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Abstract: In this article, we introduce a new three-parameter distribution called the extended inverse-
Gompertz (EIGo) distribution. The implementation of three parameters provides a good recon-
struction for some applications. The EIGo distribution can be seen as an extension of the inverted
exponential, inverse Gompertz, and generalized inverted exponential distributions. Its failure rate
function has an upside-down bathtub shape. Various statistical and reliability properties of the
EIGo distribution are discussed. The model parameters are estimated by the maximum-likelihood
and Bayesian methods under Type-II censored samples, where the parameters are explained us-
ing gamma priors. The performance of the proposed approaches is examined using simulation
results. Finally, two real-life engineering data sets are analyzed to illustrate the applicability of
the EIGo distribution, showing that it provides better fits than competing inverted models such as
inverse-Gompertz, inverse-Weibull, inverse-gamma, generalized inverse-Weibull, exponentiated
inverted-Weibull, generalized inverted half-logistic, inverted-Kumaraswamy, inverted Nadarajah–
Haghighi, and alpha-power inverse-Weibull distributions.

Keywords: Bayesian estimation; inverse-Gompertz distribution; entropies; moments; stress-strength
reliability; maximum likelihood estimation; Type-II censored data; MCMC

1. Introduction

The two-parameter Gompertz (Go) distribution is very important in modeling ac-
tuarial tables and human mortality. It was, historically, introduced by [1], after which
many authors have contributed to its statistical methodology and characterization. Sev-
eral studies have shown that the Go distribution is not flexible for modeling various
phenomena due to it having only an increasing hazard rate (HR) shape, for example,
the generalized-Go [2], beta-Go [3], transmuted-Go [4], McDonald-Go [5], exponentiated
generalized Weibull-Go [6], unit-Go [7], power-Go [8], skew reflected-Go [9], Topp-Leone
Go [10], and alpha-power Go [11] distributions.

Furthermore, Wu et al. [12] estimated the parameters of the Go distribution using the
least-squares approach. Soliman et al. [13] estimated the parameters of the Go distribution
using the maximum likelihood (ML) and Bayes methods under progressive first-failure
censored samples. Dey et al. [14] studied the properties and different methods of estimation
for the Go distribution.

Recently, many authors have constructed inverted models and studied their applica-
tions in several applied fields such as the inverse Nakagami-m, inverse weighted-Lindley,
and logarithmic transformed inverse-Weibull distributions by [15–17], respectively.

Eliwa et al. [18] proposed the two-parameter inverse Go (IGo) distribution with an
upside-down bathtub shape HR function. The non-negative random variable (rv) X is said
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to have an IGo distribution if its cumulative distribution function (CDF) is specified (for
x > 0) by

R(x; β, θ) = exp
{
− β

θ

[
exp

(
θ

x

)
− 1
]}

, β, θ > 0, (1)

where β and θ denote the shape and scale parameters, respectively.
The first objective of this article is to present a new lifetime model called the EIGo

distribution and explore some of its useful properties. Specifically, the EIGo model is
constructed based on the extended-R (E-R) family [19] by adding another shape parameter
that might address the lack of fit of the IGo distribution for modeling real-life data that
indicated non-monotone failure rates. We are motivated to construct the EIGo distribution
because (i) it is capable of modelling unimodal HR shape, which provides a good fit for the
real data sets; (ii) the EIGo model contains some special well-known distributions; (iii) the
EIGo model can be considered as a good alternative to the IGo model and other competing
inverted models for fitting the positive data with a longer right tail; and (iv) the EIGo
distribution outperforms some competing inverted distributions with respect to two real
engineering data sets. One of the important advantages of the EIGo model is its ability to
provide an improved fit with respect to its competing inverted models.

The second objective is to address and evaluate the behavior of classical and Bayesian
estimators for the unknown parameters of the proposed EIGo distribution under Type-
II censored samples. We compare the performances of these estimators by conducting
extensive simulations in terms of their root mean squared errors (RMSEs) and relative
absolute biases (RABs).

The paper is outlined in seven sections. In Section 2, the EIGo distribution is intro-
duced with its special cases and expansion. Some of its useful properties are addressed in
Section 3. In Section 4, maximum likelihood and Bayesian methods are discussed under
Type-II censored samples. In Section 5, the performances of the maximum likelihood and
Bayesian approaches are explored via simulation results. In Section 6, the adaptability
of the EIGo model is addressed using two real-life engineering datasets. Finally, some
concluding remarks are presented in Section 7.

2. The EIGo Distribution

In this section, we introduce the three-parameter EIGo distribution and some of its
sub-models. The CDF of the E-R family, with a shape parameter α > 0, has the form

F(x; α) = 1− [1− R(x)]α, x ∈ <. (2)

A lifetime rv X is said to have the EIGo distribution if its CDF has the form

F(x) = 1−
[

1− exp
(
− β

θ

(
eθ/x − 1

))]α

, x > 0, α β, θ > 0, (3)

where α and β denote the shape parameters and θ denotes the scale parameter. The first
advantage of the EIGo distribution is that it has a closed form for its CDF (3).

The corresponding probability density function (PDF) of (3) becomes

f (x) = αβx−2 exp
(

θ

x
− β

θ

(
eθ/x − 1

))[
1− exp

(
− β

θ

(
eθ/x − 1

))]α−1
, x > 0, α,β, θ > 0. (4)

The rv with the PDF (4) is denoted by X ∼EIGo(α, β, θ). The EIGo distribution
involves three well-known lifetime sub-models as follows.

• The generalized inverted-exponential (GIE) distribution [20] follows when the param-
eter θ → 0.

• The IGo distribution [18] is derived for α = 1.
• The inverse-exponential (IE) distribution [21] with one parameter β can be derived

when θ → 0 and α = 1.
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Using some specific parameter values, the shapes of the EIGo PDF (4) are displayed in
Figure 1. It shows that the PDF of the EIGo distribution can be unimodal and right-skewed
with great heaviness of the tails.
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Figure 1. Plots of the PDF of the EIGo distribution for some specific parameter values.

The corresponding survival, S(x), and HR, h(x)„ functions of the EIGo distribution
have the forms

S(x) =
[

1− exp
(
− β

θ

(
eθ/x − 1

))]α

, x > 0, (5)

and

h(x) = αβx−2 exp
(

θ

x
− β

θ

(
eθ/x − 1

))[
1− exp

(
− β

θ

(
eθ/x − 1

))]−1
, x > 0. (6)

Figure 2 provides graphical representations of the HR function (HRF) of the EIGo
distribution with various values of its parameters. It shows that the HRF of the EIGo
distribution has an upside-down bathtub shape.
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Figure 2. Plots of the HRF of the EIGo distribution for some specific parameter values.
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The cumulative HRF, H(x), of the EIGo distribution has the form

H(x) = − log(S(x)) = −α log
[

1− exp
(
− β

θ

(
eθ/x − 1

))]
, x > 0.

The reversed HRF, r(·) of the EIGo distribution is

r(x) =
αβx−2 exp

(
θ
x −

β
θ

(
eθ/x − 1

))[
1− exp

(
− β

θ

(
eθ/x − 1

))]−1

1−
[
1− exp

(
− β

θ

(
eθ/x − 1

))]α , x > 0.

By dividing the CDF (3) by the survival function (5), the corresponding odds function,
O(x), follows as

O(x) =
1−

[
1− exp

(
− β

θ

(
eθ/x − 1

))]α

[
1− exp

(
− β

θ

(
eθ/x − 1

))]α , x > 0.

Expansions

Let a be a real positive integer; we consider the following general binomial series

(1− x)a =
∞

∑
i=0

(−1)ia!xi

i!(a− i)!
, (7)

which is valid for |x| < 1. By expanding the CDF (3) by (7), we get

F(x) = 1−
∞

∑
i=0

ϑi(α) G∗(x; i β, θ), (8)

where G∗(x; i β, θ) is the CDF of the IGo distribution with parameters i β and θ, and the
coefficient ϑi(α) is given by

ϑi(α) =
(−1)i

i!
Γ(α + 1)

Γ(α− i + 1)!
·

Similarly, expanding the PDF (4) by (7), we obtain

f (x) = α
∞

∑
i=0

ωi(α) g∗(x; (i + 1) β, θ), (9)

where g∗(x; (i + 1) β, θ) is the PDF of the IGo model with parameters (i + 1) β and θ,
and ωi(α) = (−1)i Γ(α)/[Γ(α− i) i!].

Clearly, Equation (9) shows that the EIGo model is a linear combination of IGo
densities. Thus, some structural properties of the EIGo model can be obtained from those
of the IGo distribution.

3. Statistical and Reliability Characteristics

This section is devoted to determining several statistical and reliability characteristics
of the EIGo distribution.

3.1. Quantile and Mode

To simulate random samples from the EIGo distribution, its quantile function (QF), xq,
follows as

xq =
θ

ln
{

1− θ
β ln

[
1− (1− q)1/α

]} , 0 < q < 1. (10)
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Substituting q = 0.5 into (10), the median, Med(x), of the EIGo distribution can conve-
niently be derived. Similarly, substituting q = 0.25 and q = 0.75 into (10), the first and the
third quartiles of the EIGo distribution can be easily obtained.

The mode of the EIGo distribution follows by differentiating the logarithm of the
PDF (4), x0, with respect to x, and equating the result to zero. After some algebraic
manipulations, the mode is determined by solving the following non-linear equation:

x0 = βeθ/x − 2x− θ − (α− 1) exp
(

θ

x
− β

θ

(
eθ/x − 1

))[
1− exp

(
− β

θ

(
eθ/x − 1

))]−1
= 0. (11)

The unique mode of the EIGo distribution cannot be obtained analytically, hence it
can be obtained numerically.

3.2. Mean Residual Life

The mean-residual-life (MRL) function is the average remaining life span, which is a
component surviving up to distinct time t. It is a useful measure in reliability studies for
describing the aging process.

Theorem 1. If X has EIGo(α, β, θ) distribution, thus the MRL of the lifetime rv X, say mR(·),
takes the form

mR(t) =
1

S(t)

(
µ′1 −

∞

∑
i,s,m=0

s

∑
j=0

α!(s− j)mθm−s(iβ)st1−m

(α− i)!(s− j)!i!j!m!(1−m)
(−1)i+s+j

)
, t > 0.

Proof. Suppose that X is a lifetime rv with CDF (3); then the MRL is defined as [22]

mR(t) = E(X− t|X > t) =
1

P(X > t)

∫ ∞

t
(x− t)dP(X 6 x|X > t), t > 0. (12)

However, the MRL in (12) is equivalent to

mR(t) =
1

S(t)

∫ ∞

t
S(x)dx,

=
1

S(t)

(
µ′1 −

∫ t

0
S(x)dx

)
, t > 0,

(13)

where µ′1 is the expected mean of time t, which is equivalent to the MRL at t = 0.
Using (5), one gets

mR(t) =
1

S(t)

(
µ′1 −

∞

∑
i,s,m=0

s

∑
j=0

ϑ∗i,s,j,m(α, β, θ)t1−m

)
, (14)

where

ϑ∗i,s,j.m(α, β, θ) =
α!(s− j)mθm−s(iβ)s

(α− i)!(s− j)!i!j!m!(1−m)
(−1)i+s+j.

3.3. Mean Inactivity Time

The mean inactivity time (MIT) function is useful in reliability and survival analysis.
The MIT, mI(x), of X is defined as

mI(t) = E(t− X|X ≤ t) =

∫ t
0 F(x)dx

F(t)
. (15)
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If X ∼EIGo(α, β, θ), then, using (8), we have

∫ t

0
F(x)dx = t−

∞

∑
i,s,m=0

s

∑
j=0

ϑ∗i,s,j,m(α, β, θ)t1−m. (16)

The MIT of the EIGo distribution follows simply by substituting (3) and (16) in
Equation (15). Moreover, the CDF (3) of the EIGo distribution follows from the MIT by the
following formula

F(x) = exp

(
−
∫ ∞

x

1−m
′
I(t)

mI(t)

)
dt,

where mI(t) is differentiable.

3.4. Strong MIT

The strong-MIT (SMIT) function is another useful reliability measure, which is intro-
duced by [23]. They showed that the SMIT has several properties that can be adopted in
different applications in reliability and survival analysis. It can be used to predict the actual
time at which the failure of the component or device occurs.

The SMIT, mS(x), has the form

mS(t) =
1

F(t)

∫ t

0
2xF(x)dx. (17)

Hence, the SMIT of the EIGo distribution follows as

mS(t) =
t2

F(t)

(
1− 2

∞

∑
i,s,m=0

s

∑
j=0

ϑ∗i,s,j,m(α, β, θ)
(1−m)

(2−m)
t−m

)
.

3.5. Stress–Strength Reliability

The stress–strength model describes the life of a component or system that has a
random strength X that may fail because it is subjected to a random stress Z. Hence,
R = Pr(X > Z) is a measure of component reliability.

Suppose X and Z have independent EIGo(α, β1, θ1) and EIGo(α, β2, θ2) with the same
shape parameter α. Then, the stress–strength measure is [24]

R =
∫ ∞

0
f1(x)F2(x)dx. (18)

Using (9) and (8), the PDF of X1 and the CDF of X2 are expressed as

f1(x) = α
∞

∑
i,s=0

s

∑
j=0

(α− 1)!(i + 1)sβs+1
1 θ−s

1
(α− i− 1)!(s− j)!i!j!

(−1)i+s+jx−2e−(j−s−1)θ1/x (19)

and

F2(x) = 1−
∞

∑
u,w=0

w

∑
v=0

α!
(α− u)!(w− v)!u!v!

(−1)u+w+v
(

uβ2

θ2

)w
e(w−v)θ2/x , (20)

respectively.
From substituting (19) and (20) in (18), the R measure reduces to

R = α

[
∑∞

i,s=0 ∑s
j=0

ψ1
i,s,j(α, β1, θ1)

(j− s− 1)θ1
−

∞

∑
i,s,u,w=0

s

∑
j=0

w

∑
v=0

ψ1
i,s,j(α, β1, θ1)ψ

2
u,w,v(α, β2, θ2)

((j− s− 1)θ1 − (w− v)θ2)

]
,
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where

ψ1
i,s,j(α, β1, θ1) =

(α− 1)!(i + 1)sβs+1
1 θ−s

1
(α− i− 1)!(s− j)!i!j!

(−1)i+s+j

and

ψ2
u,w,v(α, β2, θ2) =

α!uwβw
2

(α− u)!(w− v)!u!v!θw
2
(−1)u+w+v.

3.6. Probability Weighted Moments

The probability-weighted moments (PWM), say ρr,k, can be adopted to derive an
estimate for the unknown parameters of a particular distribution whose inverse extension
cannot be expressed explicitly.

Theorem 2. If X has EIGo(α, β, θ) distribution, then the (r, k)th PWM of the rv X is derived as

ρr,k = α

[
(−1)v+i+s+jΓ(k + 1)Γ(α(v + 1))Γ(m− r + 1)(i + 1)sβs+1θr−s−1(j− s)r−m−1

Γ(k− v + 1)Γ(α(v + 1)− i)Γ(s− j + 1)Γ(v + 1)Γ(i + 1)Γ(s + 1)Γ(j + 1)

]
· (21)

Proof. The (r, k)th PWM of non-negative X following a continuous CDF, F(.), is defined
by [25]

ρr,k = E[XrFk(x)] =
∫ ∞

0
xkFk(x) f (x)dx. (22)

Substituting (3) and (4) into (22), the ρr,k can be written as

ρr,k =
∫ ∞

0
xkFk(x) f (x) dx = α β

∞

∑
v,i=0

(−1)v+i Γ(k + 1) Γ(α (v + 1))
Γ(i + 1) Γ(k− v + 1) Γ(α(v + 1)− i) Γ(v + 1)

×
∫ ∞

0
xk−2eθ/x exp

(
− (i + 1)β

θ

(
eθ/x − 1

))
dx, (23)

The following term can be expanded by Taylor’s series as

exp
(
− (i + 1) β

θ

(
eθ/x − 1

))
=

∞

∑
s=0

(−1)s (i + 1)sβs

θs Γ(s + 1)

(
eθ/x − 1

)s
.

Hence, Equation (23) reduces to

ρr,k = α
∞

∑
v,i,s=0

(−1)v+i+sΓ(k + 1) Γ(α (v + 1)) (i + 1)sβs+1

Γ(k− v + 1) Γ(α(v + 1)− i) Γ(v + 1) Γ(i + 1) Γ(s + 1)θs

×
∫ ∞

0
xk−2eθ/x

(
eθ/x − 1

)s
dx. (24)

However, from (24), the ρr,k of X has the form

ρr,k = α
∞

∑
v,i,s,m=0

s

∑
j=0

υv,i,s,m,j(α, β, θ) Γ(m− r + 1),

where

υv,i,s,m,j(α, β, θ) =
(−1)v+i+s+j Γ(k + 1) Γ(α(v + 1)) (i + 1)s βs+1θr−s−1(j− s)r−m−1

Γ(j + 1) Γ(k− v + 1) Γ(α(v + 1)− i) Γ(s− j + 1) Γ(v + 1) Γ(i + 1) Γ(s + 1)
·

3.7. Moments

Moments are used to describe the characteristics of the probability distribution, so
they are important in any statistical analysis.
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By definition, the r-th moment of any rv X with PDF, f (x), is

µ
′
r = E(Xr) =

∫ ∞

0
xr f (x) dx. (25)

By substituting (9) in (25), the rth moment of the EIGo(α, β, θ) distribution reduces to

µ
′
r = α

∞

∑
i,s,m=0

s

∑
j=0

(α− 1)!(i + 1)sβs+1θm−s

(α− i− 1)!(s− j)!i!j!m!
(−1)i+s+j

∫ ∞

0
xr−m−2e−(j−s)θ/xdx,

= α
∞

∑
i,s,m=0

s

∑
j=0

vi,s,m,j(α, β, θ)Γ(m− r + 1), (26)

where

vi,s,m,j(α, β, θ) =
(α− 1)!(i + 1)s(j− s)r−m−1βs+1θr−s−1

(α− i− 1)!(s− j)!i!j!m!
(−1)i+s+j,

Γ(a) =
∫ ∞

0 ta−1e−tdt, a > 0 is the gamma (Ga) function.
From (26), the corresponding mean of the EIGo distribution is simply obtained by

setting r = 1, and the corresponding variance can be also obtained using r = 1 and r = 2.

3.8. Entropies

Entropy is a useful concept to measure the uncertainty related to a rv X. It is adopted
in many fields of science such as econometrics and computer science.

The Rényi entropy of order δ, say ρδ(X), is defined (for δ > 0 and δ 6= 1) as [26]

ρδ(X) =
1

1− δ
log
(∫ ∞

−∞
f (x)δ dx

)
.

So, if X ∼EIGo(α, β, θ) distribution, then we have∫ ∞

0
( f (x))δdx = αδ

∞

∑
i,s=0

s

∑
j=0

((α− 1) δ)! (i + δ)sβs+δθ−s

(δ(α− 1)− i− 1)!i!s!j!
(−1)i+s+j

∫ ∞

0
x−2δe−(j−s−δ)θ/x dx,

= αδ
∞

∑
i,s=0

s

∑
j=0

ω
ρδ
i,s,j(α, β, θ)Γ(2δ− 1), (27)

where

ω
ρδ
i,s,j(α, β, θ) =

(δ(α− 1))!(i + δ)s(j− s− δ)1−2δβs+δθ1−s−2δ

(δ(α− 1)− i− 1)!i!s!j!
(−1)i+s+j.

Hence, the ρδ(X) of X becomes

ρδ(X) =
1

1− δ
log

(
αδ

∞

∑
i,s=0

s

∑
j=0

ω
ρδ
i,s,j(α, β, θ)Γ(2δ− 1)

)
, δ > 0, δ 6= 1.

The δ-entropy, denoted by Iδ(X), of the EIGo distribution has the form (for δ > 0 and
δ 6= 1)

Iδ(X) =
1

δ− 1
log
(

1−
∫ ∞

0
( f (x))δdx

)
.

It follows directly using (27).
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3.9. Order Statistics

Consider the order statistics (OS) of a random sample of size n, say X(1) 6 X(2) 6
· · · 6 X(n). Then, the PDF of the r− th order statistic, say X(r), r = 1, 2, . . . , n is [27]

f(r)(x) = C−1
r

n−r

∑
q=0

(−1)q

(
n− r

q

)
f (x)(F(x))r+q−1, (28)

where Cr = B(r, n− r + 1) .
The corresponding CDF of X(r) reduces to

F(r)(x) =
n

∑
d=r

n−d

∑
q=0

(−1)q

(
n

d

)(
n− d

q

)
(F(x))d+q, (29)

Using (3) and (4) of the EIGo distribution, the PDF (28) follows as

f(r)(x) =
n−r

∑
q=0

∞

∑
v,s=0

ξ
(r)
q,v,s(α, β, θ)g∗r ((s + 1)β, θ; x), (30)

where

ξ
(r)
q,v,s(α, β, θ) =

α(n− r)!(r + q− 1)!(α(v + 1)− 1)!(−1)q+v+s

Cr(m + 1)(n− r− q)!(r + q− v− 1)!(α(v + 1)−m− 1)!q!v!s!
,

and g∗r ((s + 1)β, θ; x) is the PDF of the IGo model with parameters (s + 1)β and θ. Thus,
the PDF of the EIGo distribution OS is a linear mixture of the IGo densities.

Similarly, from using (3) and (4) of the EIGo distribution, the CDF (29) reduces to

F(r)(x) =
n

∑
d=r

n−d

∑
q=0

n−r

∑
q=0

∞

∑
v,s=0

ζ
(r)
q,v,s(α, β, θ)G∗r (sβ, θ; x), (31)

where

ζ
(r)
d,q,v,s(α, β, θ) =

n! (n− d)! (d + q)! (αv)! (−1)q+v+s

(n− d− q)! (n− d)! (d + q− v)! (αv− s) !d! q! v! s!
.

3.10. Stochastic Ordering

The following theorem shows that the EIGo distribution is ordered with respect to the
likelihood ratio, X≤LRY, order.

Theorem 3. Let X ∼EIGo(α1, β, θ) and Y ∼EIGo(α2, β, θ), for α1 ≥ α2, then X≤lrY.

Proof. The likelihood ratio function ξ(x) has the form (see [28])

ξ(x) =
fX(x)
fY(x)

. (32)

By substituting (3) into (32), one gets

ξ(x) =
α1

[
1− exp

(
− β

θ

(
eθ/x − 1

))]α1

α2

[
1− exp

(
− β

θ

(
eθ/x − 1

))]α2
· (33)

Taking the natural logarithm of (33) and differentiating the result with respect to x,
we obtain

d
dx

log(ξ(x)) =
(α2 − α1)β

x2 exp
(

θ

x
− β

θ

(
eθ/x − 1

))
< 0.
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Thus, ξ(x) is decreasing in x for α1 ≥ α2; i.e., X≤lrY. The proof is completed.

4. Parameter Estimation under Type-II Censoring

In this section, we discuss the estimation of the EIGo parameters, Θ = (α, β, θ)T, using
the ML and Bayesian estimators under Type-II censoring scheme in which the life-test is
terminated after a specified number of failures have occurred, say m(< n), out of complete
test units n.

4.1. Maximum Likelihood Estimators

Suppose that n independent items are taken from the EIGo model with CDF (3) and are
placed on a test at time 0. Hence, the likelihood function (LF), say L(Θ|x), under Type-II
censored sample, X(i), i = 1, 2, ..., m, takes the form (See [29])

L(Θ|x) = n!
(n−m)!

m
Π

i=1
f (x(i); Θ)

[
1− F(x(m); Θ)

]n−m
. (34)

By substituting (3) and (4) into (34), then Equation (34) reduces to

L(Θ|x) = n!(αβ)m

(n−m)!
exp

(
θ ∑m

i=1 x−1
(i)

) m
Π

i=1
x−2
(i)

[
1− exp

(
−ζ
(

x(i); β, θ
))]−1

× exp
(

α
(
(n−m) log

[
1− exp

(
−ζ
(

x(m); β, θ
))]

+ ∑m
i=1 log

[
1− exp

(
−ζ
(

x(i); β, θ
))]))

,
(35)

where ζ
(

x(i); β, θ
)
= β

θ

(
exp(θx−1

(i) )− 1
)

and ζ
(

x(m); β, θ
)
= β

θ

(
exp(θx−1

(m)
)− 1

)
. Clearly,

the LF of complete sample follows as a special case from (35) by setting m = n. The associ-
ated log-LF of (35), say `(Θ), becomes

`(α, β, θ|x) ∝ m log(αβ) + θ ∑m
i=1 (x−1

(i) ) + (α− 1)∑m
i=1 log

[
1− exp

(
−ζ
(

x(i); β, θ
))]

+ α(n−m) log
[
1− exp

(
−ζ
(

x(m); β, θ
))]

.
(36)

Differentiating (36) partially with respect to α, β and θ, we can write that the log-LF of
(35), say `(Θ), becomes

∂`(Θ)

∂α
=

m
α
+ (n−m) log

[
1− exp

(
−ζ
(

x(m); β, θ
))]

+ ∑m
i=1 log

[
1− exp

(
−ζ
(

x(i); β, θ
))]

, (37)

∂`(Θ)

∂β
=

m
β
+

α(n−m)ζ
′
β

(
x(m); β, θ

)
exp

(
−ζ
(

x(m); β, θ
))

1− exp
(
−ζ
(

x(m); β, θ
))

+ (α− 1)∑m
i=1

ζ
′
β(x(i); β, θ) exp

(
−ζ
(

x(i); β, θ
))

1− exp
(
−ζ
(

x(i); β, θ
))

(38)

and

∂`(Θ)

∂θ
= ∑m

i=1 (x−1
(i) ) +

α(n−m)ζ
′
θ

(
x(m); β, θ

)
exp

(
−ζ
(

x(m); β, θ
))

1− exp
(
−ζ
(

x(m); β, θ
)) (39)

+ (α− 1)∑m
i=1

ζ
′
θ(x(i); β, θ) exp

(
−ζ
(

x(i); β, θ
))

1− exp
(
−ζ
(

x(i); β, θ
)) ,
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where ζ
′
φ(·) is the first-partial derivative with respect to φ, ζ

′
β(x(i); β, θ) =

ζ(x(i);β,θ)
β ,

ζ
′
β(x(m); β, θ) =

ζ(x(m);β,θ)
β , ζ

′
θ(x(i); β, θ) = β

θ2 [e
θx−1

(i) (θx−1
(i) − 1) + 1], and ζ

′
θ(x(m); β, θ) =

β

θ2 [e
θx−1

(m)(θx−1
(m)
− 1) + 1].

Equating the three Equations (37)–(39) to zero and solving them simultaneously will
provide the ML estimators (MLEs) of the EIGo parameters. Clearly, the MLEs cannot be
determined in closed forms, but they can be calculated numerically using suitable iterative
techniques such as the Newton–Raphson. To construct the confidence intervals (CIs) of
the model parameters, the observed information matrix, Iij(·), is required, and it takes
the form

Iij(Θ) = E
[
−
(

∂2`(Θ|x)/∂Θ2
)]

, i, j = 1, 2, 3. (40)

Practically, by dropping the expectation operator given in (40) and replacing Θ by
their MLEs Θ̂, the approximate asymptotic variance–covariance matrix, I−1(Θ̂), for the
MLEs Θ̂ = (α̂, β̂, θ̂)

T
, becomes

I−1(Θ̂) =


−Lαα −Lαβ −Lαθ

−Lβα −Lββ −Lβθ

−Lθα −Lθβ −Lθθ


−1

(Θ=Θ̂)

=


σ̂α̂α̂ σ̂α̂β̂ σ̂α̂θ̂

σ̂β̂α̂ σ̂β̂β̂ σ̂β̂θ̂

σ̂θ̂α̂ σ̂θ̂ β̂ σ̂θ̂θ̂

. (41)

Taking the second partial derivative of (36) with respect to α, β, and θ, the observed
Fisher elements in (41), Lij, are obtained and are available with the authors upon request.
Under some mild regularity conditions, the MLEs Θ̂ are approximately distributed as
multivariate normal (No) distribution with mean Θ and variance I−1(Θ̂) respectively [29].
Hence, for large samples, 100(1− ε)% CIs for the model parameters α, β and θ are

α̂∓ zε/2
√

σ̂α̂α̂, β̂∓ zε/2

√
σ̂β̂β̂ and θ̂ ∓ zε/2

√
σ̂θ̂θ̂ ,

respectively, where σ̂α̂α̂, σ̂β̂β̂, and σ̂θ̂θ̂ refer to diagonal elements of (41) and zε/2 is the
percentile of the standard No distribution with right-tail probability (ε/2)-th.

4.2. Bayes Estimators

This subsection discusses the Bayes estimators (BEs) and the credible intervals (CIs)
of the unknown parameters of the EIGo model. The squared error loss (SEL) function as a
symmetric loss function is adopted to obtain the BEs, and it is defined by

l(Θ, Θ̃) = (Θ̃−Θ)2, (42)

where Θ̃ is an estimate of Θ.
The gamma (Ga) conjugate priors of the EIGo parameters can be applied to de-

velop the BEs due to their flexibility in covering several varieties of prior beliefs of the
experimenter (see [30,31]). Hence, the unknown parameters α, β and θ are assumed to
have independent Ga prior PDF, i.e., as α ∼Ga(a1, b1), β ∼Ga(a2, b2) and θ ∼Ga(a3, b3).
The hyper-parameters, say ai, bi > 0, i = 1, 2, 3, represent the prior knowledge about
the three parameters, and they are assumed to be non-negative and known. However,
the hyper-parameters are fixed by using the mean and the variance of the Ga distribution

(ai =
Θ2

i
τ2 and b2 = Θ2

i(ai − 1)); hence, τ2 = 1 is used and Θi is the initial value. Hence,
the joint prior PDF of Θ becomes

π(α, β, θ) ∝ αa1−1βa2−1θa3−1 exp(−(b1α + b2β + b3θ)), α, β, θ > 0. (43)
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Combining (43) with (35), the joint posterior distribution of α, β and θ becomes

π(α, β, θ|x) = A−1αm+a1−1e−αb∗1 (β,θ)βm+a2−1e−b2βθa3−1 exp
(
−θ
(

b3 −∑m
i=1 x−1

(i)

))
×

m
Π

i=1

[
1− exp

(
−ζ
(

x(i); β, θ
))]−1

,
(44)

where

b∗1(β, θ) = b1 − (n−m) log
[
1− exp

(
−ζ
(

x(m); β, θ
))]
−∑m

i=1 log
[
1− exp

(
−ζ
(

x(i); β, θ
))]

and A =
∫ ∞

0

∫ ∞
0

∫ ∞
0 π(α, β, θ|x) dα dβ dθ refers to the normalizing constant of (44).

Then, the BEs of any function of α, β, and θ, say ϕ(α, β, θ), under the SEL function
follows by the posterior expectation of ϕ(α, β, θ), and it has the form

ϕ̃(α, β, θ) = E[ ϕ(α, β, θ)|x] = 1
A

∫ ∞

0

∫ ∞

0

∫ ∞

0
ϕ(α, β, θ)π(α, β, θ|x) dα dβ dθ. (45)

Based on (45), the BEs cannot be obtained in closed forms. Hence, the Markov chain
Monte Carlo (MCMC) techniques are adopted to approximate the BEs and to construct the
CIs from (45). The Metropolis Hastings (M-H) algorithm is a general technique of a family
of Markov chain (MC) simulation methods, and it is the most commonly used of MCMC
techniques to draw samples from posterior distribution (PD) to calculate the Bayesian
estimates of interest. Several applications of the MC algorithm can be explored in [31,32].

Using (45), the full conditional posterior distributions (CPDs) of α, β, and θ are
obtained as

π1(α|β, θ, x) ∝ αm+a1−1e−αb∗1 (β,θ), (46)

π2(β|α, θ, x) ∝ βm+a2−1e−b2β
m
Π

i=1

[
1− exp

(
−ζ
(

x(i); β, θ
))]−1

(47)

and

π3(θ|α, β, x) ∝ θa3−1 exp(−θ(b3 −∑m
i=1 x−1

(i) ))
m
Π

i=1

[
1− exp

(
−ζ
(

x(i); β, θ
))]−1

. (48)

Thus, from (46), the unknown parameter α has the Ga density with shape parameter
m + a1 and scale parameter b∗1(β, θ). Thus, the samples of α are generated easily using
any Ga-generating routine. In addition, from (47) and (48), it can be seen that the CPDs
of β and θ are different from well-known distributions. Hence, it is impossible to sample
directly using standard models. To solve this problem, Tierney [33] proposed the use of a
hybrid MCMC algorithm by combining the M-H algorithm sampler with a Gibbs sampling
scheme using the normal distribution. Here, the hybrid algorithm will be termed as a
M-H within Gibbs sampling for updating the unknown parameter α using Gibbs steps and
then for updating the unknown parameters β and θ using M-H steps in order to calculate
the BEs and construct the CIs of α, β, and θ. Now, the proposed hybrid algorithm can be
carried out using the following steps.

Step 1: Start with an initial values α(0) = α̂, β(0) = β̂, and θ(0) = θ̂.
Step 2: Set J = 1.
Step 3: Generate α(J) from Ga(m + a1, b∗1(β, θ)).

Step 4: Generate β(J) and θ(J) from π2

(
β(J−1)

∣∣∣α(J), θ(J−1), x
)

and π3

(
θ(J−1)

∣∣∣α(J), β(J), x
)

using M-H algorithm with the normal densities:

(a) Generate β∗ and θ∗ from N(β(J−1), σ2
β) and N(θ(J−1), σ2

θ ), respectively.
(b) Obtain the acceptance measures:

φ1

(
β(J−1), β∗

)
= min

{
1,

π2( β∗ |α(J),θ(J−1),x)
π2( β(J−1)|α(J),θ(J−1),x)

}
and
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φ2

(
θ(J−1), θ∗

)
= min

{
1,

π3( θ∗ |α(J),β(J),x)
π3( θ(J−1)|α(J),β(J),x)

}
.

(c) Generate samples u1 and u2 from U(0, 1).
(d) If u1 ≤ φ1 then set β(J) = β∗. Similarly if u2 ≤ φ2 then set θ(J) = θ∗. Otherwise set

β(J) = β(J−1) and θ(J) = θ(J−1).

Step 5: Put J = J + 1.
Step 6: Repeat steps 3-5 for M times to get

ϕ(J) =
(

α(J), β(J), θ(J)
)

, J = 1, 2, . . . , M.

In the beginning of the analysis (burn-in period), we discarded the first simulated
varieties, say M0, to remove the effect of the selection of initial guess value and to guarantee
the sampling convergence; hence, the remaining samples are used to carried out the BEs
with an optimal acceptance rate of 23.4% [34]. Then, for sufficiently large M, the drawn
MCMC samples of the parameters α, β, and θ as in ϕ(J), J = M0 + 1, ..., M, can be adopted
to develop the BEs. Thus, the approximate BEs of ϕ under SEL function takes the form

ϕ̃ =
1

M−M0

M

∑
J=M0+1

ϕ(J).

To construct the 100(1− γ)% two-sided Bayes-CIs (BCIs) of α, β, and θ, we order the
simulated MCMC samples of ϕ(J) for J = 1, 2, . . . , N, after burn-in as ϕ(M0+1), ϕ(M0+2),
. . . , ϕ(N). Hence, the 100(1− γ)% two-sided BCIs of ϕ reduces to(

ϕ(M−M0)(γ/2), ϕ(M−M0)(1−(γ/2))

)
.

5. Simulation Results

To evaluate the behavior of the point and interval estimators for the EIGo parame-
ters, we conduct a Monte Carlo simulation study. Using three sets of parametric values,
i.e., (α, β, θ) = (0.5, 0.1, 0.1), (α, β, θ) = (1.0, 0.5, 0.5), and (α, β, θ) = (3, 3, 3), we simu-
late 1000 samples of n (total sample size) and m (effective sample size) such as n = 40,
60, and 80, where m is taken as a failure proportion such as (m/n)100% = 25, 50, 75,
and 100% for each n. Clearly, the Type-II censored samples, which are generated with
(m/n) = 100%, represent the complete samples. In the Bayesian paradigm, the choice
of the hyper-parameter value is a crucial issue. Therefore, if the proper prior informa-
tion (PI) is available for α, β, and θ i.e., ai = bi = 0, i = 1, 2, 3, then the joint posterior
distribution (44) is proportional to the likelihood function (35). Hence, if one does not have
PI on the unknown parameters, it is better to adopt the MLEs instead of the BEs because
the latter are very expensive computationally.

Here, we adopted two informative priors for each set of α, β, and θ, called prior
(1): (a1, a2, a3) = (1.0, 0.2, 0.2), bi = 2, i = 1, 2, 3; prior (2): (a1, a2, a3) = (2.5, 0.5, 0.5),
bi = 5, i = 1, 2, 3 when (α, β, θ) = (0.5, 0.1, 0.1) as well as prior (1): (a1, a2, a3) =
(2, 1, 1), bi = 2, i = 1, 2, 3; prior (2): (a1, a2, a3) = (5.0, 2.5, 2.5), bi = 5, i = 1, 2, 3 when
(α, β, θ) = (1.0, 0.5, 0.5). Here, the values of hyper parameters of α, β, and θ are determined
in such a way that the prior mean becomes the expected value of the estimated param-
eter [30]. The hybrid MCMC algorithm described in Section 4.2 is adopted to generate
12,000 MCMC samples, and we discarded the first 2000 values as ‘burn-in’. Accordingly,
the average Bayes MCMC estimates and 95% two-sided BCIs are calculated based on
10,000 MCMC samples.
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For each setting, we compute the average estimates, ϕ̂k, with their root mean squared
errors (RMSEs) and RABs using the following formulae.

ϕ̂k =
1
S ∑S

i=1 ϕ̂
(i)
k , k = 1, 2, 3,

RMSE(ϕ̂k) =

√
1
S ∑S

i=1 (ϕ̂
(i)
k − ϕk)2, k = 1, 2, 3

and RAB(ϕ̂k) =
1
S ∑S

i=1

∣∣∣ϕ̂(i)
k − ϕk

∣∣∣
ϕk

, k = 1, 2, 3,

where N is the number of replicates, ϕ̂ is an estimate of ϕ, ϕ1 = α, ϕ2 = β, and ϕ3 = θ.
The required numerical results are performed using the R software. The average

values of α, β, and θ, RMSEs, and RABs are reported in Tables 1–3. In addition, the average
confidence lengths (ACLs) of 95% asymptotic CIs of α, β, and θ are summarized in Table 4.

From Tables 1–3, it can be shown that the proposed estimates of the parameters α, β,
and θ are very good in terms of minimum RMSEs and RABs. Further, as n or m increases,
the performance of the estimates becomes better. Moreover, the point estimates become
even better with the increase in failure-proportion m/n%. Finally, the Bayes MCMC
estimates using Ga informative priors are better as they include prior information than the
frequentist estimates in term of their RMSEs and RABs. Generally, we conclude that the
BEs based on prior (2) performed better than those based on prior (1) in terms of minimum
RABs, RMSEs, and ACLs. This is due to the fact that the variance of prior (2) is lower
than the variance of prior (1), and both are more informative than an improper prior for
ai = bi = 0, i = 1, 2, 3.

Furthermore, the ACLs of asymptotic CIs are narrowed down with the increase in n
and m. In addition, the CIs perform better than the asymptotic intervals due to the Ga prior
information with respect to the shortest ACLs. Moreover, when the true values of α, β, and
θ increase, it is clear that the associated RMSEs, RABs, and ACLs of all proposed estimates
increase. Finally, we recommend the Bayesian MCMC estimation of the parameters of the
EIGo distribution using the hybrid Gibbs within the M-H algorithm sampler.

Table 1. The average estimates of α and their respective RMSEs and RABs in parentheses.

(α, β, θ) n m MLE
MCMC

Prior (1) Prior (2)

(0.5,0.1,0.1) 40 40 0.5175 (0.1327,0.1993) 0.5013 (0.0856,0.1338) 0.4884 (0.0728,0.1164)
30 0.4516 (0.1910,0.3075) 0.4096 (0.1456,0.2435) 0.4150 (0.1356,0.2265)
20 0.4109 (0.3225,0.4847) 0.2941 (0.2414,0.4326) 0.3505 (0.2135,0.3660)

60 60 0.5149 (0.1099,0.1693) 0.4888 (0.0618,0.0922) 0.4954 (0.0607,0.0973)
45 0.4356 (0.1776,0.2799) 0.4034 (0.1391,0.2321) 0.4112 (0.1343,0.2214)
30 0.4010 (0.2607,0.4204) 0.2959 (0.2366,0.4219) 0.3217 (0.2214,0.3847)

80 80 0.5086 (0.0892,0.1373) 0.5117 (0.0592,0.0919) 0.5048 (0.0572,0.0901)
60 0.4369 (0.1671,0.2445) 0.4015 (0.1368,0.2264) 0.4034 (0.1346,0.2221)
40 0.3924 (0.2393,0.3845) 0.3129 (0.2263,0.3957) 0.3232 (0.2198,0.3791)

(1.0,0.5,0.5) 40 40 1.0778 (0.3812,0.2744) 1.0787 (0.1936,0.1471) 1.0251 (0.1533,0.1191)
30 1.0040 (0.6560,0.4307) 0.7944 (0.2908,0.2449) 0.8300 (0.2613,0.2162)
20 1.2427 (1.8647,0.7604) 0.7024 (0.4310,0.3690) 0.6739 (0.4149,0.3573)

60 60 1.0423 (0.2756,0.2103) 1.0358 (0.1384,0.1074) 1.0081 (0.1224,0.0963)
45 0.9583 (0.4883,0.3602) 0.8395 (0.2659,0.2175) 0.8252 (0.2587,0.2117)
30 0.9968 (0.7368,0.5038) 0.6790 (0.4301,0.3682) 0.6804 (0.4167,0.3547)

80 80 1.0356 (0.2400,0.1773) 1.0170 (0.1138,0.0890) 1.0178 (0.1098,0.0864)
60 0.9068 (0.3824,0.2994) 0.8297 (0.2577,0.2099) 0.8247 (0.2544,0.2073)
40 0.9375 (0.5979,0.4590) 0.6725 (0.4279,0.3646) 0.6710 (0.4196,0.3572)
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Table 2. The average estimates of β and their respective RMSEs and RABs in parentheses.

(α, β, θ) n m MLE
MCMC

Prior (1) Prior (2)

(0.5,0.1,0.1) 40 40 0.1032 (0.0576,0.4315) 0.0918 (0.0167,0.1389) 0.0894 (0.0127,0.1077)
30 0.1236 (0.0869,0.6335) 0.0951 (0.0171,0.1404) 0.1050 (0.0138,0.1178)
20 0.1651 (0.1664,1.1435) 0.0922 (0.0267,0.2333) 0.1143 (0.0230,0.1884)

60 60 0.1032 (0.0463,0.3600) 0.0908 (0.0094,0.0918) 0.0935 (0.0069,0.0653)
45 0.1205 (0.0759,0.5598) 0.0997 (0.0116,0.0927) 0.1034 (0.0106,0.0772)
30 0.1576 (0.1349,0.9860) 0.0899 (0.0185,0.1541) 0.1070 (0.0131,0.1052)

80 80 0.0999 (0.0377,0.2949) 0.1018 (0.0034,0.0248) 0.0997 (0.0054,0.0465)
60 0.1173 (0.0645,0.5038) 0.1002 (0.0073,0.0582) 0.1026 (0.0060,0.0510)
40 0.1573 (0.1213,0.9165) 0.1064 (0.0146,0.1099) 0.1096 (0.0111,0.0964)

(1.0,0.5,0.5) 40 40 0.5255 (0.2675,0.4154) 0.5263 (0.0329,0.0532) 0.4938(0.0204,0.0365)
30 0.6253 (0.4660,0.6616) 0.4578 (0.0459,0.0843) 0.5156 (0.0234,0.0350)
20 0.9423 (0.9660,1.2917) 0.5326 (0.0518,0.0764) 0.5254 (0.0333,0.0551)

60 60 0.5158 (0.2204,0.3440) 0.5124 (0.0136,0.0248) 0.4939 (0.0109,0.0161)
45 0.6043 (0.3689,0.5509) 0.5225 (0.0323,0.0517) 0.5193 (0.0223,0.0402)
30 0.8500 (0.7219,1.0446) 0.5405 (0.0454,0.0810) 0.5331 (0.0352,0.0663)

80 80 0.5118 (0.1879,0.2942) 0.5059 (0.0063,0.0119) 0.5047 (0.0061,0.0109)
60 0.5871 (0.3089,0.4833) 0.5219 (0.0241,0.0438) 0.5180 (0.0197,0.0360)
40 0.8212 (0.6443,0.9580) 0.5429 (0.0451,0.0857) 0.5406 (0.0436,0.0812)

Table 3. The average estimates of θ and their respective RMSEs and RABs in parentheses.

(α, β, θ) n m MLE
MCMC

Prior (1) Prior (2)

(0.5,0.1,0.1) 40 40 0.1260 (0.0830,0.6041) 0.1195 (0.0260,0.2072) 0.0920 (0.0098,0.0809)
30 0.1275 (0.1167,0.7961) 0.1358 (0.0417,0.3606) 0.0940 (0.0111,0.0903)
20 0.1464 (0.2073,1.3049) 0.0845 (0.0480,0.4256) 0.1240 (0.0284,0.2452)

60 60 0.1164 (0.0616,0.4733) 0.0942 (0.0064,0.0583) 0.1013 (0.0026,0.0220)
45 0.1154 (0.0866,0.6312) 0.1070 (0.0142,0.1008) 0.1081 (0.0118,0.0953)
30 0.1224 (0.1576,1.0183) 0.1009 (0.0217,0.1749) 0.0915 (0.0189,0.1452)

80 80 0.1142 (0.0512,0.3945) 0.1045 (0.0053,0.0454) 0.1007 (0.0023,0.0192)
60 0.1124 (0.0826,0.5780) 0.1067 (0.0089,0.0767) 0.0951 (0.0073,0.0567)
40 0.1047 (0.1233,0.8588) 0.0908 (0.0195,0.1624) 0.1073 (0.0117,0.0864)

(1.0,0.5,0.5) 40 40 0.5831 (0.3268,0.4871) 0.5626 (0.0647,0.1253) 0.5420 (0.0438,0.0840)
30 0.6044 (0.5502,0.7128) 0.5832 (0.0863,0.1663) 0.4607 (0.0577,0.0917)
20 0.5877 (0.8856,1.1044) 0.5958 (0.1005,0.1916) 0.4621 (0.0628,0.1061)

60 60 0.5564 (0.2585,0.3954) 0.5169 (0.0176,0.0338) 0.5057 (0.0117,0.0170)
45 0.5493 (0.3978,0.5602) 0.5270 (0.0405,0.0649) 0.4786 (0.0273,0.0466)
30 0.5250 (0.6820,0.8798) 0.5609 (0.0642,0.1217) 0.5461 (0.0494,0.0923)

80 80 0.5427 (0.2162,0.3345) 0.4927 (0.0082,0.0147) 0.5049 (0.0059,0.0100)
60 0.5247 (0.3322,0.4831) 0.5110 (0.0141,0.0237) 0.4892 (0.0131,0.0221)
40 0.4866 (0.5702,0.7752) 0.5479 (0.0517,0.0959) 0.5171 (0.0192,0.0343)
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Table 4. The ACLs for 95% ACIs/BCIs of α, β, and θ.

ACI BCI

(α, β, θ) n m α β θ α β θ

Prior (1) Prior (2) Prior (1) Prior (2) Prior (1) Prior (2)

(0.5,0.1,0.1) 40 40 0.3485 0.1039 0.0039 0.3352 0.2808 0.0594 0.0215 0.0639 0.0173
30 0.3807 0.1115 0.0031 0.4424 0.4216 0.0625 0.0467 0.0783 0.0333
20 0.4208 0.1444 0.0118 0.4760 0.5772 0.0774 0.0696 0.1437 0.0581

60 60 0.2646 0.0577 0.0019 0.2387 0.2347 0.0092 0.0077 0.0082 0.0088
45 0.3091 0.1168 0.0033 0.3912 0.3890 0.0463 0.0400 0.0475 0.0321
30 0.3393 0.1537 0.0053 0.4458 0.4907 0.0632 0.0452 0.0828 0.0695

80 80 0.2213 0.0294 0.0008 0.2269 0.2228 0.0117 0.0174 0.0103 0.0087
60 0.2572 0.0918 0.0023 0.3736 0.3674 0.0284 0.0201 0.0229 0.0201
40 0.2689 0.1219 0.0054 0.4756 0.4753 0.0526 0.0207 0.0676 0.0309

40 40 0.6913 0.3121 0.0153 0.6838 0.5868 0.0766 0.0673 0.0639 0.0506
30 0.9376 0.5906 0.0391 0.8035 0.7754 0.0657 0.0670 0.0931 0.1271
20 1.5049 0.7474 0.0476 1.1633 0.9696 0.1527 0.0868 0.1097 0.1546

60 60 0.5241 0.1494 0.0051 0.5250 0.4800 0.0202 0.0296 0.0177 0.0361
45 0.7699 0.5038 0.0213 0.8334 0.7452 0.0887 0.0457 0.0818 0.0631
30 0.8646 0.5170 0.0182 1.0647 0.9860 0.0740 0.0481 0.0791 0.0753

80 80 0.4425 0.1082 0.0041 0.4426 0.4213 0.0089 0.0148 0.0114 0.0106
60 0.5357 0.3158 0.0094 0.7461 0.7131 0.0371 0.0248 0.0292 0.0243
40 0.7310 0.4141 0.0098 1.0136 0.9521 0.0512 0.0514 0.0608 0.0342

6. Real-Life Applications

The importance and flexibility of the EIGo model are discussed empirically by an-
alyzing two real data from engineering science. The first dataset consists of 25 (100 cm)
specimens of yarn, which were tested at a certain strain level, and it represents the number
of cycles to failure [29,35]. The data are: 20, 15, 61, 38, 98, 42, 86, 76, 146, 121, 157, 149, 175,
180, 176, 180, 220, 198, 224, 264, 251, 282, 325, 321, 653. The second dataset shows the time
between failures for repairable mechanical equipment items [36]. The data are: 0.11, 0.30,
0.40, 0.45, 0.59, 0.63, 0.70, 0.71, 0.74, 0.77, 0.94, 1.06, 1.17, 1.23, 1.23, 1.24, 1.43, 1.46, 1.49, 1.74,
1.82, 1.86, 1.97, 2.23, 2.37, 2.46, 2.63, 3.46, 4.36, 4.73.

The EIGo distribution is compared with some competing distributions such as the IGo,
IE [21], GIE [20], inverse-Weibull (IW) [37], inverse gamma (IGa) [38], generalized inverse-
Weibull (GIW) [39], exponentiated inverted-Weibull (EIW) [40], generalized inverted half-
logistic (GIHL) [41], inverted-Kumaraswamy (IK) [42], inverted Nadarajah–Haghighi
(INH) [43], and alpha-power inverse-Weibull (APIW) [44] distributions. The corresponding
PDFs of the competing models (for x > 0) are written in Table 5.

Moreover, to check the validity of the EIGo model along with other competing models,
we employed several goodness-of-fit measures as listed in Table 6.

The R software and ML approach are adopted to estimate the parameters of the
considered distributions and also to evaluate the goodness-of-fit measures. The calculated
values of the ML estimates of the model parameters with their standard errors (SEs) and
corresponding selection measures, for both data sets, are provided in Tables 7 and 8,
respectively. Moreover, Figures 3 and 4 show graphically the quantile–quantile (Q–Q) plots
of all competitive distributions for both datasets.

Among all fitted competitive models, Tables 7 and 8 show that the EIGo distribution
has the lowest values of NCL, AIC, CAIC, BIC, HQIC, K-S, A-D, and CvM and the highest
p-value. Consequently, the EIGo distribution provides better fit, for the given datasets,
than the IGo and other inverted distributions. Furthermore, the relative histograms of
both datasets and the fitted densities, as well as the plot of fitted and empirical survival
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functions (SFs), are displayed in Figures 5 and 6, respectively. It is seen that, the graphical
presentations in Figures 3–6 support the numerical findings.

Table 5. Some competing inverted models of the EIGo distribution.

Molel PDF

IE f (x) = θx−2 exp(−θ/x)
IW f (x) = βθx−(β+1) exp(−θx−β)

GIE f (x) = βθx−2 exp(−θ/x)[1− exp(−θ/x)]β−1)
IGa f (x) = θβ

Γ(β)
x−β−1 exp(−θ/x)

GIW f (x) = αβθβx−β−1 exp(−α(θ/x )β)

EIW f (x) = βθx−β−1[exp(−x−β)]
θ

GIHL f (x) = 2βθ−1x−2e−(θx)−1
[1− e−(θx)−1

]
β−1

[1 + e−(θx)−1
]
−β−1

IK f (x) = αβ(1 + x)−β−1[1− (1 + x)−β]
α−1

INH f (x) = βθx−2(1 + θx−1)
β−1 exp(1− (1 + θ/x)β)

APIW f (x) = αβ log(θ)(θ − 1)−1x−(α+1) exp(−β(x−α))θexp(−β(x−α))

Table 6. Some useful criteria for model selection.

Measure or Criterion (C) Abbreviation

negative log-likelihood NLC
Akaike information AIC
consistent Akaike information CAIC
Bayesian information BIC
Hannan-Quinn information HQIC
Kolmogorov-Smirnov K-S
Anderson-Darling A-D
Cramér von Mises CvM
K-S p-value p-value

Table 7. The estimates, SEs, and selection measures of the EIGo distribution and other competing models for first data.

Model Estimates (SEs) Statistics

α β θ NCL AIC CAIC BIC HQIC K-S (p-Value) A-D CvM

EIGo 5.8897 (3.3256) 418.743 (151.19) 70.375 (25.031) 155.330 316.659 317.802 320.316 317.674 0.114 (0.901) 0.4141 0.0696
GIW 1.0110 (0.1412) 6.8390 (92.567) 12.370 (169.25) 158.579 323.158 324.301 326.815 324.172 0.211 (0.215) 1.5866 0.2803

APIW 39.651 (76.857) 1.3072 (0.1886) 115.74 (104.40) 156.569 319.137 320.280 322.794 320.151 0.189 (0.336) 1.2512 0.2226
IE - - 82.841 (16.568) 158.582 319.841 319.338 320.383 319.205 0.207 (0.234) 1.5774 0.2787
IK 1.0282 (0.1472) 94.040 (57.964) - 158.484 320.967 321.513 323.405 321.643 0.213 (0.208) 1.5734 0.2780
IW - 1.0118 (0.1414) 86.718 (50.775) 158.579 321.158 321.703 323.596 321.834 0.211 (0.215) 1.5873 0.2804
IGa - 1.2166 (0.3081) 100.65 (31.349) 158.294 320.588 321.133 323.025 321.264 0.241 (0.110) 1.5801 0.2791
IGo - 101.08 (26.705) 14.535 (14.283) 158.001 320.003 320.548 322.440 320.679 0.222 (0.169) 1.2406 0.2203
INH - 0.7552 (0.2303) 134.21 (76.920) 158.208 320.416 320.962 322.854 321.093 0.218 (0.186) 1.3574 0.2400
GIE - 1.3462 (0.3991) 100.68 (26.199) 158.090 320.181 320.726 322.618 320.857 0.249 (0.091) 1.5393 0.2720
EIW - 86.324 (50.423) 1.0108 (0.1411) 158.579 321.158 321.703 323.596 321.834 0.211 (0.216) 1.5864 0.2802

GIHL - 0.9758 (0.2592) 0.0089 (0.0020) 160.087 324.175 324.720 326.612 324.851 0.263 (0.062) 1.8631 0.3307
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Figure 3. The Q–Q plots of EIGo distribution and its competing models for first data.

Table 8. The estimates, SEs, and selection measures of the EIGo distribution and other competing models for second data.

Model Estimates (SEs) Statistics

α β θ NCL AIC CAIC BIC HQIC K-S (p-Value) A-D CvM

EIGo 3.5359 (1.4251) 2.3986 (0.7152) 0.3749 (0.1605) 40.768 87.536 88.459 91.739 88.880 0.089 (0.971) 0.1762 0.0286
GIW 1.0730 (0.1314) 0.0761 (0.8851) 11.920 (148.78) 46.376 98.751 99.674 102.95 100.10 0.134(0.656) 1.0815 0.1634

APIW 99.979 (157.11) 1.4079 (0.1745) 0.1922 (0.0751) 43.188 92.376 93.300 96.580 93.721 0.113 (0.836) 0.6445 0.0977
IE - - 0.7932 (0.1448) 46.533 95.066 95.209 96.467 95.514 0.160 (0.423) 1.0040 0.1509
IK 2.4609 (0.4214) 4.1716 (1.2783) - 41.238 86.476 86.921 89.279 87.373 0.111 (0.852) 0.3324 0.0495
IW - 1.0730 (0.1314) 0.7518 (0.1570) 46.376 96.751 97.196 99.554 97.648 0.134 (0.656) 1.0814 0.1634
IGa - 1.4211 (0.3327) 1.1272 (0.3153) 45.507 95.015 95.459 97.817 95.911 0.158 (0.445) 1.0080 0.1516
IGo - 0.9290 (0.2107) 0.1091 (0.1068) 45.920 95.839 96.284 98.642 96.737 0.192 (0.216) 0.6357 0.0956
INH - 0.8517 (0.2346) 1.0344 (0.5127) 46.370 95.740 97.185 99.543 97.637 0.179 (0.295) 0.8525 0.1270
GIE - 1.6681 (0.4724) 1.0975 (0.2480) 44.966 93.931 94.376 96.734 94.828 0.163 (0.401) 0.9099 0.1361
EIW - 0.7518 (0.1570) 1.0730 (0.1314) 46.376 96.751 97.196 99.554 97.648 0.134 (0.656) 1.0814 0.1634

GIHL - 1.2154 (0.3164) 0.7959 (0.1626) 46.828 97.657 98.101 100.46 98.553 0.179 (0.291) 1.1995 0.1855
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Figure 4. The Q–Q plots of EIGo distribution and its competing models for second data.
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Figure 5. The relative histogram and fitted densities of competing models (left) and fitted and
empirical SFs (right) for first data.
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Figure 6. The relative histogram and fitted densities of competing models (a) and fitted and empirical
SFs (b) for second data.

7. Conclusions

In this paper, we have proposed a new three-parameter model called the extended
inverse-Gompertz (EIGo) distribution. The EIGo model generalizes some well-known
models such as the inverted-exponential, generalized inverted-exponential, and inverse-
Gompertz distributions. Various statistical and reliability properties of the EIGo distribu-
tion have been addressed. The EIGo parameters have been estimated by the maximum-
likelihood and Bayesian approaches under Type-II censoring. The performances of the
maximum likelihood and Bayesian estimators have been examined by detailed simulation
results. Based on our study, we recommend the Bayesian MCMC estimation of the parame-
ters of the EIGo distribution using the hybrid Gibbs within M-H algorithm sampler. Finally,
two real-life engineering data sets have been analyzed to illustrate the applicability of the
EIGo distribution as compared with other competing models. The EIGo model provides
an adequate and improved fit with respect to its competing inverted models. The failure
rate of the EIGo model can only be upside-down-bathtub-shaped. Hence, for future works,
the authors suggest that other extensions of the inverse-Gompertz distribution be proposed
that may provide all important shapes for the hazard rate including increasing, bathtub,
decreasing, and unimodal shapes.
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