon-producing α-islet
cells [36–38]. Thus, the inhibitory influence of leptin is more profound for insulin when
compared to glucagon [39–41]. Please note that no profound effects on somatostatin
secretion are observed following administration of leptin. Insulin signaling and leptin
have got an interesting interaction that suggests a bi-directional feedback loop; as the
secretion of insulin is known to stimulate leptin release, the released leptin limits insulin
levels [39–41]. In this light, leptin can be considered as a regulating hormone for the
pancreas. Another hypothesis for leptin’s inhibitory effect on insulin secretion is via the
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activation of intracellular cAMP signaling [42]. Leptin was shown to inhibit cAMP activity,
and as a result, prevent the insulin secretory mechanism in the pancreatic cells [39–41].
An attributed mechanism is due to activation of phosphoinositide 3-kinase-cyclic nucleotide
phosphodiesterase 3B (PDE3B) signaling nexus [43,44]. Activated PDE3 B could lead to
enhanced breakdown of cAMP, mitigating the signaling responsible for pancreatic insulin
secretion [43,44]. An additional possibility to consider is the toxicity of inflammatory
cytokines and adipokines, which are induced or triggered by leptin and could act on β-cells
to further compromise the ability to effectively secrete insulin [43,44]. Perhaps future
investigation of the direct and indirect effects of leptin signaling on pancreatic islets would
provide clarity.

5. Hepatic Tissue

Within the liver, leptin is considered an anti-steatosis hormone, but the levels and
duration matters. The signaling cascade that leptin elicits in the liver targets a specific
transcription factor that is a key component in lipid synthesis; its modulation by leptin
mobilizes lipids [45]. The protective properties against lipid accumulation within the
liver can be illustrated by observations made in models devoid of leptin receptors and
accompanied by increased liver triglycerides and increased lipid deposition [46]. Moreover,
leptin-deficient animal models saw a delay in liver regeneration, hypothesized to be a
consequence of impaired angiogenesis and glucose transport to hepatocytes [47]. Although
increases in circulating leptin would be presumably helpful, there seems to be a threshold
that exists where chronic elevations exacerbate inflammatory and fibrogenic processes
in the liver [45]. In fact, leptin was required for fibrosis to develop in mouse models
with chronic liver injury [48]. Provided that the leptin receptor is expressed by Kupffer
cells, hepatic stellate cells, and sinusoidal endothelial cells, there seems to be a direct
mechanism of action for the development of fibrosis [45]. Likewise, the leptin-dependent
induction of fatty acid oxidation and mitochondrial respiration taking place in the liver
may induce oxidative stress [45]. When this fragile balance between leptin signaling and
lipid mobilization becomes dysfunctional, individuals may be susceptible to pathological
conditions. A positive correlation has been established between elevations in circulating
leptin in non-alcoholic fatty liver disease patients, steatosis patients, as well as non-alcoholic
steatohepatitis patients (NASH) [49]. It is important to consider the levels of leptin were
influenced by factors such as age, gender, co-existing metabolic diseases, and percentage of
body fat. Although increased leptin is not a direct indicator of these pathologies, it raises
curiosity about its role as an indicator of ongoing metabolic complications.

6. Connective Tissue

In skeletal system, leptin is known to be a potent inhibitor of bone formation [50,51].
Bone loss becomes a concern for those with substantial fat stores, or in other words, subjects
who present with an elevated body mass index, since there is a greater availability of fat cells
to synthesize the hormone leptin. Leptin is also a potent inhibitor of bone formation [50,51].
Bone loss becomes a concern for those with substantial fat stores, elevated body mass index,
and especially subjects who are insulin-resistant or have type 2 diabetes. A study evaluated
the long duration effects of leptin by administering recombinant adeno-associated virus-rat
leptin (rAAV-Lep) into the third ventricle of the hypothalamic region to understand the
impact on weight gain and bone metabolism using female Sprague-Dawley rats which had
sufficient leptin levels [52]. Interestingly in this study, at 5 weeks after vector administration,
rAAV-Lep-administered rats developed lower cancellous bone volume and bone marrow
adiposity. With the increase in duration of treatment, no significance differences were noted
in cancellous bone but a major impact on bone adiposity and associated weight gain [52]
was seen. Another study demonstrated that intracerebroventricular (ICV) administration
of leptin reduces trabecular bone volume, most notably in the vertebral column [53–55]. It
is unclear whether this loss of bone volume is due to the direct action of leptin on bone or
its influence on the sympathetic nervous system (SNS). We also have found reports that
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demonstrate contradictory effects. For instance, leptin binding to its receptors on osteoclasts
and osteoblasts elicits synthesis of the bone matrix. Leptin promoted the differentiation
of osteoblasts, synthesis of Type I collagen, and allocation of osteocalcin [56]. Leptin by
itself and in the presence of cytokines has been demonstrated to enhance collagenolytic and
gelatinolytic properties in bovine cartilage explant cultures [57]. Leptin brings about this ef-
fect through the simultaneous activation of multiple matrix metalloproteinases (MMP1 and
MMP13) and also involving transcription factors such as signal transducers and activation
of transcription of family members (STATs) [57]. These effects were nullified by using an
anti-leptin antibody [57]. Leptin inhibited osteoclast formation by increasing concentrations
of osteoprotegerin, a protein that inhibits maturation of osteoclasts [58]. Aside from acting
peripherally on bone, leptin’s activation of the ventromedial hypothalamus may have an
indirect consequence of activating noradrenergic signaling at the osteoblasts, mediating its
ability to impact bone mass [53–55]. It is difficult to isolate the effects of leptin on the skele-
tal system when leptin also acts alongside hypothalamic effectors, such as cortisol, IGF-1,
estrogen, and parathyroid hormone [59]. Thus, the link between ICV administration of
leptin and reduced trabecular bone sparks inquisition. Given that leptin has pro-osteogenic
properties alone, there must be a complicated pathway that creates the overall consequence
of reduced bone volume in hyperleptinemic cases that needs further evaluation.

7. Circulatory System

Once activated, T cells express a leptin receptor on their membrane, and when the
receptor is revealed, the T cells become sensitive to changes in insulin concentration and
nutrient availability [52,53]. Given that T-cell activation is energetically expensive, levels of
serum leptin reflect nutrient availability for the process to begin [52,53]. The signaling path-
ways found to be mediated by the leptin receptor in T cells include upregulation of glucose
intake, optimization of lactate production, proliferation, and production of inflammatory
cytokines [52–57]. Additionally, the ability of T-cells to secrete inflammatory cytokines
IL-2 and IFN-γ was found to be dependent on leptin availability [54–57]. Although leptin
may be necessary for mounting a typical immune response, elevated serum leptin is a
high-risk factor for many hematopoietic malignancies [58–62]. This was found to be true
when leptin receptors were absent in normal promyelocytes, but leukemic promyelocytes
housed mRNA of multiple isoforms of the leptin receptor [58–62]. The cascade of STAT3
and ERK 1/2 signaling that follows leptin receptor activation resulted in increased colony-
forming ability, proliferation, and anti-apoptotic properties of human erythroleukemic cell
lines. These findings are significant because they illustrate the direct effect of leptin on the
pathological progression of hematopoietic malignancies [60,61,63]. A crucial note to make
is that for certain blood cancers, serum leptin was elevated independent of the patient’s
BMI [60,64], persuading against confounding factors such as obesity. These findings suggest
focusing on the dysregulation of leptin itself, or leptin-mediated pathways as treatment
for certain leukemias rather than focusing on BMI. To further highlight leptin’s role in the
development of leukemia, leptin receptor mRNA was constitutively expressed in acute
myelogenous leukemia and acute lymphocytic leukemia; leptin receptor expression also
correlated well with immature CD34+ hematopoietic progenitor cells [59,60,65]. The above-
mentioned findings express the importance of leptin during the blast or proliferative stage
of blood cancers, rather than in more chronic stages. Early intervention and modulation of
leptin signaling has the potential to be a promising route for leukemia research.

More recent studies in healthy patients point to leptin regulating blood flow and
have identified a saturable, designated binding site for leptin on red blood cells [66]. The
researchers found that leptin ultimately induced an increase in red blood cell-derived ATP,
a recognized stimulus of blood flow [66]. Furthermore, leptin is also known to cause nitric
oxide release and consequent vasodilation in endothelial cells [66]. Although leptin is
known to play a crucial role in developing hematopoietic malignancies, it may also be
beneficial to the circulatory system under normal physiological conditions.
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8. Cardiovascular and Renal System

Leptin’s effects on the cardiovascular system are discordant and not well understood.
Although both large population-based and clinical studies have found a positive correlation
between hyperleptinemia and cardiovascular complications [67–71], it is unclear whether
the adverse events are driven by hyperleptinemia alone. The accumulation of white adipose
tissue that contributes to hyperleptinemia has other physiological consequences, such as
obesity, hypertension, and diabetes and that could act as confounding factors for the
cardiovascular events, as per the studies done in human subjects [67–71]. Regardless, it is
clear that leptin has the potential to play a role in cardiovascular health. Leptin receptors
have been located on hemopoietic cells [61,72–76], rightfully characterizing leptin as a
systemic signaling molecule. Previous experiments have identified leptin as a promoter
of platelet aggregation as well as an accelerator for wound repair, as per the observations
done in human subjects [77–86]. These findings are evidence for leptin’s ability to facilitate
the onset of thrombotic events or stroke in human subjects, which contributes to the
growing interest of its role in regulation of the circulatory system. Likewise, leptin receptors
have been identified in human atherosclerosis [87–89], which highlights the role of leptin
signaling in endothelial dysfunction [87–89]. Leptin signaling has also shown to contribute
towards hypertension [90–95] in mice and rats, an effect mediated by angiotensin II [90–95].

The endothelial cells have been demonstrated to have substantial leptin receptor gene
expression. With activation of the leptin receptor, a tyrosine-kinase-dependent pathway ini-
tiates angiogenic processes [96–99] in human and animal cell model systems. Interestingly,
Kang et al. [100] found that atherosclerotic lesions in human subjects had a greater expres-
sion of the leptin receptor gene when compared to histologically normal endothelium [100].
Note that obesity is identified as a major risk factor for atherosclerosis [101]. It would be
logical to consider that the excess adipose stores in an obese individual could contribute to
hyperleptinemia. Increased leptin levels have shown positive correlation with increased
blood viscosity and enhanced platelet count with fibrinogen expression and activity [102].
This could explain leptin’s role in aggravating atherosclerotic lesions.

Furthermore, leptin has been demonstrated to enhance the sympathomimetic effect,
thus raising peripheral blood pressure [92]. This is not a mere correlation but supported by
evidence as lean individuals who received exogenous leptin exhibited hypertension [103].
This illuminates the hormone’s ability to contribute to cardiovascular health independent
of other contributing factors. In contrast, leptin’s signaling pathways do not always result
in adverse outcomes; elevated serum leptin was also linked to cardioprotection [104].
Evidence from clinical trial has shown that leptin concentration was inversely associated
with left ventricular and left atrial masses [101]. Further investigation is encouraged
to determine if these effects are occurring through a separate signaling pathway or a
mediated by its own receptor isoforms. Although some discrepancy still exists, there is
a consensus that both excessive leptin and leptin deficiency would have an impact on
cardiovascular health.

As a large molecular weight protein, leptin can be problematic for renal filtration. Hy-
perleptinemia is associated with impaired kidney function, including increased excretion of
urinary albumin and a reduced glomerular filtration rate [96–100] in patients with chronic
kidney diseases (CKD). Leptin is considered a uremic toxin, as elevated levels are associ-
ated with glomerular mesangial cell hypertrophy, fusion of podocytes, reduced metabolic
activity in the proximal convoluted tubule, and thickened basement membrane [96–100],
as observed in CKD patients. These consequences contribute to albuminuria, glomerular
sclerosis, and apoptosis of nephrons.

9. Nervous System

On a biochemical level, leptin triggers anorexigenic neurons in the hypothalamus to
synthesize pro-opiomelanocortin (POMC) and cocaine and amphetamine-related transcript
(CART), which are two polypeptides that are known to limit food intake and increase energy
expenditure [105–107]. Leptin has the power to simultaneously inhibit orexigenic neurons
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from synthesizing agouti-related-peptide (AGRP) and neuropeptide Y (NPY), which have
antagonistic effects on satiety and promote feeding behavior [102,108,109] in both rats and
mice. In other areas of the brain, leptin influences the lateral hypothalamus to decrease
the expression of orexins, or general neuropeptides involved in food regulation and stress.
Leptin is also known to directly activate a transcription factor called Steroidogenic factor-1
(SF-1) on neurons of the ventromedial hypothalamus regions [110,111] in rodents. When
mice with leptin receptors knock down in generated SF1 positive neurons, these mice
gained weight due to the loss of restriction on weight gain by leptin receptors [110,111]. It
is evident that leptin is at work in many areas of the brain to control orexigenic urges as
well as energy use. Additionally, the ventral tegmental area of the brain contains neurons
possessing the leptin receptor. Leptin signaling in this region is a well-validated pathway
involved in suppression of hunger [110,111]. Leptin receptors are ubiquitously expressed
across astrocytes and microglia as well, which are targets for pro-inflammatory signaling
within the hypothalamus [105,106,112–115]. The exact role of astrocyte and microglial
residing leptin receptor needs to be understood further.

10. Immune System

Leptin serves as a communication link between the metabolic and immune sys-
tems [107,116,117]. The formation of a sufficient line of defense against pathogens is
a highly energy-dependent process [118–121]. Thus, the presence of leptin receptors
on most immune cells represents a close interplay between the body’s metabolic status
and its ability to mount an immune response. With respect to innate immunity, leptin
increases the cytotoxicity of natural killer cells, as well as increases the activation of gran-
ulocytes, macrophages, and dendritic cells [122–128]. As for adaptive immunity, leptin
limits the proliferation of regulatory T cells but increases the production of naïve T cells
and B cells [53,129–133]. Although the exact mechanism is unclear, the presence of leptin
is believed to influence cell survival, as exogenous leptin was found to delay apoptosis
via intracellular JAK, NF-kB, and MAPK pathways [134–136]. Overall, leptin induces an
inflammatory response via immune cell activation, inducing chemotaxis and the release
of cytokines [53,129–133]. Likewise, leptin plays a role in immunity by maintaining the
balance of Type I and Type II Helper T cells [137–139]. Without sufficient levels of leptin,
the ability to create CD-4 cells is compromised [137–139].

11. Sexual Dimorphism and Leptin
11.1. Sex-Specific Effects of Leptin: On Females

Serum leptin levels rise and fall throughout a woman’s menstrual cycle. In fact,
estrogens induce leptin release [140–146]. The rise of estrogen that peaks mid-cycle is
accompanied by a mid-cycle peak in leptin [140–146]. No studies have been done to confirm
an ovarian contribution to serum leptin, but it seems that leptin levels can be used as a
direct measurement of ovarian follicular health and its ability to produce other hormones,
such as progesterone and LH. Based on observation in human subjects, during the menses
phase, the level of leptin is close to or slightly over 15 ng/mL. During the follicular phase,
the concentration rises to be over 15 ng/mL but less than 20 ng/mL [147]. During the
ovulatory phase, leptin levels peak along with estrogen levels and reach approximately
mid 20s (>20 ng/mL) [147]. With the luteal phase, the peak starts to decline and reaches
back to the level of 20 ng/mL [147].

Leptin’s interaction with progesterone and LH remains ambiguous. Although leptin
and progesterone show similar patterns of serum fluctuations during a healthy menstrual
cycle [140–146], there is no evidence of regulation at a pre or post-translational level. With
respect to LH, leptin receptor activation induces the STAT3 signaling pathway. It is the
STAT3 induction, rather than leptin itself, that is responsible for the LH surge [148–150].
Nonetheless, leptin contributes directly or indirectly to the regulation of the reproduc-
tive cycle.
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The female reproductive system is a hallmark example of the need for research sur-
rounding leptin expression. Normally, mammary epithelial cells have moderate expression
of the leptin receptor gene. However, carcinoma cells within mammary epithelium showed
a significant increase in leptin receptor expression [147,151,152]. It is important to note
that these cells produce leptin themselves, more so than the non-cancerous control. This
points to an autocrine signaling mechanism that may contribute to the proliferation and
metastasis in breast cancer populations [147,151,152]. Interestingly enough, the tumors did
not metastasize if they lacked the leptin or the leptin receptor gene [147,151,152], which
confirmed the hypothesis. More recent studies confirm the link between overexpression of
leptin and its receptor in both primary and metastatic cancers [153–157]. These findings
stress the importance of a healthy BMI and fat content in cancer prognosis. Likewise, it also
illustrates how obesity can be a detrimental factor for patients diagnosed with cancer, due
to metabolic effects and also leptin-mediated direct effects.

11.2. Sex-Specific Effects of Leptin: On Males

Even though leptin receptors have been identified in the testes [158–163], the effects
of leptin on the male reproductive system are less explored. Recent studies in rat models
have shown that leptin is a direct inhibitory signal for testicular steroidogenesis [164].
Associations between high BMI, hyperleptinemia, low serum testosterone, and impaired
sperm motility have been identified but not confirmed [158–163]. Serum leptin concentra-
tion following fasting has been shown to be lower in males (approximately >6.5 ng/mL
compared to over 15.0 ng/mL) in comparison to females, suggesting females have a higher
potential to generate leptin from comparable fat mass [147,165]. Interestingly, there has
been reports that for females, there is a permanent drop of total leptin below 20 ng/mL
in the post-menopausal stage [147,165]. Even for males, during their active adult life
(30–50 years), the levels of leptin have been reported to be just over 10 ng/mL, permanently
dropping to a level of just above 6 ng/mL after 50 years of age [147,165].

As such, the inhibitory influence of adipocyte leptin on androgens raises concern for
elevated BMI values and infertility. Additionally, the role of leptin receptor stimulation by
leptin released from both testicular and extra testicular tissues has not been well studied
and needs attention. Definitely, enhanced plasma leptin levels have been well associated
with both prostate cancer and testicular cancer in males, and the leptin receptor is a known
target for treating these cancers in the male population [166–168]. There is also evidence
that leptin is not a robust biomarker in males in comparison to females with the same types
of cancer [169]. In lung and hematological cancers, the leptin levels in females are shown
to have over 30 ng/mL, and for gastrointestinal and genitourinary cancers, the levels are
over 20 ng/mL, in comparison to males, where the levels are less than 10 ng/mL [169].
In comparison to healthy conditions, the plasma levels are still high in males following
cancer [169]. These observations can help us in drawing conclusions that leptin could be
considered as a marker for cancer in males and an even more robust marker in females.

12. Leptin and Systemic Health
12.1. Overall Systemic Metabolic Homeostasis

This section will highlight on the divergent effects of leptin, which may not fit into a
single organ system. The identification of leptin as a key player in metabolic homeostasis is
rooted in its systemic effects when one abstains from eating. When leptin levels fall as a
result of a fasted state, there is a neuroendocrine shift that promotes increased appetite with
a concomitant effect of decreased energy use [140–146,149]. This overall effect is achieved
by reducing testosterone, TSH, and the loss of LH hormone cycle in females [146,165–176].

Furthermore, leptin can induce the expression of insulin-like growth factor binding
protein [177–180]. The mechanism is described by Won et al. as being direct and indirect.
Leptin can directly and indirectly stimulate the expression of IGF-1 and IGF-2, based on
the evidence from reported studies [177] in a teleost fish model. As a result, there is an
enhanced glucose uptake and glycogen synthesis across the periphery. In skeletal muscle,
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leptin signaling could initially cause an increase in lactate production, but in contrast, it
is important to understand that chronic leptin could also decrease muscle triacylglycerol
accumulation [181–186], as per the observations from porcine myoblasts and rat and mice
skeletal muscle tissues.

Leptin Has a Crucial Role in Carbohydrate Metabolism

With respect to cellular glucose uptake, leptin shares many of its intermediate signaling
pathway with insulin. The overlap begins at the level of phosphatidylinositol-3 kinase, and
both hormones initiate the process of GLUT4 expression in skeletal muscle [187]. Since the
two hormones work together to produce similar effects, the isolated actions of leptin are
an ongoing investigation and is really tough to dissect. In the presence of normal levels
of insulin and glucagon, leptin treatment was found to increase the expression of GLUT4
transporters up to two-fold [188]. These findings suggest leptin is an enhancer of glucose
uptake and insulin sensitivity in skeletal muscle and also a negative regulator for GLUT4
recruitment, TBC1D1 and TBC1D4 [189], facilitating these effects. It is important to note
that when insulin was removed as a confounding variable, leptin was not able to upregulate
the insulin-stimulated uptake of 2-deoxyglucose or glycogen synthesis [190]. It appears
that insulin has a permissive effect on leptin, and leptin cannot achieve the physiological
effects mediated by insulin in the absence of an active insulin signaling. The combination of
insulin and leptin can increase glucose oxidation up to six-fold compared to a control or an
unstimulated state, whereas either hormone on its own displayed comparable increases in
glucose decarboxylation reactions [190]. Leptin’s target(s) in the carbohydrate metabolism
pathways are unclear, but previous research reports have offered some insight. Leptin
was found to increase pyruvate dehydrogenase activity and activity of the Krebs cycle.
These findings were significant and even higher than that observed with insulin per se [190].
The aforementioned evidence validates a crucial role of leptin in systemic carbohydrate
metabolism, but the extent to which it is insulin-independent is unknown and needs
more clarity.

In the liver, leptin has been shown to have a negative effect on gluconeogenesis [191,192].
Also, synthesis of cholesterol and bile acids are also known to be modulated by leptin either
directly or through the central effects [187,190,193,194]. Acute and chronic leptin has been
shown to have differential effects on fatty acid uptake and utilization [188,189,195–197].
Due to the ability in regulating glucose, fatty acids, cholesterol, and bile acids, leptin is
considered as a crucial regulator of metabolic and systemic health.

12.2. Leptin Imbalance and Associated Diseases

A reduction in adipose tissue mass is inevitable when daily energy expenditure ex-
ceeds energy intake. When one’s adipose tissue mass falls below a certain threshold and
leptin levels are consequently decreased, dysregulation of the HPA axis will ensue [198].
The cessation of menstrual periods, along with an elevated risk of osteoporosis, is linked
to hypoleptinemia [199–203]. Although it is not confirmed that leptin is the sole con-
tributor to these manifestations of decreased female hormone levels, it is considered a
necessary factor [199–203]. Leptin replacement therapy was successful in restoring healthy
menstruation cycles in those with adipose mass below an optimal threshold, signifying the
importance of this hormone [202,204,205].

Congenital leptin deficiencies exist, even though it is rare [206]. Besides obesity and
presence of excess adiposity, leptin deficiency also results in decreased insulin sensitivity,
unfavorable lipid profile, and hepatic steatosis [9,173]. Exogenous leptin administration
has been confirmed to improve all metabolic parameters and is the first line of treatment in
these individuals [173].

In contrast, hyperlipidemia conditions are a growing concern for chronic myocar-
dial health and homeostasis [101,104]. Elevated circulating leptin potentiates athero-
genic factors, including inflammation, hypertrophy, platelet aggregation, proliferation
of vascular smooth muscle, formation of reactive oxygen species, and endothelial cell
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dysfunction [77–81,84,191,194]. Hyperlipidemia goes hand in hand with obesity-related
diseases, making it a major risk factor for atherosclerosis and heart disease [84,191,194].
Polyakova et al. confirmed prolonged hyperleptinemia led to an increase in blood pressure,
heart rate, myocardial hypertrophy, systemic inflammation, and frequency of ischemic
arrhythmias [207].

Given the anorexigenic effects of leptin in the brain, it has become a strong contender
in the treatment of obesity. Despite efforts to reduce weight gain with exogenous leptin,
there is failure to generate a physiological response in obese patients [208]. The term
“leptin resistance” is used to explain the absence of expected physiological response to
hyperleptinemia in these obese patients [208]. It suggests that hyperleptinemia may be
a driving force for obesity, as chronic treatment with exogenous leptin that exceeds the
individual’s required limit significantly increases body weight [208]. The nature of hy-
perlipidemia is also dependent on diet composition, which highlights the multifactorial
aspects of metabolic management [209]. In mouse models, only a high-fat, high-sugar diet
increased serum leptin values without a corresponding increase in NPY mRNA expression;
thus, even though leptin was elevated, the mice remained hyperphagic [209]. This is a
salient finding because it suggests both high-sugar and high-fat diets could be possible
factors for leptin resistance. It opens the door for new research to find other possible factors
that may introduce leptin resistance.

12.3. Genetic Predominance Affecting Leptin Resistance and Its Role in Obesity

Genetics play an important role in inducing obesity and leptin resistance [210–212].
Some of the common genes that contribute towards obesity and subsequently leptin re-
sistance are: mutations in leptin (LEP), leptin receptor (LEPR), Melanocortin 4 receptor
(MC4R), Proopiomelanocortin (POMC), Brain-derived neurotrophic factor (BDNF), Pro-
protein convertase subtilisin/kexin type 1 (PCSK1), and peroxisome proliferator-activated
receptor (PPARs) [213–219]. Broadly, all these mutations have been associated with hy-
perphagia, metabolic dysregulation, and altered gut brain signaling, followed by weight
gain and insulin resistance [210–212]. Excess circulatory leptin levels, along with defective
leptin receptor signaling, could lead to leptin resistance, which further aggravates obesity,
allowing for the initiation of a vicious positive feedback loop [213–219]. Roughly around
eight different mutations have been reported in the leptin gene and with leptin receptors,
and few single nucleotide polymorphisms have been reported either in cytokine homology
domain or in their fibronectin type 3 domain [210–212]. MC4R acts as a major mediator
in CNS for the anorexic effect of leptin [213–222]. To date, over 370 single nucleotide
variations have been reported for MC4R, and among these over 65 variations have been
predicted to be highly pathogenic in clinical subjects [213–219]. Even though not frequent,
the monogenic mutations form the predominant genetic reason for causing obesity and
leptin resistance in early childhood [220–222], which contributes to childhood obesity. Most
of the above-mentioned gene mutations are known to influence leptin and its associated
receptor signaling leading to pathogenesis of childhood obesity with severe metabolic
complications [210–212]. A detailed understanding of mutations in these targets could help
in alleviating childhood obesity.

13. Leptin as a Diagnostic and Therapeutic Tool
13.1. Diagnostic Tool

Fluctuations in the expression of leptin and its receptor in various disease conditions
raises the possibility of its potential as a diagnostic biomarker. One example is using serum
leptin as an additional anthropometric index to classify obesity. A study has revealed
that elevated levels of serum leptin were positively correlated to standard markers of
obesity and showed the strongest correlation with hip circumference [210]. Currently,
body mass index remains the standard for classifying individual obesity, but this value has
been identified as an imperfect representation of fat mass [211]. Routine measurements
with serum leptin concentration may provide a more accurate depiction of individual fat
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mass, as long as further studies establish appropriate cut-off points for normal, overweight,
and obese patients. Another example of the use of leptin as a biomarker can be found in
dermatology. Significant deviations from normal serum leptin concentration are currently
being investigated in psoriasis. Elevations in serum leptin are being used as a biomarker
for both the diagnosis and severity of psoriasis [212,213]. One must consider serum leptin
is not sufficient to make a diagnosis alone, but at the same time, its use as a diagnostic
marker may aid physicians in solidifying a differential diagnosis.

Further, research is underway to investigate the use of leptin as a biomarker of ma-
lignancy. Serum leptin has been found to be significantly elevated in cases of prostate
cancer and breast cancer, independent of obesity [214,215]. Surpassing the mere detection
of cancer, leptin expression was significantly correlated to the stage of metastasis, as well
as the degree of lymph node development [216]. With respect to colorectal cancer, immuno-
histochemical measures of leptin were used to accurately predict the cancer prognosis,
independent of other indicators [216]. These findings were significant as it introduces leptin
as a marker of clinical outcome. It is important to note that analysis of leptin can also be
done using patient saliva. In the first study of its kind, researchers identified leptin as a
preoperative indicator of parotid tumors; salivary leptin was used to distinguish tumor
patients from healthy individuals [217]. The value of leptin as part of a cancer diagnostic
workup is an interesting avenue to pursue.

Leptin may be used in conjunction with other hormones or cytokines to elevate its
diagnostic value. For example, the ratio of leptin to adiponectin (or the inverse) is of
interest [218]. These two hormones have contrasting effects on the manifestation of inflam-
matory processes, and thus the development of metabolic syndrome. Although metabolic
syndrome has variable definitions, abdominal obesity is an obligatory component; this pro-
vides rationale for leptin to be evaluated as a diagnostic tool [218]. The leptin-adiponectin
ratio (LAR) has been confirmed to be a better diagnostic marker for metabolic syndrome
than either hormone on its own, that is elevated leptin levels or decreased adiponectin
levels [218]. Additionally, the LAR were more correlated with current diagnostic values
such as body mass index, body adiposity, and waist circumference in comparison to another
marker for dysfunctional adipose, the visceral adiposity index [219]. A standardized refer-
ence range has yet to be set for LAR. Frühbeck et al. set a value that accurately accounted
for cardiometabolic risk; patients with obesity, type II diabetes mellitus, and metabolic syn-
drome all had leptin-adiponectin relationships that met the criteria for increased risk [219].
Although the LAR is not ordinarily used, it may serve as an estimator that can potentially
account for a larger number of identified subjects at risk than just considering leptin alone.

13.2. Therapeutic Tool

The form of leptin that is currently available for human therapy is recombinant me-
thionyl leptin, or metreleptin. It has been approved by the Food and Drug Administration
to treat congenital or acquired lipodystrophy, with the purpose of normalizing blood
lipids [220]. The drug aims to reduce triglycerides and increase HDL and has been suc-
cessful for leptin-deficient adults [220,221]. Congenital leptin deficiency is very rare, but
leptin replacement therapy has been shown to also decrease body weight, total fat mass,
food intake, and plasma insulin for this small cohort of individuals [221]. Additionally,
leptin replacement therapy is being evaluated as a viable treatment option for hypotha-
lamic amenorrhea. In these patients, their state of energy deprivation is characterized by
reduced fat mass and thus serum leptin concentration. Exogenous leptin was found to
resolve anovulation and normalize thyroid, adrenal, and gonadal axes in multiple drug
trials [222,223]. For these reasons, leptin is a promising therapeutic agent in the realm of
women’s health.

It is worth mentioning the efforts being made to find a use for leptin in the treatment
of diabetes. Regarding type I diabetes, leptin administration was found to improve blood
sugar levels, increase glucose uptake, and modulate the autoimmune destruction of pancre-
atic beta cells. Although persuasive, these findings were true for animal models but have
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yet to be replicated in clinical trials [224]. Conversely, clinical trials have been underway
for type II diabetes. Therapeutic leptin did not elicit significant changes in body weight,
body composition, or insulin sensitivity [225]. One must consider leptin resistance in these
participants, as individuals were mostly overweight and obese. Perhaps recombinant leptin
in non-obese individuals with type II diabetes would have a different outcomes, but future
research is needed to confirm or deny these speculations.

14. Conclusions

To date, the influence of leptin and leptin receptor expression and regulation has been
centered around obesity. Given that plasma leptin concentration is directly correlated to
elevated body mass index and fat mass, it is rational to categorize leptin only as a weight-
regulating peptide hormone [226]. In reality, the peripheral expression of leptin and its
receptor may warrant extra obesogenic and anorexic effects but requiring thorough investi-
gation [106,207,208]. The comorbidities associated with elevated fat mass may be partially
explained from the peripheral pleiotropic effects of leptin [106,207,208]. The purpose of
this review is to remove the fixation of leptin just as a target for only obesity research and
instead to consider leptin as a connecting signal across multiple organ systems regulating
metabolism, inflammation, and systemic homeostasis (Summary diagram–Figure 1). Our
review portrays the diverse function of this peptide hormone in different organ systems.
This review also reveals a gender-specific role for leptin with pronounced effects in females
especially in the pre-menopausal stage or during the active reproductive cycle in compari-
son to age-matched male counterparts. Even though leptin levels can be considered as a
systemic marker for obesity and metabolic syndrome in both genders, it is considered a
more reliable diagnostic marker for different types of cancers in females.
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Figure 1. An illustration of the broad effects of leptin signaling within the human body. The role
of leptin as an anorexic agent is well known. The role of leptin in regulating various physiological
systems under normal and pathological conditions are explained here, including cardiovascular,
gastro-intestinal, renal, immune, and skeletal systems.
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As a clinical recommendation, leptin levels can be considered as an ideal diagnostic
tool and marker for insulin resistance and metabolic syndrome in both genders, but leptin
levels could serve as an appropriate marker for detecting cancer in females. Considering
the high basal levels of serum levels in women during the pre-menopausal stage, it could
play a regulatory role in systemic metabolic and endocrine functions. Thus, maintaining
appropriate leptin levels in females could be quite crucial for their metabolic and systemic
health. Many of the actions of leptin from head to toe in both genders are still unclear. Inte-
grating information from basic and clinical studies should help us in revealing the unknown
systemic role of this peptide hormone, both as a biomarker and as a therapeutic target.
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