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Discovery of putative tumor suppressors from
CRISPR screens reveals rewired lipid metabolism in
acute myeloid leukemia cells
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Medina Colic 1,2, Merve Dede1,2, John G. Doench 3 & Traver Hart 2,4✉

CRISPR knockout fitness screens in cancer cell lines reveal many genes whose loss of

function causes cell death or loss of fitness or, more rarely, the opposite phenotype of faster

proliferation. Here we demonstrate a systematic approach to identify these proliferation

suppressors, which are highly enriched for tumor suppressor genes, and define a network of

145 such genes in 22 modules. One module contains several elements of the glycerolipid

biosynthesis pathway and operates exclusively in a subset of acute myeloid leukemia cell

lines. The proliferation suppressor activity of genes involved in the synthesis of saturated

fatty acids, coupled with a more severe loss of fitness phenotype for genes in the desa-

turation pathway, suggests that these cells operate at the limit of their carrying capacity for

saturated fatty acids, which we confirm biochemically. Overexpression of this module is

associated with a survival advantage in juvenile leukemias, suggesting a clinically relevant

subtype.
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Gene knockouts are a fundamental tool for geneticists, and
the discovery of CRISPR-based genome editing1 and its
adaptation to gene knockout screens has revolutionized

mammalian functional genomics and cancer targeting2–8. Hun-
dreds of CRISPR/Cas9 knockout screens in cancer cell lines have
revealed background-specific genetic vulnerabilities9–13, provid-
ing guidance for tumor-specific therapies and the development of
targeted agents. Although lineage and mutation state are powerful
predictors of context-dependent gene essentiality, variation in cell
growth medium and environment can also drive differences in
cell state, particularly among metabolic genes14,15, and targeted
screening can reveal the genetic determinants of metabolic
pathway buffering16,17.

The presence and composition of metabolic and other func-
tional modules in the cell can also be inferred by integrative
analysis of large numbers of screens. Correlated gene knockout
fitness profiles, measured across hundreds of screens, have been
used to infer gene function and the modular architecture of the
human cell18–21. Data-driven analysis of correlation networks
reveals clusters of functionally related genes whose emergent
essentiality in specific cell backgrounds is often unexplained by
the underlying lineage or mutational landscape21. Interestingly, in
a recent study of paralogs whose functional buffering renders
them systematically invisible to monogenic CRISPR knockout
screens22,23, it was shown that the majority of context-dependent
essential genes are constitutively expressed in cell lines23. Col-
lectively these observations suggest that there is much unex-
plained variation in the genetic architecture, and emergent
vulnerability, of tumor cells.

Building human functional interaction networks from corre-
lated gene knockout fitness profiles in cancer cells is analogous to
generating functional interaction networks from correlated
genetic interaction profiles in S. cerevisiae24–27. The fundamental
difference between the two approaches is that, in yeast, a massive
screening of pairwise gene knockouts in a single yeast strain was
conducted in order to measure genetic interaction—a dual-
knockout phenotype more or less severe than that expected by the
combination of the two genes independently. In coessentiality
networks, CRISPR-mediated single-gene knockouts are con-
ducted across a panel of cell lines that sample the diversity of
cancer genotypes and lineages. Digenic perturbations in human
cells, a more faithful replication of the yeast approach, are pos-
sible with Cas9 and its variants, but library construction,
sequencing, and positional biases can be problematic16,28–34.
Recently, we showed that an engineered variant of the Cas12a
endonuclease, enCas12a35, could efficiently perform multiplex
gene knockouts34, and we demonstrated its effectiveness in
assaying synthetic lethality between targeted paralogs23. These
developments in principle enable researchers to measure how
biological networks vary across backgrounds, a powerful
approach for deciphering complex biology24,36,37.

CRISPR perturbations in human cells can result in loss-of-
function alleles that increase as well as a decrease in vitro pro-
liferation rates; faster proliferation is an extreme rarity in yeast
knockouts. These fast-growers can complicate predictions of
genetic interaction29 and confound pooled chemoresistance
screens38. However, there is no broadly accepted method of
identifying these genes from CRISPR screens.

In this work, we describe the development of a method to
systematically classify genes whose knockout provides a pro-
liferation advantage in vitro. We observe that genes that confer
proliferation advantage are typically tumor suppressor genes and
that they show the same modularity and functional coherence as
context-dependent essential genes. Moreover, we discover a
module that includes several components of the glycerolipid
biosynthesis pathway that slows cell proliferation in a subset of

acute myeloid leukemia (AML) cell lines. We show a rewired
genetic interaction network using enCas12a multiplex screening,
and find strong genetic interactions corroborated by clinical sur-
vival data. A putative tumor-suppressive role for glycerolipid
biosynthesis is noteworthy considering this process is thought to
be required to generate biomass for tumor cell growth, and
inhibitors targeting this pathway are currently in clinical trials39,40.

Results
Identifying proliferation-suppressor signatures. We previously
observed genes whose knockout leads to overrepresentation in
pooled library knockout screens. These genes, which we term
proliferation-suppressor genes (PSG), exhibit positive selection in
fitness screens, a phenotype opposite that of essential genes. As
expected, many PSG are known tumor suppressor genes; for
example, TP53 and related pathway genes CDKN1A, CHEK2, and
TP53BP1 show positive selection in select cell lines (Fig. 1a).
Detection of these genes as outliers is robust to the choice of
CRISPR analytical method, as we tested BAGEL241,42, CERES10,
JACKS43, and mean log-fold change (LFC) of gRNA targeting
each gene (Supplementary Fig. 1a–d). Unlike core-essential genes,
PSG are highly context-specific: TP53 knockout shows positive
LFC only in cell lines with wild-type TP53 (Fig. 1b), and PTEN
knockout shows the PS phenotype only in PTENwt backgrounds
(Fig. 1c). These observations are consistent with the knockout
phenotypes of known tumor suppressor genes (TSG) in cell lines:
in wild-type cells, TSG knockout increases the proliferation rate
in cell culture, but when cell lines are derived from tumors where
the TSG is already lost or non-functional, gene knockout has no
effect. TSG are therefore context-specific PSG, but it is not
necessarily the case that genes with a proliferation-suppressor
phenotype in vitro act as TSG in vivo; proliferation suppressors
are at best putative tumor suppressors in the absence of con-
firmatory data from tumor profiling.

Though detection of PSG is possible using existing informatics
pipelines, several factors complicate a robust detection of these
genes. There is no accepted threshold for any algorithm we
considered to detect PSG, since all were optimized to classify
essential genes. A related second issue is that cell line screens
show a wide range of variance in LFC distributions, making
robust outlier detection challenging (Supplementary Fig. 1e, f).
Third, the signatures are strongly background-dependent, as
demonstrated by PTEN and TP53. Finally, there is no consistent
expectation for whether or how many putative tumor suppressor
genes are present in a given cell line.

To address this gap, we developed a method to account for
variability in fold-change distributions between screens. Our
approach uses a Gaussian mixture model (K= 2) to estimate each
screen’s distribution of gene-level LFC scores (Fig. 1a). Mixed
distribution models have previously been used to identify
distinctions between populations of essential and nonessential
fitness genes in CRISPR screens44. For the K= 2 mixture model,
the more negative distribution (Fig. 1a, red) is generally essential
genes, while the higher, narrower peak around zero (Fig. 1a, blue),
models the large population of knockouts with no fitness
phenotype. We used this second model to calculate a Z-score
(hereafter referred to as the “mixed Z-score”) for all gene-level
mean fold changes in each cell line. This approach normalizes
variance (Supplementary Fig. 1e, f) across LFC distributions in
different cell lines, with negative Z-scores indicating essential
genes and positive Z-scores representing PSG phenotypes.

To evaluate the effectiveness of this mixed Z-score approach,
we used COSMIC45,46 tumor suppressor genes as a true positive
reference set, and we combined COSMIC-defined oncogenes
(removing dual-annotated tumor suppressors) with our

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26867-8

2 NATURE COMMUNICATIONS |         (2021) 12:6506 | https://doi.org/10.1038/s41467-021-26867-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


previously-specified set of nonessential genes as a true negative
reference set7,47. Since there is no expectation for the presence of
a consistent set of PSG across cell lines, we analyzed each of the
808 cell lines from the Avana 2020Q4 data release
independently10,48,49 calculating gene-level scores on each cell
line individually and then combining all scores into a master list
of 808 × 18k= 14.6 million gene-cell line observations (Supple-
mentary Data 1). Moreover, since there is also no expectation that
all COSMIC TSG would be detected cumulatively across all cell
lines, we judged that traditional recall metrics (e.g., percentage of
the reference set recovered) were inappropriate. We, therefore,
defined recall as the total number of TSG-cell line observations.
Using this evaluation scheme, the mixed Z-score approach
outperforms comparable methods by a substantial margin,
classifying more than 722 PS-cell line instances at a 10% false
discovery rate (FDR) (Fig. 1d). This is ~50% more putative PSG
than the closest alternative, a nonparametric rank-based
approach, at the same FDR. BAGEL41,42, a supervised
classifier of essential genes, performed worst at TSG, and the
raw mean LFC approach also fared poorly, highlighting the need
for variance normalization across experiments. We applied this
10% FDR threshold for all subsequent analyses.

Common tumor suppressor genes PTEN and TP53 were
observed in ~25% and ~18% of cell lines, respectively (Fig. 1e),
with other well-known TSG appearing less frequently. Among
309 COSMIC TSGs for which we have fitness profiles
(representing 1.7% of all 18 k genes), we find that 116 (37.5%)
of these genes occur as proliferation suppressors at least once
(Supplementary Data 2) and make up 24.4% of total
proliferation-suppressor calls (Supplementary Fig. 2a, b), a 14-
fold enrichment. All of the known TSG hits come from just 504 of
the 808 cell lines (62.4%) in which proliferation-suppressor hit
calls were identified (Fig. 1f), yet we did not observe a bias toward
particular tissues: in every lineage, most cell lines carried at least
one PSG (Supplementary Fig. 1g).

To further validate our approach, we compared the set of TSGs
in our PSG hits to other molecular profiling data. When identified
as a proliferation suppressor, 53% of the 116 TSGs demonstrate
higher mean mRNA expression relative to backgrounds where the
same TSG is not a proliferation suppressor (Supplementary
Data 2). Similarly, 96.6% of the 116 TSGs, when classified as a
proliferation suppressor, demonstrate a lower frequency of
nonsilent mutations compared to backgrounds where the TSG
is not a hit (Supplementary Data 2). These observations were not

Fig. 1 Discovery of proliferation-suppressor genes. a Fold-change distribution of a typical CRISPR knockout screen has a long left tail of essential genes,
and a small number of genes whose knockout increases fitness (proliferation-suppressor genes, “PSG”). A two-component Gaussian mixture model (red,
blue) models this distribution. b, c Fold change of common tumor suppressors across 808 cell lines (P values, two-sided Wilcoxon rank-sum test). d
Precision vs. recall of mixed Z-score and other CRISPR analysis methods. Dashed line, 90% precision (10% FDR). e Fraction of cell lines in which known
tumor suppressors (green) or other genes (blue, not defined as TSG by COSMIC) are classified as PS genes at 10% FDR. f Presence of each known TSG
across 808 cell lines, vs. cell genetic background. Gold, mutation present; gray, absent. Green or blue, following color scheme in (e), gene is classified as a
proliferation suppressor.
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restricted to COSMIC TSGs however, as this was the case for all
PSG hit calls of genes against non-PSG hit calls (Supplementary
Fig. 2c, d). Copy-number comparisons did not suggest major
distinctions between PSG vs. non-PSG calls (Supplementary
Fig. 2e), however, there did appear to be more variation in PSG
observations, possible stemming from smaller grouped sample
sizes. Together, these observations confirm the reliability of our
method to detect genes whose knockout results in faster cell
proliferation, and that, analogous to essential genes, these genes
must be expressed and must not harbor a loss-of-function
mutation in order to elicit this phenotype.

We attempted to corroborate our findings using a second
CRISPR dataset of 342 cell line screens from Behan et al.13,
including >150 screens in the same cell lines as in the Avana data.
However, these screens were conducted over a shorter timeframe
than the Avana screens (14 vs. 21 days), giving less time for both
positive and negative selection signals to appear (see “Methods”
for a detailed discussion). As a result, when we compared cell
lines screened by both groups, the Avana data yielded many more
TSG hits (Supplementary Fig. 3a). While most of these do not
meet our threshold for PSG in the Sanger data, hits at our 10%
FDR threshold across all Avana screens are strongly biased
toward positive mixed Z-scores in the Sanger screens (Supple-
mentary Fig. 3b), consistent with a weaker signal of positive
selection as a result of the shorter assays rather than a lack of
robustness in the screens49.

Discovering pathways modulating cell growth with a
proliferation-suppressor co-occurrence network. Although
known TSG act as PSG in only a subset of cell lines, we observed
patterns of co-occurrence among functionally related genes.
PTEN co-occurs with mTOR regulators NF250 (P < 3 × 10−11,
Fisher’s exact test) and the TSC1/TSC2 complex (P values both
<7 × 10−13)51, as well as Programmed Cell Death 10 (PDCD10)52,
a proposed tumor suppressor7,53 (Fig. 2a). The p53 regulatory
cluster (TP53, CDKN1A, CHECK2, TP53BP1) also exhibited a
strong co-occurrence pattern that was independent of the mTOR
regulatory cluster (Fig. 2a). mTOR54 and cell cycle checkpoint
genes55,56 have been heavily linked to cancer development, given
their roles in controlling cell growth and proliferation, and thus
have been the focus of studies characterizing patient genomic
profiles to identify common pathway alterations57,58.

The modularity of mTOR regulators and TP53 regulators
demonstrates pathway-level proliferation-suppressor activity.
This reflects the concept of genes with correlated fitness profiles
indicating the genes operate in the same biochemical pathway or
biological process19,21,59,60. However, the sparseness of PSG,
coupled with their smaller effect sizes, renders correlation
networks relatively poor at identifying modules of genes with
proliferation-suppressor activity. In order to identify such
modules, we developed a PSG network (Supplementary Data 3)
based on the statistical overrepresentation of co-occurring PSG
(Fig. 2b); see “Methods” for details. This approach yields a
network of 145 genes containing 462 edges in disconnected
clusters; only 8 clusters have 3 or more genes (Fig. 2c and
Supplementary Fig. 4c). Of these 462 edges, 74 (16.0%, empirical
P < 10−4) are present in the HumanNet61 functional interaction
network (Supplementary Fig. 4a, b), ~eightfold more than
expected from random sampling, indicating high functional
coherence between connected genes. The network recovers the
PTEN and TP53 modules as well as the Hippo pathway, the aryl
hydrocarbon receptor complex (AHR/ARNT), the mTOR-
repressing GATOR1 complex, the STAGA chromatin remodeling
complex, JAK-STAT signaling, and the gamma-secretase complex
(Fig. 2c and Supplementary 4c), all of which have been associated

with tumor suppressor activity. The functional coherence and
biological relevance of the PSG co-occurrence network further
validates the approach taken and establishes this dataset as a
resource for exploring putative tumor suppressor activity in cell
lines and tumors.

Variation in fatty acid metabolism in AML cells. In addition to
the known tumor suppressors, we observed a large module con-
taining elements of several fatty acid (FA) and lipid biosynthesis
pathways (Fig. 2c). Interestingly, while there does not appear to
be a strong tissue specificity signature for most clusters (Fig. 2c),
the fatty acid metabolism cluster shows a strong enrichment for
AML cell lines (P= 1.5 × 10−4). AML, like most cancers, typically
relies on increased glucose consumption for energy and diversion
of glycolytic intermediates for the generation of biomass required
for cell proliferation. Membrane biomass is generated by phos-
pholipid biosynthesis that uses fatty acids as building blocks, with
FA pools replenished by some combination of triglyceride cata-
bolism, transporter-mediated uptake, and de novo synthesis via
the ACLY/ACACA/FASN palmitate production pathway using
citrate precursor diverted from the TCA cycle. Indeed, the role of
lipid metabolism in AML progression is indicated by changes in
serum lipid content62, in particular for long-chain saturated fatty
acids that are the terminal product of the FAS pipeline. Inhibition
of FA synthesis is therefore an appealing chemotherapeutic
intervention63,64 and FASN inhibitors are currently undergoing
clinical trials for the treatment of solid tumors and metabolic
diseases40. The observation that knocking out FAS pathway genes
results in faster proliferation in some AML cells, and their sig-
nature as putative tumor suppressor genes, is therefore very
unexpected.

To learn whether additional elements of lipid metabolism were
associated with the FAS cluster, we examined the differential
correlation of mixed Z-scores in AML cells. We and others have
shown that genes with correlated gene knockout fitness profiles in
CRISPR screens are likely to be involved in the same biological
pathway or process (“co-functional”)18–21, analogous to corre-
lated genetic interaction profiles in yeast25,26,65. Strikingly, all
gene pairs within the fully connected clique in the FAS cluster
(containing genes FASN, ACACA, GPAT4, CHP1, GPI CERS6,
PCGF1, Fig. 2c) had a median Pearson correlation coefficient
(PCC) of 0.76 in the 23 AML cell lines (range 0.63–0.95, Fig. 3a,
red), compared to the median correlation of 0.05 in the remaining
785 cell lines (range −0.11–0.62, with the highest correlation
between FASN and ACACA, adjacent enzymes in the linear
palmitate synthesis pathway; Fig. 3a, gray). These high differential
Pearson correlation coefficients (dPCC) suggest that variation in
lipid metabolism is pronounced in AML cells66.

We sought to explore whether this difference in correlation
identified other genes that might give insight into metabolic
rewiring in AML. We first removed noisy data by filtering for
high-quality screens (Cohen’s D > 2.5, recall >60%42), leaving 659
cell lines, including 17 AML cell lines. Calculating a global
difference between PCC of all gene pairs in all 17 AML and in the
remaining 642 cell lines yielded many gene pairs whose dPCC
appeared indistinguishable from random sampling (Supplemen-
tary Fig. 5a, b). To filter these, we calculated empirical P values for
each gene pair. We randomly selected 17 cell lines from the pool
of all screens, calculated PCC for all gene pairs in the selected and
remaining lines, and calculated dPCC from these PCC values
(Fig. 3b). We repeated this process 1000 times to generate a null
distribution of dPCC values for each gene pair, against which a P
value could be computed (Fig. 3c, d).

Expanding the set to a filtered list of genes whose correlation
with a gene in the FAS clique showed significant change in AML
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cells (P < 0.001; see “Methods”) yielded a total of 106 genes,
including the 7 genes in the clique (Fig. 3e) plus holocarboxylase
synthetase (HLCS), which biotinylates and activates acetyl-CoA-
carboxylase, the protein product of ACACA, as well as glycolysis
pathway genes PGP and HK2. Interestingly, about half of the
genes showed significantly increased anticorrelation with the FAS
cluster, indicating genes preferentially essential where the FAS
genes act as proliferation suppressors (Fig. 3e). These genes
include fatty acid desaturase (SCD), which operates directly

downstream from FASN/ACACA to generate monounsaturated
fatty acid species, and sterol-regulatory element-binding tran-
scription factor 1 (SREBF1), the master regulatory factor for lipid
homeostasis in cells.

Clustering the AML cells lines according to these high-dPCC
genes reveals two distinct subsets of cells. The FAS cluster and its
correlates show a strong proliferation-suppressor phenotype in
four cell lines, NB4, MV411, MOLM13, and THP1. The
remaining thirteen AML cell lines show negligible to weakly

Fig. 2 Co-occurrence of PSG. a Co-occurrence/mutual exclusivity of common TSG as PSG in CRISPR screens. Brown, number of cell lines in which two
genes co-occur as PSG at 10% FDR. Blue, FDR of co-occurrence. Hierarchical clustering delineates functional modules. b Pipeline for building the co-PS
network. c Examples from the Co-PS network. Nodes are connected by edges at FDR < 0.1%. Heatmaps indicate the presence of PSG vs. cell lineage.
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essential phenotypes when these genes are knocked out. The
anticorrelated genes, including SCD and SREBF1, show heigh-
tened essentiality in these same cell lines. Together these observed
shifts in gene knockout fitness indicate that this subset of AML
cells has a substantial metabolic rewiring. Because these cells
share a genetic signature among fatty acid synthesis pathway
genes that is consistent with tumor suppressors, we call these cell
lines Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells
(Fig. 3e).

Cas12a-mediated genetic interaction screens confirm rewired
lipid metabolism. We sought to confirm whether gene knockout
confers improved cell fitness, and to gather some insight into why
some AML cells show the FASTS phenotype and others do not.

Genetic interactions have provided a powerful platform for
understanding cellular rewiring in model organisms, and we
sought to apply this approach to deciphering the FASTS pheno-
type. We designed a CRISPR screen that measures the genetic
interactions between eight selected “query genes” and ~100 other
genes (“array genes”). The query genes include FASN and ACACA,
from the cluster of proliferation-suppressor genes, as well as lipid
homeostasis transcription factor SREBF1, anticorrelated with the
FAS cluster in the differential network analysis, and uncharacter-
ized gene c12orf49, previously implicated in lipid metabolism by
coessentiality21 and a recent genetic interaction study60. Additional
query genes include control tumor suppressor genes TP53 and
PTEN and control context-dependent essential genes GPX4 and
PSTK (Fig. 4a). The array of genes include two to three genes each
from several metabolic pathways, including various branches of

Fig. 3 Differential network analysis of fatty acid synthesis module. a Among genes in the FAS module, Pearson correlation coefficients of mixed Z-score
profiles are substantially higher in AML cells (red) than in other cells (gray). b Significance testing of differential PCC (dPCC) involves quality filtering of
Avana data (n= 659 cell lines, including 17 AML cell lines), building a null distribution by randomly selecting 17 cell lines, and calculating PCC between all
gene pairs in the selected cells and the remaining cells. c After 10,000 repeats, a null distribution is generated for each pair, and a P value (permutation
test, n= 10,000) is calculated for the observed AML vs. other dPCC. d Volcano plot of dPCC vs. P value for all genes in the Co-PS cluster. e Heatmap of
mixed Z-score for 17 AML cell lines in selected genes with high |mixed Z | and high |dPCC | . Clustering of cell lines indicates the putative fatty acid
synthesis/tumor suppressor (FASTS) subtype.
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lipid biosynthesis, glycolysis and glutaminolysis, oxphos, perox-
isomal and mitochondrial fatty acid oxidation. We include the
query genes in the array gene set (Fig. 4a) to test for screen artifacts
and further add control essential and nonessential genes to mea-
sure overall screen efficacy (Supplementary Data 4 and 5).

We used the enCas12a CRISPR endonuclease system to carry
out multiplex gene knockouts35. We used a dual-guide enCas12a
design, as described in DeWeirdt et al.34, that allows for the
construction of specific guide pairs through pooled oligonucleotide

synthesis (Fig. 4b). The library robustly measures single-knockout
fitness by pairing three Cas12a crRNA per target gene each with
five crRNA targeting nonessential genes7,47 (n= 15 constructs for
single-knockout fitness), and efficiently assays double-knockout
fitness by measuring all guides targeting query-array gene pairs
(n= 9) (Fig. 4c and Supplementary Data 5). Using this efficient
design and the endogenous multiplexing capability of enCas12a,
we were able to synthesize a library targeting 800 gene pairs with a
single 12 k oligonucleotide array.

Fig. 4 Genetic interactions reveal a rewired lipid biosynthesis pathway in FASTS cells. a Genetic interaction screen targets eight query genes, selected
from FASTS cluster and dPCC analysis, and 100 array genes sampling lipid metabolism pathways, for a total of 800 pairwise knockouts. b Library design
uses a dual-guide enCa12a expression vector which targets the query gene in the “A” position and array gene in the “B” position. c Overall library design
includes three crRNA/gene plus control crRNA targeting nonessential genes. Single-knockout constructs (target gene paired with nonessential controls)
allow accurate measurement of single-knockout fitness. d Considering single-knockout fitness of query genes in the “A” and “B” position of the crRNA
expression vector shows no position effects in the two cell lines screened (MOLM13, NOMO1). LFC log-fold change. e Single-knockout fitness (Z-score of
mean LFC) is highly consistent between MOLM13 and NOMO1, but reveals background-specific PS genes. f Enrichment among GI for coessential and self-
interacting genes. Self-interactions among genes that show single-knockout fitness phenotypes are expected, reflecting the quality of GI observations. g
Global comparison of MOLM13, NOMO1 genetic interaction Z-scores. h Network view of interactions in each background shows rewiring in MOLM13
FASTS cells.
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We screened one AML cell line from the FASTS subset,
MOLM13, and a second one with no FAS phenotype, NOMO1,
collecting samples at 14 and 21 days after transduction with a
five-day puromycin selection (Supplementary Data 6 and 7).
Importantly, by comparing the mean log-fold change of query
gene knockouts in the “A” position vs. the same genes in the “B”
position of the dual-knockout vector, we find no positional bias in
the multiplex knockout constructs (Fig. 4d), consistent with our
previous findings23,34. Single-knockout fitness measurements
effectively segregated known essential genes from nonessentials,
confirming the efficacy of the primary screens (Supplementary
Fig. 6). Context-dependent fitness profiles are consistent with the
cell genotypes, with PTEN and TSC1 showing positive selection in
PTENwt NOMO1 cells and TP53 being a strong PS gene in P53wt

MOLM13 cells. Strikingly, CHP1 and GPAT4 are the next two top
hits in MOLM13, confirming their proliferation-suppressor
phenotype (Fig. 4e), while neither shows a phenotype in
NOMO1. Together these observations validate the enCas12a-
mediated multiplex perturbation platform, confirm the ability of
CRISPR knockout screens to detect proliferation suppressors and
corroborate the background-specific fitness-enhancing effects of
genes from the FAS cluster.

To measure genetic interactions, we fit a linear regression for
each guide between the combination LFCs and the single-guide
LFCs, Z-scoring the residuals from this line, and combining
across all guides targeting the same gene pair (Supplementary
Fig. 6 and Supplementary Data 7). Here, positive genetic
interaction Z-scores reflect greater fitness than expected and
negative Z-scores represent lower than expected based on the
single-gene knockouts independently, similar to the methodology
applied in a recent survey of genetic interactions in cancer cells
using multiplex CRISPR perturbation33 (see “Methods”). Gene
self-interactions (when the same gene is in the A and B position,
Fig. 4d) should therefore be negative for proliferation suppressors
and positive for essentials (Fig. 4f, g and Supplementary Fig. 6).
Overall, genetic interaction Z-scores in the two cell lines showed
moderate correlation (Fig. 4g), and previously reported synthetic
interactions between C12orf49 and low-density lipoprotein
receptor LDLR17 and between SREBF1 and its paralog SREBF217

are identified in both cell lines (Supplementary Fig. 6f, g).
In contrast with the interactions found in both cell lines,

background-specific genetic interactions reflect the genotypic and
phenotypic differences between the cells. The negative interaction
between tumor suppressor PTEN and mTOR repressor TSC1 in
PTENwt NOMO1 cells is consistent with their epistatic roles in
the mTOR regulatory pathway. Both genes show positive
knockout fitness in NOMO1 (Fig. 4e) but their dual knockout
does not provide an additive growth effect, resulting in a
suppressor interaction with a negative Z-score (Fig. 4g, h).
Similarly, suppressor genetic interactions between ACACA and
downstream proliferation-suppressor genes CHP1 and GPAT4
are pronounced in MOLM13 cells, consistent with epistatic
relationships in a linear biochemical pathway (Fig. 4h). These
interactions are not replicated with query gene FASN, but both
FASN and ACACA show negative interactions with fatty acid
transport gene FABP5 and positive interactions with SREBF1 and
SCD, the primary desaturase of long-chain saturated fatty acids.
All of these interactions are absent in NOMO1, demonstrating
the rewiring of the lipid biosynthesis genetic interaction network
between these two cell types (Fig. 4h).

FASTS signature predicts sensitivity to saturated fatty acids.
The significant differences in the single- and double-knockout
fitness signatures between the two cell lines suggest a major
rewiring of lipid metabolism in these cells. CHP1 and GPAT4 are

reciprocal top correlates in the Avana coessentiality network
(r= 0.43, P= 2.5 × 10−34), strongly predicting gene co-
functionality21. Two recent studies characterized the role of
lysophosphatidic acid acyltransferase GPAT4 in adding saturated
acyl moieties to glycerol 3-phosphate, generating lysopho-
sphatidic acid (LPA) and phosphatidic acid (PA), the precursors
for cellular phospholipids and triglycerides, and further dis-
covered CHP1 as a key regulatory factor for GPAT4 activity67,68.
Within hematological cancer cell lines, the coessentiality network
is significantly restructured, with the ACACA/FASN module
correlated with SCD in most backgrounds (r= 0.35, P < 10−18)
but strongly anticorrelated in 36 blood cancer cell lines
(r=−0.52, P < 10−3, Fig. 3e). The magnitude of this change in
correlation is ranked #8 out of 31 million gene pairs (see
“Methods”). In contrast, ACACA and FASN are weakly correlated
with CHP1 in most tissues but strongly correlated in AML, with
underlying covariation largely driven by the PS phenotype in
FASTS cells (Fig. 3e). This pathway sign reversal is confirmed in
the single-knockout fitness observed in our screens: SCD is
strongly essential in MOLM13 but not in NOMO1 (Fig. 4e).

Collectively these observations make a strong prediction about
the metabolic processing of specific lipid species. Faster
proliferation upon knockout of genes related to saturated fatty
acid processing, coupled with increased dependency on fatty acid
desaturase gene SCD (Fig. 5a), suggests that these cells are at or
near their carrying capacity for saturated fatty acids. To test this
prediction, we exposed three FASTS cell lines and four other
AML cell lines to various species of saturated and unsaturated
fatty acids. FASTS cells showed significantly increased apoptosis
in the presence of 200 µM palmitate (Fig. 5b, c) while no other
species of saturated or unsaturated fatty acid showed similar
differential sensitivity. In addition, analysis of metabolic profiles
of cells in the Cancer Cell Line Encyclopedia69,70 showed that
saturated acyl chains are markedly overrepresented in triacylgly-
cerol (TAG) in FASTS cells (Fig. 5d), in contrast with other lipid
species measured (Supplementary Fig. 7). Palmitate-induced
lipotoxicity has been studied in many contexts—and importantly,
the role of GPAT4 and CHP1 in mediating lipotoxicity was well
described recently67,68—but to our knowledge, this is the only
instance of a genetic signature that predicts liposensitivity.

Prognostic signature for FASTS genes. To explore whether the
FASTS phenotype has clinical relevance, we compared our results
with patient survival information from public databases. Using
genetic characterization data from CCLE69, we did not find any
lesion which segregated FASTS cells from other CD33+AML
cells (Fig. 6a), so no mutation is nominated to drive a FASTS
phenotype in vivo. Instead, we explored whether variation in gene
expression was associated with patient outcomes. We included
genes in the core FASTS module as well as genes with strong
genetic interactions with ACACA/FASN in our screen (Fig. 6a).
To select an appropriate cohort for genomic analysis, we first
considered patient age. Although AML presents across every
decade of life, patients from whom FASTS cell lines were derived
are all under 30 years of age (sources of other AML cells ranged
from 6 to 68 years; Fig. 6b). With this in mind, we explored data
from the TARGET-AML71 project, which focuses on childhood
cancers (Fig. 6c). Using TARGET data, we calculated hazard
ratios using univariate Cox proportional-hazards modeling with
continuous mRNA expression values for our genes of interest as
independent variables. We observed that 4/7 FAS genes, GPAT4,
CHP1, PCGF1, and GPI, show significant, negative hazard ratios
(HR), consistent with a tumor suppressor signature (Fig. 6d), and
that no other gene from our set shows a negative HR. Indeed,
when stratifying patients from the TARGET cohort with high
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expression of GPAT4, CHP1, PCGF1, and GPI (Fig. 6e), we
observe significantly improved survival (P value= 0.001, Fig. 6f).
These findings are not replicated for GPAT4, CHP1, and GPI in
the TCGA72 or OHSU73 tumor genomics datasets, possibly
because they sample older cohorts (Polycomb group subunit
PCGF1 is observed to have a HR < 1 within the OHSU cohort,
Supplementary Fig. 8a). However, age is not generally associated
with the expression of genes in the FAS cluster in either cell lines
or tumor samples (Supplementary Fig. 8).

Discussion
CRISPR screens have had a profound impact on cancer functional
genomics. While research has been mainly focused on essential
gene phenotypes, there is still much clinically relevant biology
that can be uncovered by examining other phenotypes from a
genetic screen. We establish a methodology that can reliably
identify the proliferation-suppressor phenotype from whole-
genome CRISPR knockout genetic screens. Here, we present a
systematic study of this phenotype in the more than 1,000 pub-
lished screens8,10,11,13,48.

The activity of proliferation-suppressor genes is inherently
context-dependent, rendering global classification difficult. As
with context-dependent essential genes, the strongest signal is
attained when comparing knockout phenotype with underlying
mutation state. For example, wild-type and mutant alleles of
classic tumor suppressor examples TP53 and PTEN are present in
large numbers of cell lines, enabling relatively easy discrimination
of PS behavior in wild-type backgrounds, but most mutations are
much more rare, reducing statistical power. Our model-based
approach enables the discovery of PS phenotype as an outlier
from null-phenotype knockouts. Using this approach, we recover

COSMIC-annotated TSGs exhibiting the PS phenotype when
wild-type alleles are expressed at nominal levels.

Co-occurrence of proliferation suppressors follows the princi-
ples of modular biology, with genes in the same pathway acting as
proliferation suppressors in the same cell lines. We observe
background-specific putative tumor suppressor activity for the
PTEN pathway, P53 regulation, mTOR signaling, chromatin
remodeling, and others. The co-occurrence network also reveals a
module associated with glycerolipid biosynthesis, which exhibits
the PS phenotype in a subset of AML cells. Analysis of the
rewiring of the lipid metabolism coessentiality network in AML
cells corroborated this discovery and led us to define the fatty acid
synthesis/tumor suppressor (FASTS) phenotype in four AML cell
lines. A survey of genetic interactions, using the enCas12a mul-
tiplex knockout platform, showed major network rewiring
between FASTS and other AML cells and revealed strong genetic
interactions in FASTS cells with GPAT4, a key enzyme in the
processing of saturated fatty acids, and its regulator CHP1. Col-
lectively these observations suggest that FASTS cells are near
some critical threshold for saturated fatty acid carrying capacity,
which we validated biochemically by treatment with fatty acids
and bioinformatically through analysis of CCLE metabolomic
profiles.

Confirming the clinical relevance of an in vitro phenotype can
be difficult. No obvious mutation segregates FASTS cells from
other AML cells, and with only four cell lines showing the FASTS
phenotype, we lack the statistical power to discover associations
in an unbiased way. However, by narrowing our search to strong
hits from the differential network analyses, we found a significant
survival advantage in a roughly age-matched cohort for GPAT4
and CHP1 overexpression. This finding points to a tumor

Fig. 5 FASTS cells are sensitive to saturated FA. a Schematic of the fatty acid/glycerolipid synthesis pathway. Blue, PSG in FASTS cells. Red, essential
genes. Pathway analysis suggests saturated fatty acids are a critical node. b Apoptosis of FASTS cells in response to media supplemented with 200 µM
fatty acids. All three cell lines show marked sensitivity to palmitate. Plotted bars in (b) show mean and 95% confidence interval (CI) of apoptosis %. P
values in (b) and (c) represent one-sided unpaired t test comparisons. Each bar plot demonstrates four replicate samples for each condition and cell line
tested. Data for (b) and (c) can be found in the source data file. d Triacylglycerol (TAG) species metabolite differences. The x axis represents the median
difference of log10 normalized peak area of the metabolite in FASTS cells vs. all other AML cells. The y axis represents the number of saturated bonds
present. Each dot represents a unique metabolite.
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suppressor signature for our PSG module, though significant
further study is necessary to determine whether this gene
expression signature confers a similar in vivo metabolic rewiring
and sensitivity to saturated lipids.

The combination of genetic, biochemical, and clinical support
for the discovery of a tumor suppressor module has several
implications. First, it provides a clinical signature that warrants
further research as a prognostic marker as well as a potential
therapeutic target. Second, it demonstrates the power of differ-
ential network analysis, and in particular differential genetic
interaction networks, to dissect the rewiring of molecular path-
ways from modular phenotypes. Finally, it suggests that there still
may be much to learn from data-driven analyses of large-scale
screen data, beyond the low-hanging fruit of lesion/vulnerability
associations.

Methods
Functions and packages related to data analysis. Mixed Z-scoring, analysis
using scoring metric, co-occurrence network, and survival analysis was conducted

in R version 4.0.474,75. dPCC correlation analysis, including empirical calculations,
was conducted in Python 3.8.276, using the packages SciPy77, NumPy78,
Matplotlib79, and pandas80.

R packages tidyverse81, data.table82, and knitr83–85 were used for figure
generation, data manipulation, and general R functions; mixtools86, permute87, and
PRROC88,89 were used for data simulations present in figures and evaluation;
biomaRt90,91, and org.Hs.eg.db92 were used in integrating data types; cowplot93,
ggbeeswarm94, annotate95, RColorBrewer96, ComplexHeatmap97, gplots98,
ggpubr99, grid75, circlize100, ggthemes101, ggExtra102, patchwork103, and
ggplot2104, were used for figure esthetics and generation. R packages survival105,106

and survminer107 were used for survival analysis and figure generation. Analysis
related to Kaplan–Meier and patient stratification was done in python version
3.8.5108 using the packages pandas80, numpy78, and scipy77 for statistical functions
and data manipulation, seaborn109, plotly110, and matplotlib79 for figure esthetics
and generation, and lifelines111 for both statistical analysis and figure generation.

Analysis of enCas12a multiplex genetic screens was conducted in R 4.0.075 and
Python 3.8.3112. Code for this analysis is available at https://github.com/
PeterDeWeirdt/FASTS. R packages tidyverse81 and tidygraph113 were used for
data manipulation and ggraph114 was used for graph visualization. Python
packages SciPy77, NumPy78, Matplotlib79, pandas80, statsmodels115, plotnine116

were used for analysis and visualization. The Custom package gnt117 was used to
calculate genetic interaction scores and gpplot118 was used to generate point
density plots.

Fig. 6 Prognostic signature of FAS module. a Heatmap of mixed Z-scores for genes implicated in the genetic interaction network. Top, common AML
lesions. b Mixed Z-score of FASN in AML cell lines vs. age of patient from which cell lines were derived. Blue, FASTS cells. c Age distribution of AML
patients in three public tumor genomics cohorts. Red denotes OSHU, green denotes TARGET, and blue represents TCGA. d Hazard ratios (95% CI;
univariate Cox proportional-hazards test) for expression of genes in (a), using genomics and survival data from TARGET. The dot represents the HR value
indicated on the right. The 95% CI range for each point is indicated on the left. Genes indicated in red represent genes with significant HR less than 1 and
are used for analysis in (e). e Hierarchical clustering of gene expression in TARGET, using the four genes with negative HR. Green, high expression cluster.
Blue, others. f Kaplan–Meier survival analysis of AML patients in TARGET, comparing patients in high expression cluster vs. others. Shaded regions
represent 95% CI of the curve. The number of independent patients analyzed in (d–f)= 145.
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Processing DepMap screen and CCLE genomics data. Raw read count data and
a map of guide RNAs were downloaded from the DepMap database
(www.depmap.org)10,48 and Project Score database (https://depmap.sanger.ac.uk/)13.
Avana data version 2020q449 was used for this analysis. To avoid genetic inter-
action effects, we discarded sgRNAs targeting multiple protein-coding genes
annotated as public or update pending in The Consensus Coding Sequence (CCDS,
release 22)119. Gene names in the guide RNA maps of Avana and Project Score
were updated using human gene information obtained from ncbi ftp. Then, read
count data for each replicate was passed through CRISPRcleanR120 with location
information of sgRNAs for the Avana CRISPR library based on GENCODE121 to
correct depletion effects caused by copy-number amplification. Following this
correction, each guide’s log2 fold change was calculated. For Project Score data, we
used only the gene location information of KY library v1.0 which is built in
CRISPRcleanR. Normalized TPM RNA-seq data, copy-number data, and mutation
annotations for CCLE69 cells were also downloaded from DepMap. Ensembl gene
id in RNA-seq data was converted to gene symbol using cross-reference down-
loaded from Emsembl Biomart122.

Mixed Z-score metric. Mixed Z-score metric was generated using R version 4.0.4
base stat packages75 and the mixtools86 normalmixEM function. To calculate the
mixed Z-score, individual guide log2 fold changes for each cell line were passed
through the default settings of the normalmixEM function to fit two distinction
normal distributions. Of the 808 cell lines passed through this analysis, 805 cell
lines were able to converge with two distinction normal distribution following 1000
iterations. The calculated mean and standard deviation of the higher (more posi-
tive) distribution were recorded. Along with the uncorrected original gene log2 fold
change, was used to calculate the corresponding mixed Z-score. The original and
mixed Z-score equation is as follows:

MixedGene Z� Score ¼
x � μhigh
σhigh

ð1Þ

Where x is the original gene log2 fold change, μhigh is the average of the more
positive fitted distribution, and σhigh is the standard deviation of the more positive
fitted distribution. This metric was calculated for the DepMap 2020q449 screen set,
and the Sanger’s DepMap13 screen set for Supplementary Fig. 3. Visualization of
the mixed Z-score for the Broad’s and Sanger DepMap screen sets can be seen at
the PICKLES123 database: https://pickles.hart-lab.org/.

Comparisons of fitness-scoring metrics. The following describes our compara-
tive analysis of screening algorithms observed in Supplementary Fig. 1. JACKS43

and BAGEL41,42,124, software was downloaded from their corresponding GitHub
official distribution sites: https://github.com/felicityallen/JACKS, and https://
github.com/hart-lab/bagel. We ran JACKS and BAGEL with raw fold-change data
of DepMap 2020q4 version49, gene guide map, and replicate information. We
obtained DepMap 2020q4 CERES scores from “dependency_score.csv” down-
loaded from DepMap depository. Ranking was performed per screen and based on
mean log2 fold-change values per gene.

We used the cancer gene census (CGC) list from COSMIC45,46 to compare
fitness methods that can detect proliferation-suppressor activity. Tumor suppressor
genes (TSGs) from CGC represent a gene set of well-known proliferation
suppressors. We separated the CGC gene list in two gene sets, genes with any
tumor suppressor role in cancer representing true positive proliferation-suppressor
observations, and genes with any oncogene role in cancer representing false
positives. In addition, we added reference nonessential genes7,47 to the false-
positive list as these genes are not expected to demonstrate any phenotype. With
these compiled lists, we evaluated each metric’s fitness scores, to see which metric
would best separate the true and false-positive gene lists. The R package PRROC
was used for fitness-scoring evaluation88,89.

Direct proliferation-suppressor comparisons of Avana and Sanger screen
datasets. The CRISPRcleanR120 corrected fold-change Sanger screen set13 was
pushed through identical pipelines used to calculate the mixed Z-score metric.
Quality analysis of the mixed Z-score metric for both datasets was pushed using
identical gene sets described in the “Comparisons of Fitness Scoring Metrics”
section. This analysis was restricted to only overlapping cell lines, 186 total, in both
datasets. Cell lines were matched using the Cell Model Passports database125.

The fitness enhancement introduced by PSG knockout, relatively weak
compared to severe defects from essential gene knockout, often precludes detection
in a shorter experiment. In the example F5 cell line (Fig. 1a), a 2.5-fold change over
a 21-day time course corresponds to a fitness increase of only ~12% for rapidly
growing cells, or a doubling time decrease from 24 to 21 h. In a 14-day experiment,
this increased proliferation rate would result in an observed log-fold change of only
~1.7, within the expected noise from genes with no knockout phenotype. This is
explained in detail as follows:

Theoretical fold-change and growth rate quantification: To assess hypothetical
differences of proliferation-suppressor fitness-scoring metrics based on standard
sampling times of screen collection taken from the Sanger and Avana
databases10,11,13,48, we calculated theoretical cell population differences of wild-
type and knocked-out proliferation-suppressor cell lines. The following Eq. (2) can

be used to calculate cell populations based on doubling rate per day:

Xf ¼ Xi � 2k�t ð2Þ
In this formula, Xf is the final population number of cells, Xi is the initial
population of cells, k is the doubling time of the cells (in days), and t is time in
days. In order to compare cells, we can assume that these formulas are consistent
with both wild-type cells and knocked-out proliferation-suppressor cells. With,
knocked-out proliferation-suppressor cells the assumption is that these cells would
grow faster compared to wild-type conditions and thus kps > kwt, where kps is the
growth rate for proliferation-suppressor knocked-out cells, and kwt is the growth
rate of wild-type cells. These two independent growth rates are related as:

kps ¼ kwt þ Δk ð3Þ
Δk represents the change in growth rate resulting from genetic knockout and is
assumed to be positive. The growth rate equation for wild-type and proliferation-
suppressor cells is thus:

Xwt ¼ Xi � 2kwt�t ; Xps ¼ Xi � 2ðkwtþΔkÞ�t ð4Þ
We then solved for Δk, with Log2(Xps/Xwt) as Log2(FC), representing the fold-
change difference between the cell populations at time t:

Log2FC ¼ Log2
Xps

Xwt

� �
ð5Þ

Log2FC ¼ Log2
Xi � 2ðkwtþΔkÞ�t

Xi � 2kwt�t
� �

ð6Þ

Log2FC ¼ Log2
2ðkwtþΔkÞ�t

2kwt�t

� �
ð7Þ

Log2FC ¼ ððkwt þ ΔkÞ � tÞ � ðkwt � tÞ ð8Þ

Log2FC=t ¼ kwt þ Δk� kwt ð9Þ

Log2FC=t ¼ Δk ð10Þ
For a representative Log2(FC) of 2.5, which represents a sizable gain in fitness from
a knocked-out proliferation-suppressor, and t= 21 days, representing the time in
which the Avana screens were sampled, we calculated Δk:

Δk ¼ 2:5
21

¼ 0:12 ð11Þ

Using the calculated Δk at 0.12, we can calculate the hypothetical Log2(FC) that
would be expected at t= 14 days, representing the time in which the Sanger screens
were sampled:

Log2FC ¼ Δk � t ð12Þ

Log2FC ¼ 0:12 � 14 ¼ 1:7 ð13Þ
The resulting theoretical measurements demonstrate that Δk can be identical
between two samples, however, the time in which the sample was taken will
influence the ratio between the two measured cell populations. Taken together, this
demonstrates that samples at shorter time points will demonstrate smaller
quantified population size differences between wild-type and proliferation-
suppressor knocked-out cells compared to samples taken at longer time points.

Proliferation-suppressor co-occurrence network. The co-occurrence network
was developed based on FDR-corrected P values from Fisher exact tests of all gene-
by-gene comparisons that were identified as a proliferation suppressor more than
once (584 genes total). Parallel processing, Fisher’s exact test, Benjamini &
Hochberg FDR P value adjustment were done using base R stat packages75. Fig-
ure 2a was created with heatmap.2 function from the R gplots98 package, with the
dendrogram created through base R75 functions of Euclidean distance, and com-
plete agglomeration methods clustering of the Fisher’s exact test score between
gene pairs. Smaller heatmaps displayed in Fig. 2c were made using the R Com-
plexHeatmap library97. Network visualization was completed using Cytoscape126.

Network creation followed the corresponding steps; (1) identify all
proliferation-suppressor observations at a 10% FDR threshold (Z >= 3.83). (2)
Filter for gene proliferation-suppressor observations that occurred at least 2 or
more times, selecting for a total of 584 out of 18,111 genes available (3.2% total
available genes); (3) Create a binary (1= proliferation suppressor, 0 = not
proliferation suppressor) matrix of all 584 genes in all cell lines; (4) Conducted
Fisher’s exact test of every possible 2 × 2 contingency table of the 584 selected genes
(n= 170,236 tests); and (5) Adjust the corresponding P values to FDR values, using
a cutoff of 0.001 (0.1% FDR) to define edges. By assessing gene edges through
Fisher exact tests, we observe gene associations that are based on the relative
proportion of co-occurrences between two genes.
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Proliferation-suppressor network enrichment. To test network enrichment of
observed edges (Supplementary Fig. 4a), we took 10,000 random samples of 462
(total number of edges in the co-occurrence network) gene pairs from the 170,236
available all by all gene pair Fisher’s exact test set. We then compared each sample
to see the frequency of gene pairs observed to have some interaction within
HumanNet61, excluding genetic interactions observed solely in the coessentiality
network component21 (generated from the same data) to prevent circularity. In
addition, we compared our selected mixed Z-score cutoff against other various Z-
score cutoffs to ensure that we observed appropriate edge representation from
HumanNet (Supplementary Fig. 4b). Networks were made using identical pipelines
and Fisher’s exact test set cutoffs with Z-score cutoffs between 3 and 8 at 0.2
increments.

Differential Pearson correlation coefficient analysis. Differential Pearson cor-
relation coefficient (dPCC) analysis was conducted to identify genetic fitness dis-
tinctions between AML cells and all other cells (Fig. 3). Initial correlations (Fig. 3a)
of FAS cluster genes, PCGF1, CERS6, GPI, FASN, CHP1, GPAT4, and ACACA were
calculated with R version 4.0.4 base stat packages75 and plotted in ggplot2104.

Following this observation, a follow-up dPCC analysis was conducted on the
FASTS cluster genes to assess dPCC quality. Cell line screens with low quality
(Cohen’s D < 2.5 or recall of known core-essential genes <60%) were excluded,
leaving 659 cell lines. Following this filtering step, two gene-by-gene correlation
matrices were calculated. The first correlation matrix calculated all gene-by-gene
pairs in only the available AML cell lines (n= 17). The second matrix calculated all
gene-by-gene pairs in the remaining 642 cell lines. The dPCC matrix is therefore
the AML correlation matrix minus the non-AML correlation matrix.

Each gene pair has a unique joint distribution of mixed Z-scores; thus, the
significance of each dPCC score must be calculated individually. To do this, we
generated null distributions for dPCC for each gene pair. We took random
selections without replacement of 17 cell lines (matching the n of AML cells),
calculated all gene-by-gene pairwise correlations within this selection and within
the remainder, and calculated dPCC. We repeated this sampling and calculation
1000 times to generate a unique null distribution of dPCC for each gene pair and
calculated an appropriate P value for the observed dPCC above (right-tailed for
positive dPCC, left tailed for negative dPCC).

Genes which showed signficant knockout phenotype (|mixed Z | > 5) and AML-
specific change in correlation (dPCC P < 0.001) with a gene in the connected clique
in the co-occurrence cluster (CHP1, GPAT4, ACACA, FASN, GPI, CERS6, PCGF1)
were selected for further analysis (Fig. 3e). Figure 3e was made using the R
ComplexHeatmap library97. Figure 3c, d plots were made using the Python package
Matplotlib79.

Cell culture for genetic screens. MOLM13 and NOMO1 cells screened with the
Cas12a-mediated genetic interaction library at the Broad Institute were obtained
from the Cancer Cell Line Encyclopedia.

All cell lines were routinely tested for mycoplasma contamination and were
maintained without antibiotics except during screens, when the media was
supplemented with 1% penicillin/streptomycin. Cell lines were kept in a 37 °C
humidity-controlled incubator with 5.0% carbon dioxide and were maintained in
exponential phase growth by passaging every 2−3 days. The following media
conditions and doses of polybrene, puromycin, and blasticidin, respectively,
were used:

MOLM13: RPMI+ 10% FBS; 8 μg mL−1; 4 μg mL−1; 8 μg mL−1

NOMO1: RPMI+ 10% FBS; 8 μg mL−1; 1 μg mL−1; 8 μg mL−1

Pooled screens. Cell lines stably expressing enCas12a (pRDA_174, Addgene
136476) were transduced with guides cloned into the pRDA_052 vector (Addgene
136474) in two cell culture replicates at a low MOI (~0.5). Transductions were
performed with enough cells to achieve a representation of at least 750 cells per
guide construct per replicate, taking into account a 30–50% transduction efficiency.
Throughout the screen, cells were split at a density to maintain a representation of
at least 1000 cells per guide construct, and cell counts were taken at each passage to
monitor growth. Puromycin selection was added 2 days post-transduction and was
maintained for 5 days. Fourteen days and 21 days after transduction, cells were
pelleted by centrifugation, resuspended in PBS, and frozen promptly for genomic
DNA isolation.

Genomic DNA isolation and PCR. Genomic DNA (gDNA) was isolated using the
KingFisher Flex Purification System with the Mag-Bind® Blood & Tissue DNA
HDQ Kit (Omega Bio-Tek #M6399-01) as per the manufacturer’s instructions. The
gDNA concentrations were quantitated by Qubit. For PCR amplification, gDNA
was divided into 100 μL reactions such that each well had at most 10 μg of gDNA.
Per 96-well plate, a master mix consisted of 144 μL of 50× Titanium Taq DNA
Polymerase (Takara), 960 μL of 10x Titanium Taq buffer, 768 μL of dNTP (stock at
2.5 mM) provided with the enzyme, 48 μL of P5 stagger primer mix (stock at
100 μM concentration), 480 μL of DMSO, and 1.44 mL water. Each well consisted
of 50 μL of gDNA plus water, 40 μL of PCR master mix, and 10 μL of a uniquely
barcoded P7 primer (stock at 5 μM concentration).

PCR cycling conditions: an initial 1 min at 95 °C; followed by 30 s at 94 °C, 30 s
at 53 °C, 30 s at 72 °C, for 28 cycles; and a final 10 min extension at 72 °C. PCR
primers were synthesized at Integrated DNA Technologies (IDT). PCR products
were purified with Agencourt AMPure XP SPRI beads according to the
manufacturer’s instructions (Beckman Coulter, A63880).

Samples were sequenced on a HiSeq2500 Rapid Run flowcell (Illumina) with a
custom primer of sequence: 5’-CTTGTGGAAAGGACGAAACACCGGTAATTT
CTACTCTTGTAGAT. The first nucleotide sequenced with the primer is the first
nucleotide of the guide RNA, which will contain a mix of all four nucleotides, and
thus staggered primers are not required to maintain diversity when using this
approach. Reads were counted by alignment to a reference file of all possible guide
RNAs present in the library. The read was then assigned to a condition (e.g., a well
on the PCR plate) on the basis of the 8 nt index included in the P7 primer.

Scoring genetic interactions. To score genetic interactions we used a custom
python package, gnt117, available on the python package index. We use log-fold
changes (LFCs) as inputs to the scoring pipeline. We define yij as the observed LFC
of a guide pair i, j, and byij as this pair’s expected LFC. We then calculate the residual
yij � byij to generate an interaction score. To define expected LFCs, byij we fit a linear
regression for each guide, i, saying

byi ¼ mi � x þ bi; ð14Þ

where x is the LFC of each guide individually and mi and bi are the fit slope and
intercept for guide i (Supplementary Fig. 6b). We refer to i as the anchor guide and
its pairs as target guides. We then Z-score residuals within each anchor guide. This
approach is similar to the one taken by Horlbeck et al.33.

To aggregate interaction scores at the gene level, we sum the Z-scored residuals,
zij, for all constructs i, j targeting the gene pair I, J, fixing I as the anchor gene, and
divide by the square root of the number of constructs targeting I, J. We repeat this
calculation, fixing J as the anchor gene. We sum scores for both of these
orientations and divide by

ffiffiffi
2

p
to arrive at a gene-level Z-score.

Cell culture for fatty acid response. Human cancer cell lines used at MD
Anderson were obtained as follows: EOL1, MONOMAC1, NB4, OCIAML3
(DSMZ, #ACC-386 #ACC-252 #ACC-207 #ACC-582); MOLM13 and NOMO1
(Fisher, #NC0442994 #NC1515509); MV411 (ATCC #CRL-9591). Identities were
confirmed upon receipt and prior to experiments by STR typing (MDACC
Characterized Cell Line Core). The absence of mycoplasma was confirmed monthly
(Invivogen #rep-pt1). All cell lines were grown at 37 °C in 5% CO2 in low
attachment flasks (Greiner) and maintained at less than 1M cells ml−1. All but one
line were cultured in RPMI-1640 with 25 mM HEPES ((Sigma #R5886) supple-
mented with 10% FBS (Sigma # F0926), 2 mM Glutamax (Gibco #35050061),
1 mM sodium pyruvate (Gibco #11360070), 10,000 units ml−1 penicillin (Gibco
#15140122), 10 mgml−1 streptomycin (Gibco #15140122), and 100 µg ml−1 Nor-
mocin (Invivogen #ANTNR2). Complete medium was additionally supplemented
with 0.1 mM nonessential amino acids (Gibco #11140050) for MONOMAC1.

Fatty acid solutions. Fatty acid chemicals were purchased from Sigma (St. Louis,
MO). Solutions were prepared according to Luo et al.127 following best practices128.
Fatty acid stock solutions were prepared in 100% ethanol at 50 mM for stearic acid
or 200 mM for the rest. Fatty acid-free bovine serum albumin (FAF-BSA) was
dissolved in tissue culture grade (pyrogen-free) water at 1.5 mM (10% w/v), filtered
using 0.1 µm PES vacuum unit (Corning) and aliquoted for storage at −20 °C.
Ethanol stock solutions were diluted to 4 mM in FAF-BSA (molar ratio 2.7:1) and
mixed gently at room temperature for 2 h to facilitate conjugation. A vehicle
control was prepared by diluting 100% ethanol in FAF-BSA to match the ethanol
concentration in the 4 mM stearic acid solution. Vehicle or 4 mM solutions were
aliquoted and stored at −80 °C for up to 3 months. After thawing, aliquots were
diluted 1:10 with complete medium to 400 µM, stored at 4 °C and used within
1 week.

Apoptosis assay. Cells were seeded 24 h prior to treatment in 500 µL complete
medium in 24-well low attachment plates (Greiner) at 250,000 cells well−1.
Quadruplicate wells received 500 µL FA working solution (400 µM) or vehicle (BSA
+EtOH). Cells were treated at 200 µM for 48 hr. Treated cells were transferred to a
deep 96-well plate and medium was discarded after centrifugation at 500×g for
5 min. Cells were washed once with 1000 µL D-PBS (Sigma #D8537). Next, cells
were resuspended in 300 µL binding buffer containing annexin-FITC (BD Bios-
ciences #BD556547) and propidium iodide (Invitrogen #P3566) according to the
manufacturer’s protocol (BD Biosciences) and transferred to a shallow 96-well V-
bottom plate (Corning). After staining for 15 min at room temperature in the dark,
cells were washed once with 300 µL binding buffer and finally resuspended in
100 µL binding buffer. Unstained and single-stain controls were prepared for every
cell line in a separate plate. Gates were adjusted such that 99% of unstained singlets
fell below each threshold. See Supplementary Fig. 9 for the complete gating
strategy. Flow cytometry data were collected using a FACSCelesta analyzer
equipped with an autosampler (BD Biosciences) and analyzed using FlowJo 10.5.3.
The results shown are representative of three independent experiments conducted
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with sequential passages of each cell line. Statistical tests shown in Fig. 5b, c were
one-sided unpaired t tests of the apoptosis percentages and were calculated using
base R statistic75 functions.

Metabolomics analysis. This section describes the methods used within Fig. 5d
and Supplementary Fig. 7. Metabolomics data acquired from Supplementary
Table 1 of Li et al.70. For analysis, normalized data (“1-clean data”) and coefficient
of variation for each metabolite (“1-CV”) was used. Normalized data were filtered
to select only AML cells that were present in the Avana 2020q449 screen set.
Following filtering, the median of species present was taken, grouped by whether
the measurement was from a FASTS AML or other AML cell line. The difference in
median, representing the log ratio, was taken for each metabolite. Metabolites that
had differences in medians less than the coefficient of variation were omitted from
the plots. Acyl group and the number of unsaturated bonds were obtained directly
from the provided nomenclature.

AML patient survival analysis. This section describes the methods used within
Fig. 6 and Supplementary Figs. 8 and 10. Genes chosen for analysis were all genes
shown to have an interaction with ACACA in Fig. 4h and FASN. Gene annotations
noted in the Fig. 6a heatmap include any nonsilent mutation, copy-number loss for
TP53 and KMT2A, and copy-number gain for KRAS, NRAS, and FLT3. FLT3-ITD
annotations were included in the FLT3 annotation row bar. Mutation annotations
come from CCLE69, copy-number calls come from the cBioPortal129,130 database,
and FLT-ITD annotations come from the DSMZ catalogue131.

TARGET-AML71 data including age, genetic expression (HTseq FPKM UQ),
time to event, and survival event outcomes, and TCGA72 patient ages and genetic
expression were downloaded directly from the Xena132 database. The OHSU
BeatAML73 age data was directly downloaded from the Vizome database, and
genetic expression data were taken from the original publication. Age of patient-
derived cell lines was obtained from the Cellosaurus database133. Hazard ratios
calculated from Cox proportional-hazards modeling were done using the R
survival105,106 package. Patient clustering stratification was done with clustering
functions from the scipy package77, using Euclidean clustering and complete
linkage settings. This output heatmap of TARGET-AML patients (Fig. 6e) was
created using functions from the seaborn109 package. We identified the patient
cluster containing the highest overall expression of CHP1, GPAT4, GPI, PCGF1
from the heatmap using the fcluster function from scipy77. Figure 6f demonstrates
the resulting survival comparison of the two patient clusters and was created with
functions from the lifelines111 package, specifically, KaplanMeierFitter
(alpha= 0.05, default) function for the Kaplan–Meier curve, and the P value
reflecting the calculated log-rank test of the two curves.

P values related to Schoenfeld tests calculated internally by the survminer
package. For TARGET data analysis, patient expression profiles were chosen from
primary tumor samples, filtering out samples from recurrent patients (42 such
cases). Patient stratification is conducted based on stratifying patient groups into
lower genetic expression (patients with genetic expression below the 75th
percentile, n= 108 independent patients), and higher genetic expression (patients
with 75th percentile and above, n= 37 independent patients). Computed hazard
ratios for all tested genes within the TARGET cohort all passed the Cox proportion
hazards assumption (Supplementary Fig. 10) by failing to reject the Schoenfeld test
null hypothesis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genetic Interaction (enCas12a) data pertaining to Fig. 4 and Supplemental Fig. 6 can be
found at https://github.com/PeterDeWeirdt/FASTS. Figure 5b–c data can be found
within the source data file. Cytoscape126 network files of PSG network (Fig. 2 and
Supplemental Fig. 4) can be found at https://doi.org/10.6084/m9.figshare.16746052.v1.
Relevant data for figures, including gene Mix Z-score evaluation, fisher edge calculations,
dPCC scoring metrics, and other screen metric comparisons, can be found at https://
doi.org/10.6084/m9.figshare.16746040.v1. External data used in this study include the
screening set coming from the Avana 2020q410,48,49 release, and CCLE69 genetic
expression, mutation, and copy-number data that can be found at www.depmap.org;
screening data used from Project Score13 that can be found at https://
depmap.sanger.ac.uk/; Cell Model Passports125 data were used in screening data
comparison and can be found at https://cellmodelpassports.sanger.ac.uk/; the cancer
gene census45,46 used to define oncogenes and tumor suppressors that can be found at
https://cancer.sanger.ac.uk/census; absolute gene copy-number values from cell lines
obtained the cBioPortal database130 at https://www.cbioportal.org/; HumanNet61 data
used for network comparisons can be found at https://www.inetbio.org/humannet/; the
Xena database132 was used in acquiring specific data related to the TCGA LAML,
TARGET AML, and BeatAML datasets and can be found at https://xenabrowser.net/;
and additional BeatAML analysis was taken directly from Tyner et al.73 publication. The
results published here are in part based upon data generated by the Therapeutically
Applicable Research to Generate Effective Treatments (TARGET) initiative, phs000218,
managed by the NCI. The data used for this analysis are available at dbGaP Study

Accession: phs000465.v19.p8. Information about TARGET can be found at http://
ocg.cancer.gov/programs/target. Source data are provided with this paper.

Code availability
Genetic Interaction (enCas12a) code notebooks pertaining to Fig. 4 and Supplemental
Fig. 6 can be found at https://github.com/PeterDeWeirdt/FASTS. Code pertaining to all
figures except for Fig. 4, Supplemental Fig. 6, and 9 is available at: https://doi.org/
10.6084/m9.figshare.16786063. Additional analysis code (primarily co-occurrence
network, mixed Z-score metrics, dPCC correlation, and clinical analysis) is available at
https://doi.org/10.6084/m9.figshare.16786078.v1.
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