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Abstract

Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeo-
stasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy
have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming
resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy
inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors
have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemothera-
peutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autoph-
agy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination
therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of
current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will

open new possibilities for overcoming drug resistance and improving clinical outcomes.
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INTRODUCTION

Macroautophagy (hereafter referred to as autophagy) is a
highly conserved catabolic process by which damaged or un-
necessary proteins or organelles are delivered to lysosomes
for degradation, leading to maintenance of intracellular ho-
meostasis (Levy et al., 2017). Autophagic process involves
formation of double-membraned vesicles known as autopha-
gosomes that can engulf proteins and organelles prior to de-
livery to lysosome (Mizushima, 2007; Mizushima et al., 2011).
Autophagy occurs at a basal level in all cells. It is induced
by various signals and cellular stresses such as hypoxia,
starvation, and different cancer therapies as a cytoprotec-
tive mechanism. Autophagy has a context-dependent role in
cancer. It is closely related to the occurrence and drug resis-
tance of cancer (Eskelinen, 2011; Towers and Thorburn, 2016;
Chang and Zou, 2020). Autophagy can limit oxidative stress,
chronic tissue damage, and oncogenic signaling by prevent-

ing toxic accumulation of damaged proteins and organelles,
particularly mitochondria, thereby inhibiting tumorigenesis
in the early stage of tumor formation (White et al., 2015).
In contrast, some cancers are dependent on autophagy for
survival by using autophagy-mediating recycling to maintain
mitochondria function and energy homeostasis because of
elevated metabolic demand of cancer growth. In established
tumors, autophagy can be induced as a response to nutrient
deprivation, energy deficits, hypoxia, and chemotherapeutics
drugs, finally resulting in acquired resistance in tumors. Some
tumor cell types with high basal autophagic flux might show
intrinsic drug resistance. Conversely, persistent or excessive
autophagy can induce autophagic cell death in cancer therapy
(Puissant et al., 2010; Aryal et al., 2014). Clinical interventions
to manipulate autophagy in cancer treatment are underway
by mainly focusing on inhibiting autophagy, although such in-
terventions are in contradiction with dual roles of autophagy.
In this review, we will focus on application of autophagy in-
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Fig. 1. Schematic overview of core autophagic process.

hibitors in cancer treatment. First, we will provide important
targets of autophagic process and impact of autophagy-relat-
ed gene deficiency in genetically engineered mice as basic
information. Pharmacological inhibitors developed for target-
ing autophagic process and their efficacies in preclinical and
clinical studies are then reviewed. Specially, we will focus on
combination therapies of autophagy inhibitors with chemo-
therapeutic agents to improve therapeutic benefits of current
cancer therapies.

CORE PROCESS OF AUTOPHAGY

Autophagic process can be divided into distinct stages:
initiation, nucleation of the autophagosome, expansion of the
autophagosome membrane and maturation, docking and fu-
sion with the lysosome for cargo degradation, and degrada-
tion (Fig. 1). Formation and turnover of autophagosome are
executed by highly conserved autophagy-related (ATG) pro-
teins (Mizushima et al., 2011). Initiating signals of autophagy
to form the autophagosome originate from activated Unc-51-
like kinase 1 (ULK1, human homolog of yeast ATG1). ULK1
forms a pre-initiation complex with ATG13, ATG101, and focal
adhesion kinase family-interacting protein 200 (FIP200) un-
der stress conditions (Carlsson and Simonsen, 2015). ULK1
initiation complex then recruits class Ill PI3K nucleation com-
plex composed of BECLIN 1 (human homolog of yeast ATG6),
ATG14, type lll phosphatidylinositol 3-kinase/vacuolar protein
sorting 34 (class Il PI3K/VPS34), autophagy and BECLIN
1 regulator-1 (AMBRA1), and UV radiation resistance-asso-
ciated gene protein (UVRAG) by phosphorylating BECLIN 1
to activate autophagy-specific VPS34 (Russell et al., 2013).
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BIF-1 is also involved in the formation of nucleation complex
by binding to UVRAG (Takahashi et al., 2007). The formed
phosphatidylinositol 3-phosphate (PI3P)-binding complex
can then direct distribution of the machinery that enable au-
tophagosome formation (Hansen et al., 2018). In the ATG12
conjugation system, ATG12 is attached to ATGS5, which is
then attached to ATG16L1, followed by dimerization and in-
teraction with the PI3P-binding complex through WD repeat
domain phosphoinositide-interacting proteins (WIPIs; ATG18
in yeast) and zinc-finger FYVE domain-containing protein 1
(DFCP1). Under catalysis of E1-like enzyme ATG7 and E2-
like enzyme ATG10, the formed ATG5/ATG12/ATG16L1 (E3)
complex can facilitate recruitment and conversion of precursor
pro-microtubule-associated protein 1 light chain 3 (LC3; ATG8
in yeast) to membrane bound LC3-Il form (LC3 conjugation).
In the LC3 conjugation system, pro-LC3 is cleaved by prote-
ase ATG4 to form cytosolic LC3-I, which is then recognized
by E1-like enzyme ATG7 and E2-like enzyme ATG3, leading
to conjugation with phosphatidylethanolamine (PE) to form
LC3-II (Ichimura et al., 2000; Kabeya et al., 2000; Hanada et
al., 2007; Aman et al., 2021). This conjugation is incorporated
into pre-autophagosomal and autophagosomal membranes,
where LC3 can interact with cargo receptors such as seques-
tosome 1 (SQSTM1/p62) and neighbor of BRCA1 gene 1
(Nbr1) carrying LIRs (LC3-interacting regions) to target them
for autophagic degradation (Birgisdottir et al., 2013; Slobodkin
and Elazar, 2013). LC3-ll is widely used as a marker for as-
sessing autophagy due to its abundance in autophagosomal
membranes (Schaaf et al., 2016). Following expansion and
maturation, LC3-| is released from autophagosomes by de-
conjugation through the action of ATG4 (Tanida et al., 2004).
Sealed autophagosome then merges with lysosome through
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Table 1. In vivo genetic studies of autophagy-related genes

Autophagic Genetic
Target L Phenotypes Reference
stage modification
Initiation ULKA1 KO Viable without overt development defects; delayed Kundu et al., 2008
mitochondrial clearance in reticulocytes
ULK2 KO Normal development and fertile Lee and Tournier, 2011
ATG13 KO Embryonic lethality with growth retardation and Kaizuka and Mizushima, 2016
myocardial growth defects (E17.5)
ATG101 N/A
FIP200 KO Embryonic lethality with defective heart and liver Gan et al., 2006
development (E14.5)
Nucleation BECLIN 1 KO Embryonic lethality (E8.5) Yue et al., 2003
High incidence of spontaneous tumors as in heterozygote
ATG14 KO Neonatal lethality https://www.mousephenotype.org/
VPS15 KO Embryonic lethality (E7.5) Nemazanyy et al., 2013
VPS34 KO Embryonic lethality with abnormal embryogenesis (E7.5- Zhou et al., 2011
E8.5)
UVRAG KO Embryonic lethality (E7.5) Afzal et al., 2015
BIF-1 KO Normal development and high incidence of spontaneous Takahashi et al., 2007
tumorigenesis
AMBRA1 KO Embryonic lethality with neural tube defect (E18.5*) Fimia et al., 2007
Expansion LC3B KO Normal development and fertile Cann et al., 2008
ATG3 KO Neonatal lethality (1 d) Sou et al., 2008
ATG4A KO Close-to-normal development https://www.mousephenotype.org/
ATG4B KO Close-to-normal development Marino et al., 2010
ATG4C KO Close-to-normal development https://www.mousephenotype.org/
ATG5 KO Neonatal lethality (1 d) Kuma et al., 2004
ATG7 KO Neonatal lethality (1 d) Komatsu et al., 2005
ATG10 N/A
ATG12 KO Neonatal lethality (1 d) Malhotra et al., 2015
ATG16L1 KO Neonatal lethality (1 d) Saitoh et al., 2008
Fusion STX17 N/A
SNAP29 KO Neonatal lethality with ichthyotic phenotype (1 d) Schiller et al., 2016
VAMP8 KO Partial lethality and growth retardation with defect in Wang et al., 2004
secretion of the pancreas
RAB7 KO Embryonic lethality (E7-8) Kawamura et al., 2012
LAMP2 KO Increased mortality between (20-40 d) with cardio- Tanaka et al., 2000
myopathy
EPG5 KO Growth retardation and reduced survival with selective Zhao et al., 2013

neuronal vulnerability to degeneration

N/A, not available; *, available at https://www.mousephenotype.org/.

assistance of SNARE complex (STX17, SNAP29, VAMP8)
and tethering complex (HOPS complex, RAB7, EPG5, and
LAMP2) to form autolysosome (Yu et al., 2018; Xiao et al.,
2021). Sequestered autophagic bodies and the inner mem-
brane are then released into the lumen, where they are
exposed to acidic hydrolases and lipases for degradation
(Mizushima, 2007). Finally, autophagy is completed by allow-
ing the resulting macromolecules to be recycled for reuse in
the biosynthesis of essential components required for survival
under stress conditions (Yorimitsu and Klionsky, 2005).

PHENOTYPES OF AUTOPHAGY-DEFICIENT MICE

Atg gene knockout mice are useful for understanding physi-

ological roles of autophagy in vivo. Among core Atg genes in-
volved in autophagosome formation in mammals, 25 of them
have been knocked out in mice (Table 1). Three mortality pat-
terns of Atg knockout mice have been observed. Some die
at embryonic period. Some die within 1 d after birth. Some
show vitality without obvious abnormalities. Atg gene (such
as Atg4a, Atg4b, Atg4c, Lc3b, Ulk1, and Ulk2) knockout mice
show no obvious defective phenotypes with close-to-normal
development partly due to functional redundancy (Cann et al.,
2008; Kundu et al., 2008; Marino et al., 2010; Lee and Tourni-
er, 2011; Groza et al., 2022) (International Mouse Phenotyping
Consortium [IMPC], https://www.mousephenotype.org/). How-
ever, Ulk1/Ulk2 double knockout mice show neonatal lethal-
ity (Cheong et al., 2014). Mice with deletion of nonredundant
genes (Atg3, Atg5, Atg7, Atg12, Atg14, and Atg16I1) involved
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in ATG12 and LC3 conjugation systems after nucleation stage
show neonatal lethality (Kuma et al., 2004; Komatsu et al.,
2005; Saitoh et al., 2008; Sou et al., 2008; Malhotra et al.,
2015) (https://www.mousephenotype.org/), whereas mice with
knockout of nonredundant genes (Fip200, Atg13, Beclin 1,
Vps15, Vps34, Uvrag, and Ambra1) involved in earlier stages
before expansion stage are embryonic lethal (Yue et al., 2003;
Gan et al., 2006; Fimia et al., 2007; Zhou et al., 2011; Nema-
zanyy et al., 2013; Afzal et al., 2015; Kaizuka and Mizushi-
ma, 2016). Among genes involved in fusion stage, knockout
of Snap29 gene encoding a component of SNARE complex
shows neonatal lethality and deletion of Vamp8 gene encod-
ing another component of SNARE complex shows partial le-
thality and growth retardation with defect in secretion of the
pancreas (Wang et al., 2004; Schiller et al., 2016). Deletion
of genes (Lamp2 and Epgb) of the tethering complex shows
partial lethality, retardation, or reduced survival (Tanaka et al.,
2000; Zhao et al., 2013). Loss of Rab7 gene encoding another
factor of the tethering complex leads to embryonic lethality
(Kawamura et al., 2012). Thus, most autophagy-related genes
are very important for embryonic and neonatal development.
Reasons for phenotypic differences between whole-body
knockout mice of Atg genes are still questionable. No genetic
study has been reported for Atg101, Atg10, or Stx17 gene.
While biallelic deletion of Beclin 1 gene in mice shows em-
bryonic lethality, monoallelic deletion of Beclin 1 shows normal
development with high incidence of spontaneous tumorigen-
esis and reduced autophagy, indicating that Beclin 1 gene is
essential for early embryonic development and a haploinsuf-
ficient tumor suppressor (Qu et al., 2003; Yue et al., 2003). In
case of Bif-1 gene, biallelic deletion in whole body leads to
normal development with high incidence of spontaneous tu-
morigenesis (Takahashi et al., 2007). Mice with systemic mo-
saic deletion of Atg5 and mice with liver-specific Atg7 homolo-
gous knockout also develop benign liver adenomas, which
originate from autophagy-deficient hepatocytes (Takamura
et al., 2011). Thus, some Atg genes are necessary for sup-
pression of spontaneous tumorigenesis through a cell-intrinsic
protective mechanism. Conversely, autophagy can promote
tumor growth by suppressing p53 response, maintaining mi-
tochondrial function, sustaining metabolic homeostasis and
survival during stress, and preventing progression of tumor to
benign oncocytomas (Kimmelman, 2011; Guo et al., 2013b).
Deletion of Atgb or Atg7 gene in KRAS-transformed cells with
proficient autophagy can impair their tumorigenicity by failing
to maintain levels of tricarboxylic acid cycle metabolite and
mitochondrial respiration under nutrient starvation, which cre-
ates an energy crisis that threatens survival (Guo et al., 2011;
Yang et al., 2011). Deletion of Afg7 also alters progression
of lung cancer cells with KRAS (G12D) and Trp53 mutations
by developing into oncocytomas instead of adenomas and
carcinomas with suppressed proliferation and reduced tumor
burden (Guo et al., 2013a). These observations support that
autophagy plays a double-edged sword role in suppressing tu-
mor initiation and in promoting survival and growth of tumors.

PHARMACOLOGICAL INHIBITORS DIRECTLY
TARGETING AUTOPHAGY FORMATION

The process of autophagy is divided into four distinct stag-
es (Fig. 1). Each stage has potential targets for inhibiting au-
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tophagy. Pharmacological inhibitors that target tumor growth
and autophagy formation are summarized in Table 2. At the
initiation stage, ULK1 has been mainly studied to develop in-
hibitors to interfere with growth of various cancer types includ-
ing lung cancer and leukemia both in vitro and in vivo (Tang
et al., 2017; Qiu et al., 2020). SBI-0206965, MRT68921, and
ULK101 have been found as ULK1 kinase inhibitors showing
cytotoxicity against various cancer cells in vitro (Tang et al.,
2017; Martin et al., 2018; Chen et al., 2020; Qiu et al., 2020).
In case of MRT68921, its effects on tumor growth inhibition
and prolonged survival have been shown in H460 lung cancer
and MNK45 gastric cancer xenografted animal models. It has
dual targets, NUAK1 and ULK1 (Martin et al., 2018).

At the nucleation stage, VPS34/class Il PI3K has been ex-
tensively studied as a main target for autophagy formation.
Several kinase inhibitors including 3-MA, SAR405, SB02024,
and VPS34-IN1 have been developed for inhibiting autophagy
and tumor growth as shown in Table 2. These compounds
show a good relevance to inhibition of autophagy formation
and suppression of in vitro tumor cell growth in several cancer
types including breast cancer and leukemia. 3-MA, SAR405,
and SB02024 show inhibitory effects on tumor growth in vivo
with extended survival in xenograft animal models (Dyczynski
et al., 2018; Noman et al., 2020; Chen and Yao, 2021).

At the expansion stage, only ATG4B protease has been
targeted for the development of autophagy inhibitors.
NSC185058, S130, and tioconazole have shown autophagy
formation-inhibiting and tumor-suppressive effects on various
cancers including glioblastoma and colorectal cancer both in
vitro and in vivo (Akin et al., 2014; Huang et al., 2017; Liu et
al., 2018; Fu et al., 2019; EI-Gowily et al., 2021). NSC185058
has been found to prolong survival of JK83 primary cancer-
xenografted mice (Huang et al., 2017). Tioconazole has a
survival benefit in MCF-7 breast cancer-xenografted mice
(EI-Gowily et al., 2021). UAMC-2526 can dose-dependently
inhibit HT-29 cancer cells with potent inhibition of autophagy
(Kurdi et al., 2017). FMK-9a has a weak cytotoxicity to HeLa
cells although it can potently inhibit autophagy formation (Chu
et al., 2018b). Its in vivo efficacy has not been reported yet.

At the fusion stage, EACC can inhibit STX17, resulting in
inhibition of autolysosome formation (Vats and Manjithaya,
2019). At present, its inhibitory effect on tumor growth has not
been reported yet. Several other inhibitors can also inhibit au-
tolysosome formation. Among them, chloroquine (CQ) and hy-
droxychloroquine (HCQ) originally developed as anti-malaria
drugs have been found to be able to inhibit autolysosome for-
mation by increasing lysosomal pH and lysosomal membrane
permeability (Homewood et al., 1972). They can also inhibit
autophagic flux by decreasing autophagosome-lysosome fu-
sion presumably by interfering with SNAP29 recruitment
(Mauthe et al., 2018). Both compounds have been intensively
studied for inhibiting tumor growth of many cancer types. They
also have beneficial effects by prolonging survival in preclini-
cal animal models (Hu et al., 2016; Liu et al., 2019; Chen et
al., 2021; EI-Gowily et al., 2021). Besides these inhibitors,
bafilomycin A1, ROC-325, LS-1-10, BRD1240, cytochalasin
E, Lys05, and DC661 can also inhibit autolysosome formation
during autophagic process. Bafilomycin A1, ROC-325, LS-1-
10, BRD1240, cytochalasin E, Lys05, and DC661 compounds
can inhibit autolysosome formation by elevating lysosomal pH
(Yamamoto et al., 1998; McAfee et al., 2012; Aldrich et al.,
2015; Carew et al., 2017; Fu et al., 2017; Takanezawa et al.,
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2018; Zhou et al., 2020; Xu et al., 2022). DC661 is a dimeric
CQ derivative (Xu et al., 2022). ROC-325, LS-1-10, Lys05,
and DC661 have been tested as possible cancer therapeu-
tics in pre-clinical animal models. It was found that they could
suppress tumor growth in several cancer models (McAfee et
al., 2012; Carew et al., 2017; Fu et al., 2017; Nawrocki et al.,
2019; Rebecca et al., 2019; Xu et al., 2022). ROC-325 and
DC661 have a survival benefit in MV4-11 acute myeloid leu-
kemia or Hep1-6 hepatocellular carcinoma (HCC) xenografted
mice (Nawrocki et al., 2019; Xu et al., 2022).

So far, ULK1/2, VPS34, ATG4B, and fusion with lysosome
have been mainly targeted to develop inhibitors to block au-
tophagic process. Their inhibitors can suppress tumor growth
and prolong survival in various cancers in preclinical setting.
Notably, most autophagy inhibitors have been developed to
block activities of enzymes such as kinase and protease rath-
er than protein-protein interactions except for inhibitors block-
ing autophagosome fusion with lysosome.

SYNERGISTIC EFFECTS OF AUTOPHAGY
INHIBITORS WITH ANTI-CANCER DRUGS IN
PRE-CLINICAL STUDIES

Combination of autophagy inhibitors with various anti-can-
cer therapeutics have been tested in various cancer cell lines
and pre-clinical cancer animal models to increase their effica-
cies (Table 3). In the initiation stage, SBI-0206965, a ULK1
inhibitor, showed an anti-tumor effect on non-small cell lung
cancer (NSCLC) cells (Tang et al., 2017). It has been reported
that SBI-0206965 can sensitize these cells to cisplatin (a plat-
inum-based chemotherapeutic agent causing DNA damage)
by modulating both autophagy and apoptosis pathways. The
sensitivity of acute myeloid leukemia (AML) cell lines to dau-
norubicin (a DNA alkylating agent) can also be enhanced by
SBI-0206965 (Qiu et al., 2020).

In the nucleation stage, 3-MA has been tested for combina-
tion with several kinase inhibitors such as apatinib, gefitinib,
and sorafenib, a HDAC inhibitor (vorinostat), and a platinum-
based chemotherapeutic agent (cisplatin). Apatinib, a highly
selective inhibitor of vascular endothelial growth factor recep-
tor 2 (VEGFR?2) tyrosine kinase, can induce cell cycle arrest,
apoptosis, and autophagy in osteosarcoma cells lines. By in-
hibiting autophagy with 3-MA, apoptosis can be increased in
apatinib-treated cells (Liu et al., 2017a). Apatinib also shows
combinatorial effect with 3-MA by significantly inhibiting the
growth and migration of uterine sarcoma cells (Chen and
Yao, 2021). For triple negative breast cancers (TNBCs), ef-
fective targeted therapy is lacking. Since epidermal growth
factor receptor (EGFR) is over-expressed in about 50% of TN-
BCs, EGFR inhibitors such as gefitinib treatment have been
attempted. However, their effects were disappointing (Nakai
et al., 2016). Autophagy was thought to be related to drug
resistance. By autophagy inhibition with 3-MA or bafilomycin
A1, the sensitivity of gefitinib could be improved (Liu et al.,
2017b). Autophagy inhibition by 3-MA can enhance the syn-
ergistic effect of a combination of vorinostat with sorafenib in
HCC cells (Yuan et al., 2014). Treatment with 3-MA can also
enhance cisplatin sensitivity in ovarian cancer cells (Zhang
et al., 2012). SB02024, another inhibitor of VPS34, can sig-
nificantly potentiate cytotoxicities of sunitinib (broad kinase
inhibitor) and erlotinib (EGFR kinase inhibitor) to breast can-

cer cells (Dyczynski et al., 2018). For immunologically cold
tumors, antibodies targeting programmed cell death 1 (PD-1)
or programmed death-ligand 1 (PD-L1) have limited efficacies
(Jiang et al., 2019; Wu et al., 2022). Combination of SB02024
or SAR405 can improve the therapeutic benefit of anti-PD-L1/
PD-1 in melanoma and colorectal cancer cells by inhibiting
VPS34 (Noman et al., 2020). PIK-III, a recently developed in-
hibitor of lipid kinase VPS34, can also inhibit tyrosine kinase
inhibitor (TKIl)-induced autophagy when used in combination
with nilotinib (Baquero et al., 2019), showing an enhanced an-
ti-cancer effect when it is combined with sunitinib or erlotinib
(Dyczynski et al., 2018).

For the expansion stage, ATG4B inhibiting compound
UAMC-2526 is a benzotropolone derivative with fair plasma
stability (Kurdi et al., 2017). It has been demonstrated that
UAMC-2526 can improve inhibition of tumor growth with oxali-
platin (a platinum-based chemotherapeutic agent) in colorec-
tal cancer cells. It has been shown that tioconazole, a clinical
anti-fungal drug, can inhibit activities of ATG4A and ATG4B
in a drug repurposing study (Liu et al., 2018). In HCT116
colorectal cancer cells, tioconazole combined with doxorubi-
cin (a DNA alkylating agent) resulted in significantly enhanced
chemotherapeutic efficacy in spheroid cell culture and xeno-
grafted tumors. In MCF breast cancer cells, combination of
tioconazole with doxorubicin significantly inhibited PISK/AKT/
mTOR and ATG4B pathways, resulting in tumor growth inhibi-
tion with various antioxidant effects (El-Gowily et al., 2021).

In the late autophagy stage, multiple inhibitors can affect
the fusion process. CQ and HCQ are clinically approved anti-
malarial agents. They have been tested for combination with
various anti-cancer drugs. Anti-microtubule drug [paclitaxel,
mebendazole (MBZ)], DNA alkylating agents [doxorubicin,
daunorubicin, temozolomide (TMZ)], platinum-based chemo-
therapeutic agent (cisplatin), a Raf kinase inhibitor (sorafenib),
and an anti-VEGF antibody (bevacizumab) have been suc-
cessfully used for combination with CQ or HCQ to sensitize
cancer cells to anti-cancer drugs. In endometrial carcinoma
cell lines, paclitaxel-mediated cell death is further potentiated
by pretreatment with CQ (Liu and Li, 2015). Combination of
CQ with doxorubicin can also significantly sensitize various
cancer cells to doxorubicin treatment in vitro (Liu et al., 2018;
El-Gowily et al., 2021) and in vivo (EI-Gowily et al., 2021).
Cisplatin-based chemotherapy is the first line treatment for
bladder cancer. Cisplatin-induced autophagy is considered to
be responsible for cisplatin resistance. Autophagy inhibitors
bafilomycin A1 and CQ can significantly enhance cytotoxicity
of cisplatin toward bladder cancer cells (Lin et al., 2017). CQ
treatment can also sensitize ovarian cancer cells to cisplatin
in vitro (Zhang et al., 2012). TMZ is the first line chemothera-
peutic drug of choice in glioblastoma. It can induce autophagy
(Singh et al., 2021). However, glioblastoma with a grim prog-
nosis (median overall survival (OS) of 14.6 months) demands
further therapeutic modalities. MBZ, a widely used anthelmin-
tic drug, has shown cytotoxic effects on several cancer cells
including melanoma, gastric cancer, lung cancer, and glioblas-
tomas (Guerini et al., 2019). Addition of CQ can also enhance
anti-proliferative effect of TMZ or MBZ (Kanzawa et al., 2004;
Lee et al., 2015). Such effect is further potentiated by triple
combination with TMZ (Jo et al., 2022). Combination of CQ
with apatinib (VEGFR2 inhibitor) can also effectively inhibit in
vivo growth of thyroid cancer cells (KHM-5M) xenografted in
mice (Feng et al., 2018).
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Table 3. Synergistic effects of autophagy inhibitors with anti-cancer drugs in pre-clinical models

Autophagic Autophagy ; . Synergistic effect
o Anticancer drug Cancer type (cell lines) ——— Reference
stage inhibitor In vitro  In vivo
Initiation SBI-0206965 Cisplatin Non-small cell lung cancer (A549, H460) + ND Tang et al., 2017
Daunorubicin Acute myeloid leukemia (HL60, U937) + ND Qiu et al., 2020
Nucleation 3-MA Apatinib Osteosarcoma (KHOS) + + Liu et al., 2017a
Uterine sarcoma cancer + +* Chen and Yao, 2021
(MES-SA, FU-MMT-1)
Gefitinib Triple negative breast cancer (MDA-MB-468, + + Liu et al., 2017b
MDA-MB-231)
Sorafenib, Vorinostat  Hepatocellular carcinoma (Hep3B, HepG2, PLC/ + ND  Yuan et al., 2014
PRF/5)
Cisplatin Ovarian cancer (A2780, OVCAR3) + ND  Zhang et al., 2012
SB02024 Sunitinib, Erlotinib Breast cancer (MDA-MB-231, MCF-7) + ND  Dyczynski et al., 2018
Anti-PD-1, Anti-PD-L1  Various tumor (B16-F10, CT26) ND +*  Noman et al., 2020
SAR405 Anti-PD-1, Anti-PD-L1  Various tumor (B16-F10, CT26) ND +* Noman et al., 2020
PIK-111 Nilotinib Chronic myeloid leukemia (Patient-derived CD34" + ND  Baquero et al., 2019
CML cell)
Sunitinib, Erlotinib Breast cancer (MDA-MB-231, MCF-7) i ND  Dyczynski et al., 2018
Expansion UAMC-2526 Oxaliplatin Colorectal cancer (HT-29) + Kurdi et al., 2017
Tioconazole Doxorubicin Colorectal cancer (HCT116, H4, MDA-MB-231) + Liu et al., 2018
Breast cancer (MCF-7) + El-Gowily et al., 2021
Fusion Chloroquine Paclitaxel Endometrial carcinoma (HEC-1A, JEC) i ND  Liuand Li, 2015
Doxorubicin Various cancer (HCT116, H4, MDA-MB-231) + ND Liuetal., 2018
Breast cancer (MCF-7) + + El-Gowily et al., 2021
Cisplatin Bladder cancer (5637, T24) + ND Linetal., 2017
Ovarian cancer (A2780, OVCARS3) + ND  Zhang et al., 2012
Temozolomide, Glioblastoma (U87, U373) + ND Joetal., 2022
Mebendazole
Apatinib Anaplastic thyroid cancer (C643, KHM-5M) Feng et al., 2018
Hydroxy-chloro-  Sorafenib Hepatocellular carcinoma (Huh7, HepG2) + + Chen et al., 2021
quine
Bevacizumab Glioblastoma (LN18, LN229) + ND Liuetal., 2019
Bafilomycin A1 Cisplatin Tongue squamous cell carcinoma (Tca8113, Tscca) + ND Chuetal.,, 2018a
Bladder cancer (5637, T24) + ND Linetal., 2017
Gefitinib Triple negative breast cancer (MDA-MB-468, + + Liu et al., 2017b
MDA-MB-231)
5-Fluorouracil Gastric cancer (SGC-7901) + ND Lietal, 2016
ROC-325 Azacitidine Acute myeloid leukemia (MV4-11, HL-60, MOLM- + +*  Nawrocki et al., 2019
13, KG-1)
Cytochalasin E Bortezomib Lung cancer (A549) ND Takanezawa et al., 2018
Lys05 Nilotinib Chronic myeloid leukemia (Patient-derived CD34" + + Baquero et al., 2019
CML cell)
DC661 Sorafenib Hepatocellular carcinoma (Hep 3B, Hep 1-6) + +*  Xuetal., 2022

ND, not determined; Bold letters indicate cell lines used in in vivo experiments; *, increased survival rate in in vivo mouse models.

HCQ has also been studied for combination with sorafenib
or bevacizumab to inhibit cancer cell growth. While sorafenib
is an effective chemotherapeutic agent in advanced HCC,
sorafenib resistance can lead to treatment failure. A combi-
nation therapy of sorafenib with HCQ provides better thera-
peutic outcomes even for sorafenib-resistant HCC cells partly
by modulating autophagy (Chen et al., 2021). For recurrent
glioblastomas, bevacizumab (BEV) is widely used for disease
control. However, BEV treatment only shows extended pro-
gression free survival (PFS). OS benefit could not be gained
for patients (Wick et al., 2017). Recent evidence has demon-
strated that BEV-induced cytoprotective autophagy is a cause
of treatment failure (Huang et al., 2018). By combining HCQ
with BEV for glioblastoma cell lines, the anti-cancer effect of

https://doi.org/10.4062/biomolther.2022.153

BEV can be enhanced by blocking the autophagic process
(Liu et al., 2019). Bafilomycin A1 can also increase cisplatin
cytotoxicity in tongue squamous cell carcinoma (TSCC) and
bladder cancer cells by inhibiting lysosomal uptake of plati-
num and enhancing intracellular platinum ion binding to DNA
(Lin et al., 2017; Chu et al., 2018a). Combination of bafilomy-
cin A1 with gefitinib (EGFR kinase inhibitor) can also enhance
anti-tumor effects in vitro and in vivo (Liu et al., 2017b). When
gastric cancer cell line was treated with 5-fluorouracil, che-
motherapy-induced autophagy was recognizable. Bafilomycin
A1 decreased the viability and clone formation, inhibited the
invasive and migratory ability, and increased apoptosis (Li et
al., 2016).

ROC-325, a novel autophagy inhibitor, can effectively in-
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hibit autophagy in AML cells. Azacitidine (AZA), a hypometh-
ylating agent, is frequently used in the management of my-
elodysplastic syndromes and AML. AZA treatment can trigger
autophagy in AML cells. AZA in combination with ROC-325
can significantly increase the benefit in both in vitro and in vivo
studies (Nawrocki et al., 2019). Cytochalasin E in combination
with bortezomib, an inhibitor of the 26S proteasome, has also
been used to treat human lung cancer cells (Takanezawa et
al., 2018). In chronic myeloid leukemia (CML) patients, TKI
treatment could induce autophagy that leads to treatment fail-
ure. To overcome such resistance, the effect of Lys05, a highly
potent lysosomotropic agent, has been studied (Baquero et
al., 2019). Lys05-mediated autophagy inhibition can reduce
numbers of leukemic stem cells both in vivo and in vitro. Fur-
thermore, Lys05 can sensitize patient-derived CMLs to TKI
treatment. Palmitoyl-protein thioesterase 1 (PPT1) plays a
critical role in various cancers (Rebecca et al., 2019; Sharma
et al., 2020; Luo et al., 2021). It is significantly upregulated in
HCC tissues compared with that in normal tissues (Xu et al.,
2022). Increased PPT1 levels are also associated with poor
prognosis. DC661, a selective and potent small-molecule
PPT1-inhibitor, can inhibit autophagy and enhance sensitivity
of HCC cells to sorafenib by inducing lysosomal membrane
permeabilization, leading to lysosomal deacidification.
Synergy in anti-tumor effects has been observed by com-
bining chemotherapeutics with all autophagy inhibitors to block
each stage of autophagic process. In addition, all cytotoxic
drugs ranging from platinum-based chemotherapeutic agents
and DNA alkylating drugs to anti-angiogenic agent (bevaci-
zumab) and immune modulating drug (anti-PD-1/anti-PD-L1)
have been effectively combined with various autophagy inhibi-
tors. In the future, it is necessary to evaluate the best combi-
nations by examining which chemotherapeutics can be more
effectively combined with which type of autophagy inhibitors.

CLINICAL TRIALS OF AUTOPHAGY INHIBITORS
WITH ORWITHOUT CHEMOTHERAPEUTICS FOR
CANCER TREATMENT

Various phases of clinical trials have been performed re-
garding autophagy inhibitors in combination with or without
several chemotherapeutic drugs (Table 4). Although autoph-
agy inhibitors showed potential benefits from pre-clinical stud-
ies, only those affecting the late autophagy stage are studied
as potential candidates for clinical trials. Since most trials were
designed as phase 1 or 2 studies, majority of trials were single
arm trials without masking. At present, several solid tumors
have been subjected to ongoing or completed clinical trials of
CQ or HCAQ by single treatment or combination treatment with
various anti-cancer agents (https://clinicaltrials.gov/). Only
published results or recognizable results from completed clini-
cal trials will be reviewed.

In a single-center, randomized, double blinded, placebo-
controlled trial of single treatment of CQ for glioblastoma pa-
tient, median OS after surgery was extended to 24 months
for CQ-treated patients compared to 11 months for controls,
although that trial failed to show statistical significance prob-
ably due to a small sample size (n=30) (Sotelo et al., 2006).
Although this result warrants further a larger scale study, it
provides implications that CQ, in conjunction with other treat-
ments, might prolong survival of patients with glioblastoma.

Combination therapy of CQ with taxane or taxane-like che-
motherapeutic agents (Docetaxel, paclitaxel, nab-paclitaxel,
ixabepilone) against advanced or metastatic breast cancer
which is refractory to anthracycline-based therapy has dem-
onstrated a higher objective response rate (ORR) of 45 %
than the expected ORR of 30% (Anand et al., 2021). In ad-
dition, the combination was well-tolerated without showing
significant toxicity. A phase 1B/2 clinical trial of metformin and
CQ has been registered for a dose-finding study in patients
with IDH1-mutated or IDH2-mutated solid tumors (Molenaar
et al., 2017).

In a phase 1 trial for surgically removable early-stage solid
tumors, oral HCQ of 200 or 400 mg twice daily for 14 days
as a neoadjuvant regimen showed no serious adverse events
(Wang et al., 2018). It elevated plasma prostate apoptosis re-
sponse- 4 (Par-4) levels over basal levels. Four patients had
prostate adenocarcinomas. Two patients had NSCLC. Others
had papillary thyroid carcinoma, squamous cell carcinoma of
larynx, or carcinoid tumor of the lung. All nine HCQ-treated pa-
tients showed p62 induction indicative of autophagy inhibition
by HCQ. Resected tumors from eight patients with elevated
plasma Par-4 levels all exhibited TUNEL-positivity indicative
of apoptosis. A single administration of HCQ was also per-
formed for previously treated metastatic pancreatic cancer pa-
tients as a phase 2 trial (Wolpin et al., 2014). The primary end-
point was 2-month PFS. Among 20 patients enrolled, only 2
(10%) had no disease progression. Median PFS and OS were
46.5 days and 69.0 days, respectively. The HCQ monotherapy
failed to show therapeutic efficacy. Thus, further combinatorial
treatment strategies are needed.

In a phase 1 dose-escalation study of HCQ in combina-
tion with carboplatin and gemcitabine, HCQ 100 mg daily was
found to be the maximum tolerated dose (MTD) (Karim et al.,
2022). Dose-limiting toxicity was thrombocytopenia and/or
neutropenia. This MTD was lower than that from previously re-
ported outcomes with concomitant use of chemotherapeutics
probably due to the myelosuppressive nature of these agents
and previous treatment history of patients. When response
rate was assessed in that study, one patient showed partial
response (PR), 15 patients showed stable disease (SD), and
six patients had progressive disease (PD). The disease con-
trol rate (DCR) was 48% for more than 6 months duration,
21% for more than 12 months, and 14% for more than 18
months. Combinatorial effects of HCQ on pancreatic cancer,
gastrointestinal cancer, HCC, breast cancer, prostate cancer,
and lung cancer are also under investigation in various phase
1-2 clinical trials (Table 4). A randomized phase 2 trial of pan-
creatic cancer to examine the ability of HCQ combined with a
pre-operative regimen of gemcitabine and nab-paclitaxel (GA)
was completed. The exact clinical impact of this study is yet to
be determined. Further reports with proper analysis are war-
ranted.

In a phase 2 trial, untreated metastatic NSCLC patients
underwent a single arm designed study of HCQ in combina-
tion with carboplatin, paclitaxel, or bevacizumab (Malhotra et
al., 2019). The ORR was 33% in 30 patients evaluable for re-
sponse. It was found that 20% of patients demonstrated SD.
The medium PFS was 3.3 months. In nine patients with KRAS
positive tumors, the ORR was 44 % with median PFS higher
than 6.4 months. Addition of HCQ provided a beneficial effect
on clinical response. The benefit seemed to be higher for a
certain subgroup of molecularly targeted patients.
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Another phase 2 trial of GA regimen with or without HCQ
on patients with advanced pancreatic cancer has been per-
formed (Karasic et al., 2019). Primary end point of OS at 12
months was not improved by HCQ treatment. However, ORR
was 38.2% (n=21) in the HCQ group and 21.1% (n=12) in
the non-HCQ group. Treatment-related grade 3 or 4 adverse
events that were higher in the HCQ group were neutropenia,
fatigue, nausea, peripheral neuropathy, visual changes, and
neuropsychiatric symptoms. Although HCQ combination failed
to provide enhanced OS, higher response rate indicated that
HCQ combination could be beneficial under certain clinical
circumstances such as locally advanced tumor that might be
potentially resectable upon treatment response.

A phase 1/2 trial of HCQ in combination with the standard
of care for newly diagnosed glioblastoma has also been per-
formed (Rosenfeld et al., 2014). Regarding phase 1 trial re-
sults, 3/3 subjects experienced Grade 3 or 4 neutropenia and
thrombocytopenia. The MTD for HCQ was found to be 600
mg/d in this combination. Phase 2 trial results revealed that
the median survival was 15.6 months with survival rates of
70%, 36%, and 25% at 12, 18, and 24 months, respectively.
Pharmacokinetics analysis demonstrated a dose-proportional
exposure for HCQ. However, since the MTD for HCQ was 600
mg/d, autophagy inhibition was not constantly achieved. Fur-
ther development of compounds with lower toxicities and/or
more inhibitory potential for autophagy is mandatory.

Another phase 1/2 trial of HCQ in combination with IL-2, a
standard treatment for metastatic renal cell cancer, has been
performed (https://clinicaltrials.gov/). Among 30 enrolled par-
ticipants, initial 13 patients were administered with 1200 mg/d
of HCQ. However, due to severe unexpected adverse events,
the dose of HCQ was reduced to 600 mg/d. Overall, 29 pa-
tients were analyzed. Control rate (CR), PR, and SD were
achieved in 3 (10.3%), 3 (10.3%), and 14 (48.3%) patients,
respectively. Interestingly, 3/3 CR patients and 2/3 PR patients
belonged to the 600 mg/d HCQ cohort. Proper interpretation
of these results by relevant authorities has not been reported
yet. The combinatorial effect of HCQ should be discussed in
further details.

Up to date, CQ and its derivative HCQ are the only au-
tophagy inhibitors that have been investigated in clinical trials
for cancer treatment. However, most studies are still in phase
1 or 2. Clinical benefits of single and combinatorial treatments
are not clearly demonstrated yet. Several dozens of clinical
trials are still on-going or planned. We hope that more positive
results would follow to provide cancer patients better treat-
ment options.

FUTURE PERSPECTIVES

Despite various autophagy inhibitors targeting each au-
tophagy stage have been tested in pre-clinical in vitro and
in vivo studies, only CQ and HCQ have been translated into
clinical trials. While CQ and HCQ are clinically approved anti-
malarial agents, other autophagy inhibitors do not have clini-
cal implications yet. Since anti-cancer effect of CQ and HCQ
might also come from other activities besides inhibition of au-
tophagy, more specific autophagy inhibitors with safety that
allow use in clinics should be developed. At present, clinically
available inhibitors that can act in early stages of autophagic
process are very limited. Such inhibitors also should be devel-
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oped as effective adjuvant therapeutics for blocking cytopro-
tective autophagy to cure cancers. Thus, the development of
more clinically effective and more selective autophagy inhibi-
tors with various modes of action and acceptable toxicities is
mandatory.

In the future, the positive impact of autophagy inhibition on
cancer treatment needs further clarification. In order to deter-
mine whether the combinatorial strategy is beneficial or not,
measures to identify autophagy inhibition needs to be stan-
dardized. Different MTDs from various clinical trials with differ-
ent measures for autophagy inhibition can lead to confused in-
terpretation for the presence of autophagy inhibition and their
effects on clinical outcomes.

Utilizing an autophagy inhibitor in combination with che-
motherapeutics may show potential benefits in cancer treat-
ment because treatment resistance is in part correlated with
increased autophagy reaction to cancer treatment. However,
limited pool of autophagy inhibitors applicable to real world
practice cripples our capability of validating autophagy inhi-
bition in oncology practice. Further development of clinically
available autophagy inhibitors with sufficient efficacy and safe-
ty is mandatory. By properly assessing autophagy inhibition
in cancer treatment, more sophisticated clinical trials can be
designed, leading to more informative results regarding com-
binatorial effects of autophagy inhibitors.
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