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MicroRNAs (miRNAs) are small endogenous noncoding RNAs 
that direct posttranscriptional regulation of gene expression. 
Mature miRNAs function as components of RNA-induced 
silencing complex and interact directly with the 3’-untranslated 
region of the target mRNA. The target mRNA is then cleaved 
when the full complementarity of miRNA-mRNA is achieved. 
For partial complementarity, the translation of the target mRNA 
is repressed. It has been estimated that about one-third of human 
genes are regulated by miRNAs.[1] Deregulation of miRNAs has 
been found in many diseases including cancer, neurologic disease, 
metabolic disorders, and cardiovascular disease.

Due to the important function of miRNAs, miRNA therapy 
has attracted significant attention. miRNA therapy could be 
categorized into two mechanisms, according to deregulation 
status of the target mRNA: miRNA replacement therapy that 
restores the miRNA expression by transduction of exogenous 
miRNA, and miRNA inhibition therapy that inhibits the miRNA 
expression by designing anti-miRNA oligonucleotides known as 
antagomirs.[2,3] Currently, both viral and nonviral miRNA delivery 
systems are used, and there are advantages and disadvantages 
for each approach.

Viral-based systems usually use retroviruses, lentiviruses, and 
adenoviruses or adeno-associated viruses (AVV) as delivery 
vectors.[4] These viral vectors are modified in some specific 
genomic area so that they are unable to replicate, and their 
safety are increased. The advantage of this delivery system was 
to provide high transfection or infection efficiency, and a high 
level of constant expression of miRNAs or antagomirs.

Retroviral vectors are frequently employed to deliver miRNAs 
into somatic and germline cells. Retroviruses belong to RNA virus 
family with a genome size of about 7-11 KB.[5] The retroviral 
genes are removed in the constructed vectors so that space up to 
8 KB is made for foreign genetic sequences. Since, the genetic 
materials carried by the retroviral vectors are integrated into host 
cell genomic DNAs during the mitotic phase of cell cycle; these 
vectors are utilized for infecting dividing cells only. Integration 
of exogenous sequence into host genome enables the stable 

expression of miRNA. The miRNA expression might be increased 
greatly by retroviral infection. For example, miR-138 was induced 
about more than 1,000-fold in mouse embryonic fibroblasts in 
order to enhance the production of pluripotent stem cells.[6] The 
miRNA inhibition therapy is also very efficient in the retroviral 
system. The miR-205 was almost completely repressed in the 
skin stem cells.[7]

Lentiviruses are a subgroup of retroviruses, which integrate 
foreign genetic material into the host genome. Similar to 
retroviral vectors, lentiviral vectors are able to transfer about 
8 KB genetic sequences into host cells. In contrast to retroviruses, 
lentiviruses can infect both dividing and nondividing cells due 
to their pathogenic characteristics.[8] Therefore, lentiviral vectors 
are frequently employed to infect postmitotic and terminal 
differentiated cells to treat neurologic disorders. The lentiviral 
system produces high transfection efficiency and long-term stable 
expression of introduced miRNAs. A study found that miR-143 
was increased about 2,500-fold in corneal epithelial progenitor 
cells.[9]

Adenoviruses are double-stranded DNA viruses and contain 
more than 100 serotypes. Compared to retroviral vectors, 
adenoviral systems can transfer up to 38 KB foreign DNA, 
but are unable to integrate the exogenous sequences into host 
genomic DNA. In contrast to adenoviruses, AAVs are more 
frequently utilized in miRNA gene delivery. AAVs are single-
stranded DNA viruses, which consist of 12 primate serotypes 
(AAV1-AAV12). AAV vectors could only accommodate up to 
4.8 KB exogenous genetic material, which limits its utilization 
in large gene delivery. However, AAV vectors are favorable in 
transferring miRNAs due to the small size of miRNA genes.[10] 
Similar to lentiviruses, adenoviruses, and AAVs can transfect both 
dividing and nondividing cells. The miR-375 was increased about 
17-fold in alveolar epithelial cells using an adenoviral vector.[11] 
To induce cardiac regeneration, miR-590 and miR-199a were 
delivered into neonatal mouse heart by an rAAV9 vector. It was 
found that miR-590 was induced about 240-fold, and miR-199a 
was increased 3.5-fold compared to the empty rAAV9 vectors.[12]
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Although, the viral vectors are replication-deficient, there are 
some problems that restrict their usages such as toxicity due to the 
production of toxin, immunogenicity that induce inflammatory 
response and tissue degeneration, and mutations caused by the 
inserted sequence. To avoid these limitations, nonviral delivery 
systems are widely used.

In contrast to viral delivery systems, nonviral systems are much 
less toxic, immunogenic, and no limitation of the size on the 
transferred DNA, but lower transfection efficiency. Effective 
nonviral delivery systems should transport the exogenous 
miRNAs or miRNA-expressing vectors, and protect these 
sequences from cellular nuclease-mediated degradation nonviral 
delivery systems consist of physical approaches and chemical 
approaches. Physical approaches exert external forces to make the 
cell membrane transient permeable for the gene delivery, which 
include gene gun, electroporation, hydrodynamic, ultrasound, 
and laser-based energy. Physical methods might damage the cell 
integrity and cause high apoptotic rate, and are hard to prevent 
nuclease cleavage. Physical approaches are usually applied 
in vitro studies and seldom used in the miRNA delivery.[4] 
Chemical methods consist of lipid-based, polymer-based, and 
inorganic carriers.[3,13]

Lipid-based approaches utilize the lipid/nucleic acid complexes, 
named lipoplexes or liposome as delivery carriers. Liposomes 
are composed of the membrane-like surface, and nucleic acids 
encapsulated inside. There are three types of liposomes based on 
the charges: Cationic, anionic, or neutral. Cationic lipoplexes are 
most commonly used in nonviral delivery systems due to their 
unique characteristics including ease of production, high affinity 
with the cell membrane, nonpathogenic, and nonimmunogenic 
response. Systemic delivery of miR-29b using cationic lipoplex 
(DOTMA: Cholesterol: TPGS) into nonsmall cell lung cancer cells 
increased the expression of miR-29b by 5-fold and decreased the 
tumor growth rate by about 60%.[14] There are many commercially 
available cationic lipoplex for miRNA delivery, which have been 
reported to achieve favorable results, such as Lipofectamine® RNAi-
MAX (Invitrogen),[15] SilentFect™ (Bio-Rad),[16] DharmaFECT® 
(Dharmacon),[17] and SiPORT™ (Invitrogen).[18]

The most critical disadvantage of liposome delivery system is the 
short half-lives (several hours) of the nanoparticles in sera due to 
nonspecific binding to serum proteins. To avoid the instability 
caused by the interaction of cationic lipids with serum proteins, 
anionic and neutral liposomes are sometimes used in miRNA 
delivery, such as miR-29b delivery in acute myeloid leukemia by 
anionic lipoplexes,[19] and miR-34a transfer in lymphoma through 
neutral lipids.[20] Conjugation of the lipids with hydrophilic 
and flexible polyethylene glycol (PEG) could greatly increase 
their stability and result in long half-lives (up to 72 h in sera).[21] 
Pramanik et al. constructed lipid nanoparticle by using DOTAP: 
Cholesterol: DSPE-PEG-OMe at a 1:1:0.2 ratio to deliver miR-
143/145 cluster and miR-34a into pancreatic cancer xenograft 
mice and found increased accumulation of nanoparticles in tumor 
tissues and decreased tumor size.[22]

Polymer-based approaches utilize polyethylenimine (PEI), poly 
(lactide-co-glycolide) (PLGA), poly (amidoamine) (PAMAMs) 
dendrimers, or cell-penetrating peptide (CPP) as delivery carriers. 
Compared to high molecular weight PEIs and low molecular 
weight PEIs show lower levels of damage to cell membranes 
and less cytotoxic to cells. A study used low molecular weight 
PEIs to deliver miR-33a mimics and miR-145 into colon cancer 
xenograft mice, resulting in decreased tumor growth and 
increased cell death.[23] However, the transfection efficiency is 
really low and PEIs are poorly biodegradable. PLGA is Food 
and Drug Administration-approved biodegradable copolyester 
for drug delivery and used in some miRNA therapy studies like 
delivery anti-miRNAs.[24] The hydrophobic nature of PLGA 
decreases the miRNA delivery effectiveness. PAMAMs are 
positively charged polymers and have high transfection efficiency 
compared to other polymers. PAMAM dendrimer — anti-miR-21 
complexes decreased the growth of glioblastoma cells.[25] The 
major disadvantage of PAMAM dendrimers is the accumulation 
of the polymers in the liver.[26] Besides these synthetic polymers 
discussed above, natural derived polymers like CPPs are used for 
miRNA carriers. For example, an arginine-rich CPP from natural 
protamine effectively transferred miR-29b into osteogenic stem 
cells.[27] In contrast to synthetic polymers, CPPs are less toxic but 
prone to be degraded in sera.

In contrast to lipids and polymers, few studies utilize inorganic 
materials as miRNA gene delivery. Current inorganic miRNA 
vectors include gold nanoparticles (AuNPs), Fe3O4-based 
nanoparticles,[28] and silica-based nanoparticles[29] among which 
GNPs are most frequently used. AuNPs have been reported to 
successfully deliver miR-130b[30] and anti-miR29b[31] into tumor 
cells. The inorganic carriers have high stability in vivo and are 
free of microbial attack. However, the interactions between 
the carriers and nucleic acids are weak. To solve this problem, 
inorganic and organic hybrid materials are tried. For example, 
AuNP10 was conjugated with PEG0.5 to deliver miR-1 into cancer 
cells and showed higher transfection efficiency, lower toxicity, and 
longer half-lives compared to lipofection.[32]

Viral and nonviral miRNA delivery systems have both advantages 
and disadvantages: Viral vectors produce higher transfection 
efficiency but are more toxic and immunogenic, whereas 
nonviral carriers have lower delivery efficiency but are much 
safer. Therefore, effective and safe miRNA delivery systems are 
in urgent need. The design of future delivery systems should 
combine the advantages of both systems to employ more miRNA 
therapies from bench to bedside.
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