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tion and modulates the expression of genes that are important

for inflammatory processes, growth and detoxification reactions.

A cellular surveillance�activated detoxification and defenses

(cSADDs) pathway has been recently identified in C. elegans. The

down�regulation of the components of the cSADDs pathway

initiates an aversion behavior of the nematode. Here we hypo�

thesized that CoQ regulates genes of the cSADDs pathway. To

verify this we generated CoQ�deficient worms (“CoQ�free”) and

performed whole�genome expression profiling. We found about

30% (120 genes) of the cSADDs pathway genes were differen�

tially regulated under CoQ�deficient condition. Remarkably, 83%

of these genes were down�regulated. The majority of the CoQ�

sensitive cSADDs pathway genes encode for proteins involved

in larval development (enrichment score (ES) = 38.0, p = 5.0E−37),

aminoacyl�tRNA biosynthesis, proteasome function (ES 8.2,

p = 5.9E−31) and mitochondria function (ES 3.4, p = 1.7E−5). 67% (80

genes) of these genes are categorized as lethal. Thus it is shown

for the first time that CoQ regulates a substantial number of

essential genes that function in the evolutionary conserved

cellular surveillance�activated detoxification and defenses path�

way in C. elegans.
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IntroductionCoenzyme Q (CoQ) is an essential lipophilic molecule of the
mitochondrial respiratory chain where it is mainly known for

its role in oxidative phosphorylation.(1) CoQ is also necessary for
pyrimidine biosynthesis and for proper function of uncoupling
proteins.(2) CoQ has been identified as a modulator of apoptosis,(3,4)

inflammatory processes and gene expression.(5–12) The reduced form
of CoQ, ubiquinol, serves as a potent antioxidant in mitochondria,
lipid membranes and plasma lipoproteins and interacts with other
lipid soluble anti-oxidants including α-tocopherol.(13–15) During
the last few years, the physiological functions of CoQ-induced
gene signatures have been recognized.(16–19) For example several
studies in vitro,(8–10) in laboratory rodents as well as in humans
provide evidence that ubiquinol reduces inflammatory processes
and modulates lipid metabolism via gene expression.(16–18,20–22) In
the model organism C. elegans, CoQ-dependent gene expression
seems to be of importance for larval growth and detoxification
reactions.(19) Recently, a xenobiotic and pathogen-associated
defence pathway has been identified in C. elegans by the Ravkun
group.(23,24) This so called cellular surveillance-activated detoxifi-
cation and defenses (cSADDs) pathway detects perturbations of
the mitochondria, ribosome and proteasome and initiates an aver-

sions behavior of the nematode. In the present study we hypo-
thesized that CoQ-deficiency induces a gene expression signature
mimicking an activation of the cSADDs pathway in C. elegans.

Materials and Methods

Strains, diets and CoQ10 supplementation. The study de-
sign has been recently described.(19) In short: Two clk-1 mutant
strains (qm30, MQ130 and e2519, CB4876, Caenorhabditis
Genetics Center, Minneapolis, MN) were cultured on E. coli GD1
(ubiG delete) lawns, supplemented with or without (vehicle)
30 μg/ml aqueous solution of ubiquinol-10. Aqueous solution of
ubiquinol-10 (PEG-60 hydrogenated castor oil, ubiquinol-10,
glycerol, water) and vehicle (no ubiquinol-10) was received from
Kaneka Corporation, Japan. N2 worms served as controls. Worms
were synchronized by hypochlorite treatment of gravid adults and
grown at 20°C until they reached L2 stadium for either 24 h (N2
worms) or 48 h (clk-1 mutants).

HPLC and COPAS flow cytometric analysis. Analysis of
CoQ derivates was based on the method of high-pressure liquid
chromatography (HPLC) with electrochemical detection and
internal standardisation.(25) Total concentrations of CoQ10, CoQ9,
DMCoQ9 and CoQ8 were analysed with diethoxy-ubiquinone-10
as internal standard.(19) To sort a distinct number of worms the
flow COPAS Biosort (Union Biometrica, Holliston, MA) was
used. Time of Flight (TOF) and optical density (Extinction, EXT)
were automatically measured from each worm as previously
described.(26) These parameters serve as approximations for body
length (TOF) and volume (EXT) respectively of the worms.

Gene expression and statistical analysis. Differential gene
expression and normalization of raw data were determined using a
custom-designed 8 × 60 K C. elegans Agilent gene expression
microarray and the Agilent MicroArray platform (Source
BioScience, ImaGenes GMbH, Berlin, Germany).(27) Fold-changes
of normalized expression signals were calculated from the arith-
metic mean values between clk-1 mutans and corresponding N2
control group. Fold changes >1.5 of differential gene expression
were considered as significant regulated and the significance was
calculated using an unpaired t test with unequal variance (Welch-
test). Each experiment was performed in duple- or triplicate. All
data of body length, body volume and CoQ measurements are
expressed as the means ± SEM. To determine statistical signifi-
cance t testing using SPSS software (ver. 13.0) was conducted.
P values less than 0.05 were considered statistically significant.
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Analysis of cSADDs associated overlapping genes. For 
analysis and interpretation of microarray data DAVID (Database
for Annotation, Visualization an Integrated Discovery, http://
david.abcc.ncifcrf.gov/) Bioinformatics resources were used.(28)

By doing so, IDs of cSADDs associated genes showing differen-
tially expression in both clk-1 mutants were uploaded. For sub-
sequent functional clustering, KEGG (Kyoto Encyclopedia for
Genes and Genomes) pathway maps were utilised. The WormMart
tool was applied to search for lethality phenotype of genes.(29)

Results

Generation of CoQ�deficient worms (“CoQ�free”) by
using both CoQ9�deficient clk�1 mutants and CoQ8�deficient
bacteria. C. elegans clk-1 mutants lack a mitochondrial hydroxy-
lase which is necessary for the endogenous synthesis of CoQ9.

(30)

Thus, they are characterized by the absent of endogenous CoQ9

but an accumulation of demethoxy-ubiquinone (DMCoQ9).
(31) To

obtain CoQ-deficient worms we raised both clk-1 (e2519) and
clk-1 (qm30) mutants on CoQ8-deficient GD1 bacteria until L2
larval stage. Mutant worms of further experimental groups were
supplemented with the reduced form of CoQ10. Equally treated N2
worms served as controls. Our experimental set-up resulted in six
experimental groups (A–F, Fig. 1) and has been recently described
in detail.(19) In short: A comparison of body length (TOF, black
bars) and volume (Ext, white bars) revealed no significant
differences between all worms of the experimental groups
(Fig. 1). Both clk-1 (e2519) and clk-1 (qm30) mutants (group C–F,
Fig. 1) show high contents of DMCoQ9, (dark grey bars) whereas
CoQ9 levels (light grey bars) are not detectable in these worms.

CoQ10 supplementation of the worms resulted in increased CoQ10

levels (striped bars) in group B, D and F compared to non-
supplemented worms (group A, C, E, not detectable). CoQ8 levels
(data not shown) were below detection level in all groups
suggesting no substantial CoQ input from bacterial sources.
Overall, by using both CoQ9-deficient clk-1 mutants and CoQ8-
deficient bacteria we generated CoQ-deficient worms (“CoQ-
free”), a perquisite to identify genes that are either induced or
suppressed by CoQ.

CoQ�deficiency induces a gene expression signature
mimicking an activation of the cSADDs pathway. To iden-
tify CoQ-sensitive genes we performed a genome-wide gene
expression analysis in all experimental groups as previously
described.(19) Compared to wild type, 6,710 genes (7,600 including
splice variants) were differentially expressed in CoQ-deficient
mutants clk-1 (e2519) and clk-1 (qm30) (fold change >1.5; p<0.05;
complete list of regulated genes was published recently).(19) 3,299
genes (3,740 including splice variants) were up-regulated, whereas
2,984 (3,984 including splice variants) were down-regulated under
CoQ-deficient condition (Fig. 2). The CoQ-sensitive genes were
compared to a list of 379 genes which functions in the cSADDs
pathway.(23) We found that 120 genes (168 including splice
variants) of the cSADDs pathway are differentially regulated
in both CoQ-deficient clk-1 (e2519) and clk-1 (qm30) (Fig. 2,
Supplemental Table 1*). The expression of these 120 CoQ-
sensitive cSADDs pathway genes is not substantially influenced
by exogenous CoQ10 supply (Supplemental. Table 1*). Remark-
ably, 83% (100 genes) of the CoQ-sensitive cSADDs pathway
genes are down-regulated under CoQ-deficient condition. Next,
we applied DAVID bioinformatics to allocate the 120 CoQ-

Fig. 1. Body length, body volume and concentration of CoQ derivates in CoQ9�producing wild type N2 worms (group A and B) and two different
CoQ deficient clk�1 mutant strains (e2519, group C and D and qm30, group E and F). Worms were cultivated on CoQ8�deficient bacteria (GD1) and
supplemented with (+) CoQ10 or vehicle control (–CoQ10). Animals were synchronized and grown until they reached L2 stage. Body length (time of
flight, TOF) and body volume (extinction, Ext) was measured using flow cytometry. CoQ derivates [CoQ9, demethoxy CoQ9 (DMCoQ9) and CoQ10]
were quantified using HPLC with electrochemical detection. Data are presented as means ± SEM. Values from supplemented (+CoQ10) versus non�
supplemented (–CoQ10) animals within a strain with different superscript letters are significantly different (p<0.05, t test).

*See online. https://www.jstage.jst.go.jp/article/jcbn/57/3/57_15�46/_article/supplement
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sensitive cSADDs pathway genes into functional clusters.(28)

The majority of the genes encode for proteins involved in larval
development (enrichment score (ES) = 38.0, Benjamini p =
5.0E−37), aminoacyl-tRNA biosynthesis, proteasome function (ES
8.2, p = 5.9E−31) and mitochondria function (ES 3.4, p = 1.7E−5)
(Fig. 2, Supplemental Table 1*). 67% (80 genes) of these genes
are categorized as lethal.

Discussion

Disruption of core cellular activities, including translation,
respiration and protein turnover stimulate behavioral avoidance of
normally attractive bacteria in C. elegans. Surveillance pathways
overseeing these core cellular activities have been summarized to
the cSADDs pathways.(23) It has been shown that the down-
regulation of the components of the cSADDs pathway initiates an
aversions behavior of the nematode. Based on whole-genome
expression profiling of six experimental groups we identified 120
genes (32%) of the cSADDs pathway that are differentially
expressed under CoQ-deficient (“CoQ-free”) conditions. Out of
these genes, 83% (100 genes) are down-regulated indicating that
CoQ-deficiency induces a gene expression signature mimicking
an activation of the cSADDs pathway. Furthermore 67% (80
genes) of the genes are categorized as essential genes and the
majority of the genes encode for proteins involved in larval

development, including aminoacyl-tRNA biosynthesis, protea-
some function and mitochondria.

CoQ deficiency affects gene expression of the protea�
some complex. Protein homeostasis is one of the nodal points
that need to be controlled to retain physiological homeostasis. The
ubiquitine-proteasome system is responsible for the removal of
both normal and damaged proteins with the proteasome being the
major cellular protease. Progressive impairment of proteasome
function during aging and cellular senescence is well documented
and recently it has been shown in C. elegans that activation of the
20S proteasome promotes life span extension and resistance to
proteotoxicity.(32,33) We found that CoQ deficiency down-regulates
several cSADDs pathway genes that encode for proteins of the
proteasome complex (Fig. 3) indicating reduced proteasome
activity, which might potentiate derogations in CoQ deficiency.
Interestingly it was recently discovered that the proteasome
system also controls the rate-limiting enzyme (HMG-CoA
synthase) of the mevalonate and CoQ synthesis pathway.(34)

The exogenous supply of the reduced form of CoQ10 (30 μg/ml
ubiquinol) to CoQ-deficient worms did not substantial restore
gene expression of proteasome related genes. Previously we have
highlighted the influence of endogenous and exogenous CoQ on
gene expression in clk-1 mutant worms.(19) We observed that
one set of genes (e.g., important for collagen synthesis) are up-
regulated in clk-1 mutants and that this regulation is restored
by CoQ10 supplementation. Like the proteasome related genes,
another sub-set of genes (e.g., C-type lectine) differentially
expressed in the clk-1 mutants could not be rescued by exogenous
CoQ supply. Therefore, exogenous and endogenous CoQ might
influence gene expression by different mechanisms.

CoQ deficiency affects gene expression of the aminoacyl�
tRNA biosynthesis. Aminoacyl-tRNA synthetases (AARSs)
catalyze the adenosine triphosphate-dependent acylation of their
cognate tRNA with a specific amino acid and are therefore
essential for protein translation.(35) It was shown in C. elegans that
inactivation of AARSs rescued animals from hypoxia-induced
death and the level of hypoxia resistance was inversely correlated
with translation rate.(36) In CoQ deficient worms nine genes
encoding for AARS, namely qars-1, dars-1, tars-3, vars-2, kars-1,
rars-1, hars-1 and fars-1 and 3 (Fig. 4) are down-regulated. Thus,
CoQ deficiency might induce a stress response pathway to protect
the animals against hypoxia-induced death.

CoQ deficiency affects gene expression of pathways that
surveil and defend mitochondria. Several RNAi screens
were performed to identify genes that influence C. elegans
lifespan. The screens revealed that the disruption of core cellular
functions such as metabolism and translation extends lifespan.(37)

clk-1 mutants lacking a mitochondrial hydroxylase necessary for
endogenous synthesis of CoQ, exhibit a respiration-defective
behavioral and long lived phenotype but without having major
changes in respiration.(38) A link between mitochondrial stress
and ubiquitin-dependent proteolysis has been described and seems
to be conserved from worm to man.(39) Worms showing both
mitochondrial respiration defects and elevated levels of reactive
oxygen species (ROS) levels are characterized by a limited protein
turnover. In agreement with these findings, we found that CoQ
deficiency down-regulates several genes that are annotated to
mitochondrial function (Supplemental Table 1*) as well as to
proteasome function and aminoacyl-tRNA biosynthesis (Fig. 3
and 4). This gene expression signature, induced by CoQ defi-
ciency, might represent a general stress response pathway of
animals. This, too, may contribute to lifespan extension following
disruption of mitochondrial function.(37) Our hypothesis is
strengthen by recent findings from the Ruvkun lab,(24) which
identified in response to inhibition of mitochondrial function 45
C. elegans genes that are required to enhance detoxification,
pathogen defense and mitochondrial repair. Seven of these genes
namely ran-4, gsp-2, F40F12.7, imb-3, Y54E10GR.5, unc-60,

Fig. 2. Number and functions of cSADDs pathway genes that are
regulated by CoQ�deficiency. The genes were functionally clustered
by DAVID Bioinformatics and categorized according to lethality by
the WormMart tool.(28,29) Rescue (%) by CoQ10 supplementation was
calculated by the difference in gene expression between CoQ10 supple�
mented groups and N2 controls. Number of genes (inclusive splice
variants in brackets [ ]) are shown. ES; Enrichment score.

*See online. https://www.jstage.jst.go.jp/article/jcbn/57/3/57_15�46/_article/supplement

https://www.jstage.jst.go.jp/article/jcbn/57/3/57_15-46/_article/supplement
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Fig. 3. Proteasome associated cSADDs pathway genes that are regulated by CoQ deficiency. Functional clustering of proteasome associated genes
(A) was done according to KEGG (Kyoto Encyclopedia for Genes and Genomes). Lethality, defined by the WormMart tool;(29) mean aversion ratio as
given and % rescue in gene expression to wild type level by CoQ10 supplementation of selected genes are given (B).(23)
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Fig. 4. Aminoacyl�tRNA biosynthesis associated cSADDs pathway that are regulated by CoQ deficiency. Functional clustering of aminoacyl�tRNA
biosynthesis associated genes (A) was done according to KEGG (Kyoto Encyclopedia for Genes and Genomes). Lethality, defined by the WormMart
tool;(29) mean aversion ratio as given and % rescue in gene expression to wild type level by CoQ10 supplementation of selected genes are given (B).(23)
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and elo-3 were down-regulated in CoQ deficient clk-1 mutants in
the present study (Supplemental Table 1*). The authors further
presented a link between ubiquinone synthesis and mitochondrial
surveillance by inhibition of the mevalonate and CoQ synthesis
pathway either by RNAi or statin drugs, which also disrupts
mitochondrial surveillange. Likewise we have previously shown
that dietary restriction reduces the level of CoQ and ubiquinol via
down regulation of genes involved in the mevalonate pathway in
C. elegans.(40)

We conclude that CoQ regulates a number of essential and
conserved genes of a general response pathway which is also in-
ducible by the perturbation of the mitochondria and other essential
cellular functions.
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