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Adaptation to different types of stress converge 
on mitochondrial metabolism

ABSTRACT  Yeast cell factories encounter physical and chemical stresses when used for in-
dustrial production of fuels and chemicals. These stresses reduce productivity and increase 
bioprocess costs. Understanding the mechanisms of the stress response is essential for im-
proving cellular robustness in platform strains. We investigated the three most commonly 
encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the 
mechanisms of general and stress-specific responses under chemostat conditions in which 
specific growth rate–dependent changes are eliminated. By applying systems-level analysis, 
we found that most stress responses converge on mitochondrial processes. Our analysis re-
vealed that stress-specific factors differ between applied stresses; however, they are under-
pinned by an increased ATP demand. We found that when ATP demand increases to high 
levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative me-
tabolism. Although stress-specific factors increase ATP demand for cellular growth under 
stressful conditions, increased ATP demand for cellular maintenance underpins a general 
stress response and is responsible for the onset of overflow metabolism.

INTRODUCTION
The budding yeast Saccharomyces cerevisiae is widely used as a 
microbial cell factory in the biotechnology industry for the produc-
tion of various chemicals, ranging from endogenous metabolites, 
such as ethanol, to heterologous metabolites, such as advanced 
biofuels (Caspeta and Nielsen, 2013; Nielsen, 2015). Industrial pro-
cesses impose severe stresses, however, both physical and chemi-
cal, that reduce the catalytic efficiency of this cell factory. Therefore 
it is critical for the economic viability of industrial processes to en-
gineer yeast strains that not only produce novel bioproducts but 

also can withstand multiple stresses while maintaining high produc-
tivity. For these reasons, there is much interest in identifying the 
mechanisms of stress response and, in particular, evaluating 
whether exposure to different types of stress causes common phe-
notypic responses, as this would make it possible to engineer yeast 
strains with enhanced robustness.

Common stresses in the biotechnology industry are caused by 
toxicity of the product (e.g., ethanol), components of the medium 
(e.g., salts and glucose), the physical environment (e.g., tempera-
ture and pH), hydrostatic pressure, or nutrient limitations (Belloch 
et al., 2008; Graf et al., 2009; Zhao and Bai, 2009; Jullesson et al., 
2015). Yeast is most widely used for the production of ethanol, 
which is by far the most dominant biofuel used today (Caspeta and 
Nielsen, 2013). In this process, yeast is exposed to relatively high 
temperatures, high initial glucose concentrations (causing high os-
molarity), high salt concentrations, and, at the end of the fermenta-
tion, very high ethanol concentrations. We were therefore interested 
in quantifying the phenotypic responses of yeast to these three 
stress factors—temperature, osmolarity, and ethanol.

Previously the stress response of yeast has been studied in batch 
experiments by comparing various stress conditions at the transcrip-
tional level (Gasch et al., 2000; Causton et al., 2001). However, with 
this experimental design, many responses are masked due to 
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nance cost for the cells (Figure 1B). Because increased maintenance 
could be caused by various factors, we performed a more thorough 
analysis of the RNA sequencing (RNAseq) data.

Transcriptional response
To obtain a general overview of the RNAseq data, we first per-
formed a hierarchical clustering analysis. The most distinct transcrip-
tional pattern was found for the osmotic stress experiments (Supple-
mental Figure S2). Low- and medium-temperature conditions 
clustered together with the reference, showing only a small number 
of changes in their profile (Supplemental Figure S3). High tempera-
ture clustered with high ethanol, as well as other ethanol conditions, 
a phenomenon also observed by others (Piper et  al., 1994; 
Auesukaree et al., 2009). When the same data were separated on a 
principal component (PC) analysis plot, the more stressful conditions 
clustered to the first quarter of the graph and were separated from 
the reference conditions by both the first and second PCs (Figure 1, 
C and D). Of interest, independent of whether ethanol was con-
sumed or produced, all of the conditions in which ethanol was pres-
ent in the environment were separated by the first PC, which de-
scribed 63% of the occurring changes. Using data clustering and 
gene enrichment analysis, we found that these changes accounted 
for mainly oxidation-reduction processes, NAD(P)H regulation, and 
ergosterol biosynthesis pathways (p < 0.001). In addition, some 
pentose phosphate pathway genes (GND2, TKL2) exhibited strong 
down-regulation at the transcriptome level for those conditions. The 
second PC, which was responsible for an additional 13% of the 
changes, was characterized by significant changes in the tricarbox-
ylic acid (TCA) cycle, transporter activity, and mitochondrion. Sam-
ples in the first quadrant of the plot, which represented the highest 
stress (especially high ethanol and temperature), were affected by 
strong down-regulation of the glyoxylate shunt, arginine metabo-
lism, and gluconeogenesis. The third PC (unpublished data) indi-
cated similarities between higher osmotic stress and low ethanol 
conditions. These similarities were associated with similar patterns 
in the transmembrane transporter genes.

The strong similarities between ethanol and high-temperature 
conditions can be explained by exposure of the cells to ethanol in 
these experiments (produced for the high-temperature condition 
and partly consumed for the ethanol conditions). Down-regulation of 
the entire branch chain amino acid (BCAA) pathway, as well as argi-
nine and ergosterol biosynthesis, was the most evident response for 
the four different conditions in which ethanol was consumed or pro-
duced and separated on the first PC (Figure 1C). Because ergosterol 
and the ratio change between saturated and unsaturated fatty acids 
are reported to be the major components that influence ethanol tol-
erance by controlling the fluidity of the membrane and preventing 
interdigitation (Ma and Liu, 2010; Vanegas et al., 2012; Dong et al., 
2015; Wang et al., 2015), we analyzed this further. Genes involved in 
ergosterol biosynthesis were significantly down-regulated (Figure 2), 
but, unexpectedly, we found a significant increase in intracellular er-
gosterol levels under conditions in which ethanol was present in the 
environment (Supplemental Figure S4). In the case of osmotic stress, 
in which ethanol was not present in the environment, the levels of 
ergosterol and gene expression in the ergosterol synthesis pathway 
were unchanged (Figure 2). Ergosterol plays a crucial role in mem-
brane fluidity, and its biosynthesis seems to be tightly regulated to 
retain a desired concentration within cells. In yeast cells, the AMP-
activated kinase Snf1 plays an important role in controlling flux to-
ward lipids during growth on ethanol, both at the transcriptional 
level and through inactivation of Acc1 by phosphorylation. In mam-
malian cells, the Snf1 analogue AMP-activated protein kinase also 

dynamic growth conditions (O’Duibhir et  al., 2014). Industrial 
stresses have also been studied as an adaptive response using 
adaptive laboratory evolution (Cakar et al., 2005; Ding et al., 2010; 
Dhar et al., 2011; Caspeta et al., 2014). Most of these stress studies, 
however, are stand-alone experiments, which makes it difficult to 
identify the general stress response encountered in a typical indus-
trial process. Moreover, only limited overlap was found between 
genes required for stress survival and stress-induced genes (Gibney 
et  al., 2013). This indicates that the previously reported general 
stress response studies are rather elusive and the identified pheno-
typic responses are likely caused by changes in the specific growth 
rate (Gasch et al., 2000; Brauer et al., 2008; Gerosa et al., 2013; 
O’Duibhir et al., 2014; Kanshin et al., 2015). Therefore it is important 
to distinguish between transient stress responses and stress adapta-
tion. Under transient stress responses, usually studied under batch 
conditions, stress is applied as a shock, and it is likelier that cells initi-
ate a common survival or buffering system to cope with the extreme 
environmental conditions. In the case of an adapted stress condi-
tions in which stress is applied smoothly or cells have time to adapt 
to the stressor in a continuous culture experiments—for example, 
chemostats—it is possible to separate effects of growth rate and the 
applied stressor (Olz et al., 1993; Postmus et al., 2008, 2011, 2012).

To overcome the combinatorial effects of a stressor and changes 
in the specific growth rate of cells, we used an experimental design 
in which we used glucose-limited chemostat cultures and monitored 
the adapted stress response for multiple stresses in a gradual man-
ner to enable identification of the key factors that are driven solely 
by the applied stress. This experimental design provided us with 
triplicate data points that allowed us to make solid conclusions re-
garding the response to three types of stress—ethanol, osmolarity, 
and temperature. Furthermore, our approach to studying multiple 
stresses allowed us to identify mechanism(s) of general and stress-
specific responses in yeast and examine the molecular changes be-
hind the initiation of overflow metabolism in yeast.

RESULTS
Macroscopic phenotypic characterization
We studied the response of the yeast S. cerevisiae to three industri-
ally important stress factors—ethanol, osmolarity, and tempera-
ture—in a gradual manner at a constant specific growth rate (Figure 
1, A and B). Each stress condition was studied at three levels (low, 
medium, and high) until a near-maximal value was reached that can 
be maintained at a specific growth rate of 0.1 h−1. Quantitative tran-
scriptome data were obtained using RNA sequencing and used to 
generate condition-dependent genome-scale metabolic models 
(Agren et al., 2014; Supplemental Figure S1). The condition-specific 
genome-scale metabolic models were then used for flux balance 
analysis (FBA) to calculate intracellular fluxes. Among other fluxes, 
for the first time, total maintenance energy was estimated for the 
studied stress conditions.

Our experimental design enabled us to evaluate stress responses 
at different exposure levels. From the macroscopic measurements, 
we observed clear differences in phenotypic response. Thus the 
cells coconsumed glucose and ethanol at different levels of ethanol 
stress and produced glycerol in response to osmotic stress condi-
tions, whereas at high temperature, the cells shifted to respirofer-
mentative metabolism (Figure 1B and Supplemental Table S1). De-
spite observed differences for the three different types of stress, we 
identified one common response in all of the studied conditions, 
namely a decrease in biomass yield with increasing exposure to any 
of the three types of stress. Supported by FBA calculations, the de-
creasing biomass yield was directly related to an increased mainte-
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of commonly differentially expressed genes indicated rearrangements 
mainly in oxidoreductase activity, pointing to an imbalance in NAD(P)
H production (p < 0.001; Supplemental Figure S6). Additional changes 
were detected in the biosynthesis of amino acids. Given that the tran-
scriptional environmental stress response (ESR) was identified previ-
ously mainly under batch conditions (Gasch et al., 2000), we were in-
terested to examine the overlap between that data set and our stress 
adaptation experiments. Combining 94 conditions reported in Gasch 
et al. (2000) with our results on stress responses, we saw limited over-
lap (Supplemental Figure S7). Fewer than 8% of the genes determined 
as ESR (59 of 780 ESR genes compared) showed significant differential 
expression in our data set. Moreover, the majority of detected changes 
were in the opposite direction to their batch experiments (Supple-
mental Figure S7). It is of interest that temperature-dependent experi-
ments under chemostat conditions by Gasch et al. (2000) showed a 
similar profile as the stress experiments reported here. This indicates 
that previously reported transcriptional ESR is strongly biased toward 
growth rate–dependent genes, a phenomenon always found in stress 
experiments under batch conditions.

controls the activity of 3-hydroxy-3-methylglutaryl-CoA reductase 
Hmg1 by phosphorylation, one of the key flux-controlling enzymes 
of the sterol biosynthetic pathway. This can explain the paradox be-
tween down-regulation of ERG genes and elevated levels of sterol, 
as in the presence of ethanol, the flux toward acetyl-CoA is increased, 
allowing for increased flux through the pathway even when there is 
lower expression of the enzymes (Supplemental Figure S5). The re-
duced expression of the ERG genes is consistent with finding of 
negative feedback control of gene expression in ergosterol biosyn-
thesis through the transcription factor Upc2 (Caspeta et al., 2014; 
Yang et  al., 2015). Alternatively, ergosterol degradation could be 
lower under conditions in which ethanol is present in the environ-
ment. However, little is known about the ergosterol turnover in yeast.

General stress response
Among the highest stress conditions studied for ethanol, osmotic, and 
temperature stress, 297 genes showed differential expression overlap 
(p < 0.001) under all three conditions, in which only 63 had an expres-
sion change of greater than twofold (Figure 1E). Enrichment analysis 

FIGURE 1:  The stress response of the yeast S. cerevisiae was studied in chemostat cultivations at a constant dilution 
rate (0.1 h−1) in a gradual manner. (A) Heat, osmotic conditions (NaCl), and ethanol were increased in three steps from 
reference conditions to the highest pretested value. (B) Physiology in terms of biomass yield (blue line, c-mol [dry 
biomass] c-mol−1 [consumed substrate]), specific oxygen consumption rate (red dashed line, mmol/g [DW] h), specific 
CO2 production rate (green dashed line, mmol/g [DW] h), and specific ethanol production rate (black line, mmol/g [DW] 
h). Additional maintenance energy (blue bars, mmol ATP/g [DW] h) was calculated using FBA on condition-specific 
genome-scale models. (C) Transcriptome data used for the PCA; increasing circle size indicates the increase in studied 
stress conditions, and stress is color coded accordingly: ethanol is green, osmosis is blue, and temperature is red.  
(D) Bar chart showing the importance of the PC components. (E) Venn diagram representing the overlap of significantly 
changed genes (p < 0.001); numbers in parentheses indicate greater-than-twofold change.



2508  |  P.-J. Lahtvee et al.	 Molecular Biology of the Cell

glucose, and the culture was under carbon 
limitation (Figure 1A). However, already at 
the median ethanol concentration (40 g/l), 
ethanol consumption decreased (approxi-
mately two-thirds of the consumption de-
tected at the low ethanol concentration of 
20 g/l; Figure 1A), and a large amount of 
ethanol remained in the medium. At high 
ethanol concentration (60 g/l), almost no 
ethanol was consumed by the cells, al-
though all of the glucose was consumed. 
Because ethanol is metabolized via the gly-
oxylate shunt, TCA cycle, and gluconeo-
genesis, this finding reflects changes in mi-
tochondrial transport and, hence, an 
inability to use secondary carbon sources 
under stressful conditions. The transcrip-
tional results indicated that at low ethanol 
concentrations, the pathways and cellular 
functions that use ethanol, such as the TCA 
cycle and transmembrane transport, to-
gether with other mitochondrion-related 
processes such as glutamine biosynthesis, 
cellular amide metabolism, and ion trans-
port, were up-regulated (p < 0.001). All of 
these changes indicated a more active TCA 
cycle and respiratory chain. At the same 
time, oxidation-reduction reactions, lipid 
metabolism, cofactor binding, cellular alco-
hol metabolism, and glutathione metabo-
lism were down-regulated. At the median 
ethanol condition, TCA cycle and glutamate 
metabolism were the only gene ontology 
(GO) groups showing significant up-regula-
tion (p < 0.001), whereas down-regulation 
was observed among the same metabolic 
groups as for the low ethanol concentration. 
At the highest ethanol concentration, only a 
small number of transcripts from the TCA 
were up-regulated (CIT1, 2; MDH1; IDH1, 
2), whereas down-regulation of ammonium 

transmembrane transport was detected (p < 0.001). This was consis-
tent with strong down-regulation of the biosynthesis of mitochon-
drion-related amino acids, such as BCAA and arginine. As men-
tioned earlier, genes of the ergosterol biosynthetic pathway were 
down-regulated, and we measured almost twofold-higher ergos-
terol levels under conditions in which ethanol was consumed (Sup-
plemental Figure S4). Higher ergosterol levels result in increased 
membrane fluidity (Ma and Liu, 2010), and this seems to be benefi-
cial for coping with high-ethanol conditions. Increased membrane 
permeability is potentially the main cause of increased maintenance 
in the presence of ethanol. In addition to increased ergosterol lev-
els, an increased ratio of monounsaturated to unsaturated fatty ac-
ids has been reported as a response to ethanol stress (Beaven et al., 
1982; Sajbidor et al., 1995; You et al., 2003). We measured the total 
fatty acid composition under the ethanol stress conditions and de-
termined a strong shift toward longer-chain fatty acids (C18), with 
the most abundant fatty acid under reference conditions, palmi-
toleic acid (C16:1 n-7), showing a gradual decrease under increas-
ing ethanol concentrations and oleic acid (C18:1 n-9) concentration 
increasing under the same conditions (Figure 3 and Supplemental 
Table S4).

We next used dosage-dependent data for the most signifi-
cantly changed genes in terms of their fold change and abundance 
for covariance analysis, which provides an excellent measure of the 
significance of a transcriptional change. Covariance scores, which 
were calculated separately for each stress (ethanol, osmotic, and 
temperature), revealed the highest common effect for the biosyn-
thesis of amino acids (mainly BCAA and arginine), αKG metabo-
lism, GSH metabolism, and pyruvate metabolism (enrichment p < 
0.01; Supplemental Table S3). In addition, among the most signifi-
cantly regulated genes, heat-shock proteins (HSPs; and genes for 
HSP-related proteins SSA3 and SSE2) and ergosterol pathway 
genes were changed most significantly. These changes can be 
considered to be a common stress response to address increased 
maintenance. However, the initial cause of increased maintenance 
seemed to depend on stress condition.

Ethanol increases membrane fluidity
Ethanol is the main by-product of the yeast fermentation processes 
and the main growth-inhibiting factor in yeast-based industrial ap-
plications. At low ethanol concentrations (20 g/l), all of the ethanol 
supplemented to the medium was fully consumed together with 

FIGURE 2:  Changes in gene expression for the studied stress conditions. Transcript intensities 
at the reference condition and log2-fold changes compared with the reference condition for 
selected genes. ETC, electron transport chain; see Supplemental Table S2 for gene name 
abbreviations. 
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response genes from the oxidoreductase activity group were clus-
tered, significant enrichments were detected in oxidative phosphor-
ylation, TCA, pyruvate, and methionine metabolism for the up-reg-
ulated genes and in glutathione metabolism and glycine catabolic 
processes for down-regulated genes (p < e-4; Supplemental Figure 
S10). In addition, groups such as cellular oxidant detoxification 
(represented by genes PRX1, MPR1, TRR1, TSA2, SOD2, DOT5, 
RSM26, SRX1, CCP1, CCS1, GLR1, and CTT1) and response to oxi-
dative stress showed significant enrichment in up-regulated clusters 
(p < e-5). This implies the presence of oxidative stress in NaCl- 
treated cells, as previously seen in primary human corneal epithelia 
cells (Deng et al., 2015). Oxidative stress hinders the activity of pro-
teins and therefore contributes to increased maintenance.

High temperature affects protein turnover
Higher tolerance toward increased temperatures is beneficial in in-
dustrial processes, as one can reduce costs for cooling bioreactors 
and reduce risks for contamination (Caspeta et al., 2014). From a 
physiological point of view, the two lower-temperature values tested 
resulted in relatively small transcriptional changes compared with 
the reference conditions and therefore also clustered closely to-
gether in the transcriptional analysis. In low-temperature conditions, 
the only enriched pathways at the transcriptome level were ergos-
terol and arginine biosynthesis, which showed partial down-regula-
tion. With the increase in temperature to 36°C, significant and even 
more pronounced down-regulation was detected among the genes 
in the same pathways. The highest number of transcriptional 
changes took place at the highest temperature condition studied 
(38°C), at which, in addition to a sevenfold decrease in biomass 
yield (compared with the reference conditions), ethanol production 
was observed due to the change from respiratory to respirofermen-
tative metabolism. Owing to the significant amount of ethanol pres-
ent in the environment (3.94 ± 0.16 g/l), the highest ethanol condi-
tion and high-temperature conditions shared more than 60% of the 
changes compared with the reference condition at optimal environ-
mental conditions. Although the present concentration itself cannot 
produce a significant stress to the cells (as also indicated by much 
less pronounced changes in total fatty acid composition), we as-
sume that ethanol present in the environment already initiates 
changes in metabolism that in our transcriptome-based PC analysis 
were described on the first PC. High ethanol and temperature 
shared changes in steroid (ergosterol), amino acid (Cys, Met, His, 
Phe, Tyr, Trp, Val, Ile, Leu), mitochondrial ribosome and peroxisome 
biosynthesis, and propanoate and pyruvate metabolism. The only 
changes specific to high temperature (p < 0.001) took place in oxi-
dative phosphorylation, translation (ribosomes), threonine-type 
peptidase activity, proteasome activity, and apoptosis (controlled 
cell death). The last two were indications of increased protein turn-
over in high-temperature conditions, which may be the main cause 
of the highest maintenance energy costs.

Regulation
To understand the underlying stress regulation mechanisms and con-
trol the responses to increased stress tolerance in industrial pro-
cesses, it is important to determine the regulation level of relevant 
fluxes and the transcription factors controlling metabolism under 
relevant conditions. To quantify metabolic fluxes under the different 
conditions, we used condition-dependent near-genome scale mod-
els for flux balance analysis and compared these data with the tran-
scriptome. Fluxes were calculated separately for each condition and 
replicate experiment, and the models were constrained by the 
measured uptake and secretion fluxes. The calculated median flux 

High osmolarity induces reorganization in 
oxidation-reduction pathways
High osmolarity occurs in industrial processes due to high concen-
trations of salts, substrates, or other metabolites in industrial media. 
Although CEN.PK family–specific Na+ sensitivity has been reported 
(Daran-Lapujade et al., 2009), no long-term inhibition in a chemo-
stat culture was observed. The first osmolarity-related effect on tran-
scriptional level at the two lower NaCl concentrations (0.2 and 0.4 M 
NaCl) was related to the down-regulation of amino acid and am-
monium transport, BCAA biosynthesis, and arginine, proline, and 
ornithine metabolism. Under the same conditions, up-regulation of 
oxidation-reduction pathways, glycerolipid metabolism, starch and 
sucrose metabolism, glycolysis/gluconeogenesis, and alcohol me-
tabolism was observed. At the highest NaCl concentration (0.6 M), 
additional GO groups, such as cofactor binding, glutathione me-
tabolism, and autophagy regulation, were down-regulated, whereas 
transmembrane transport and the TCA cycle showed enrichment 
among the up-regulated genes. In addition to the aforementioned 
enriched GO groups, genes typically related to osmotic stress (STL1, 
SUC2, GPD1, GPP1, and CTT1) were activated already at the lowest 
osmotic condition tested. Osmotic stress showed the highest dis-
tance compared with the other stress conditions studied, clustering 
separately on hierarchical clustering plots. Although oxidation-re-
duction pathways were down-regulated under all of the studied 
stress conditions (including biosynthesis pathways for steroids, glu-
tathione, and secondary metabolites), the two highest osmotic 
stress conditions showed the largest perturbations in this pathway, 
having significant changes in both directions (Supplemental Figure 
S6 and Supplemental Table S5). When clustering genes from the 
GO group oxidoreductase activity (GO:0016491) for previously 
published osmotic stress experiments in batch and our osmotic 
stress experiments, we observed higher similarities with the stress 
adaptation period of sorbitol stress described by Gasch et al. (2000; 
later time points in batch osmostress; Supplemental Figure S8). 
When all of the stress experiments from the present study were used 
for oxidoreductase activity gene clustering, similar patterns for tem-
perature and ethanol stress genes were detected (Supplemental 
Figure S9). However, osmotic stress response seemed to be regu-
lated differently from the other stresses. When only osmotic stress 

FIGURE 3:  Total fatty acid content in cells cultivated in chemostats at 
constant specific growth rate of 0.1 h−1 on mineral medium 
supplemented with different ethanol concentrations. Four of the most 
abundant fatty acids are presented: C18:1, n-9 (blue line), C18:0 (black 
line), C16:1, n-7 (red line), and C16:0 (green line). Information about 
the profiles of other fatty acids is given in Supplemental Table S4.
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regulation of the TCA genes CIT1, MDH1, KGD1, and FUM1, and, 
of most importance for explaining the overflow metabolism, down-
regulation of many catabolic genes from the oxidative phosphoryla-
tion pathway (SDH, ATP, and COX genes; Figure 2) only under high-
temperature conditions signal the genes likely responsible for the 
initiation of overflow metabolism. Because genes from the oxidative 
phosphorylation pathway are regulated on the transcriptional level 
(see earlier discussion), the initiation of overflow metabolism seems 
to be precisely controlled by metabolic regulation.

We lack a good explanation for why an onset of ethanol overflow 
appears in response to stress at the relatively low specific growth 
rate used in our study. To gain further insight into this phenomenon, 
we plotted glycolytic flux through the TCA cycle versus the specific 
glucose uptake rate. The flux through the TCA cycle was quantified 
as CO2 excretion not related to ethanol production, and this should 
represent the activity of respiration. Increase in the specific glucose 
uptake rate under constant specific growth rate conditions was ob-
served in our studies due to decreased biomass yield. Of interest, 
we discovered a linear relationship between respiratory flux and the 
specific glucose uptake rate, but only up to a specific glucose up-
take rate of ∼3.4 mmol/g (dry weight [DW]) h, at which respiration 
achieved a maximal value. With an additional increase in the specific 
glucose uptake rate, respiration began to decrease (Figure 4). At 
this time, RQ increased to >1, and overflow metabolism resulting in 
ethanol production was established. This profile is similar to that 
observed for respiratory metabolism in chemostat cultures operated 
at different dilution rates; therefore we overlaid data from such ex-
periments on ours and found remarkable consistency (Figure 4; van 
Hoek et al., 1998). For specific growth rate–dependent experiments, 
glucose uptake rate increases due to higher specific growth rate. In 
our stress experiments, which were carried out at constant specific 
growth rate, increase in glucose uptake rate was observed due to 
decreasing biomass yield. These two approaches represent differ-
ent concepts in metabolism but do show similar outcomes concern-
ing the onset of overflow metabolism. This indicates that the Crab-
tree effect is a consequence of a limitation of energy supply, and 
allocation of proteome takes place to support translation at higher 
growth rates. This is consistent with a recent study showing that the 
Crabtree effect is due to a limitation in ATP formation by the F1F0-
ATP synthase (Nilsson and Nielsen, 2016). To further determine the 

variability was <20%. Transcriptional control of fluxes can be identi-
fied by comparing the directions and z scores of two different condi-
tions at the transcriptional and flux levels (Bordel et al., 2010). Be-
cause our data set contained 10 different conditions, we used all 
conditions to identify potential global transcriptional regulation. The 
RNA levels and calculated fluxes from 10 different conditions were 
plotted separately for each gene, and p values for the Pearson cor-
relations were calculated. Of 758 fluxes with a nonzero value, 216 
showed significant changes in flux profiles under at least two environ-
mental conditions (p < 0.01; Supplemental Figure S11). Of these 216 
fluxes, 55 showed R2 > 0.6 with p < 0.001 when correlated against 
their corresponding RNA levels. Enrichment analysis of those 55 po-
tentially transcriptionally regulated genes indicated that the majority 
belonged to the oxidative phosphorylation pathway or were in some 
way related to mitochondria (Supplemental Table S6). Thus ∼25% of 
the metabolic fluxes that changed in response to the long-term 
stress studied here are transcriptionally regulated, and most of these 
changes drive an altered energy metabolism by mitochondria.

To gain further insight into the drivers of transcriptional repro-
gramming in response to stress, we searched for transcription fac-
tors (TFs) that play an important role in stressful conditions. We used 
gene set analysis to determine significantly enriched transcription 
factors using gene–TF relationship information from the Yeastract 
database (www.yeastract.com; as of 2 December 2015). With a p-
value threshold of 0.001, we were able to detect 3, 16, and 8 TFs 
responsible for the highest level of stress toward ethanol, osmosis, 
and temperature, respectively (Supplemental Figure S12). Only one 
TF, GCN4, was represented in all three stress conditions studied. 
GCN4 is a transcriptional activator of amino acid biosynthetic genes, 
and its activity could be related to an increase in amino acid synthe-
sis under conditions in which the translation rate is increased 
(Canelas et al., 2010). Our study showed strong down-regulation of 
the genes that GCN4 regulates, and we detected a twofold tran-
scriptional down-regulation of GCN4 itself under conditions of high 
stress. For osmotic and temperature stress conditions, TFs regulat-
ing protein turnover, such as HAP4 and HSF1, were significantly af-
fected. Surprisingly, the well-known general stress regulator MSN2 
was significantly enriched only under high osmotic stress.

Initiation of overflow metabolism
Overflow metabolism refers to the seemingly wasteful metabolic 
strategy by which cells incompletely oxidize their growth substrate 
into by-products instead of using the more energetically efficient 
respiratory pathway, even in the presence of oxygen. In our experi-
ments, high ethanol and high temperature were the two environ-
mental conditions that showed the highest maintenance cost. These 
two conditions also clustered together during hierarchical clustering 
and on a transcriptome-based PC analysis. However, these two con-
ditions represent very different physiological states. Under high 
ethanol conditions, cells were respiring (respiration quotient [RQ] < 
1), whereas under high-temperature conditions, cells were mainly 
fermenting (RQ >> 1). This allowed us to look into the main differ-
ences between those conditions and detect the main changes that 
triggered the overflow metabolism under high-temperature condi-
tions. Under both high ethanol and temperature conditions, we de-
tected significant decrease in fluxes and down-regulation among 
genes in the glyoxylate shunt (MLS1, ICL1), gluconeogenesis (PCK1), 
and biosynthesis of mitochondrion-related amino acids (BCAAs, 
Arg), which indicates reduced transport into the mitochondria. 
These changes seem to be responsible for hindering the consump-
tion of alternative carbon sources (in the present case, ethanol). On 
the other hand, up-regulation of mitochondrial ribosomes, down-

FIGURE 4:  Specific glucose-uptake rate dependence of respiration in 
the yeast S. cerevisiae. A unique curve for respiration is presented for 
stress-related and specific growth rate–dependent data, which 
indicates a protein production limitation, where a trade-off between 
translational activity and respiration emerges. Specific growth 
rate-dependent data are presented in gray; the present stress 
experiments and additional stress experiments are shown in black and 
dark blue, respectively.
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One highly evident characteristic for 
adapted stress compared with a sudden 
stress response is the behavior of HSPs. Be-
cause an increase in HSP levels is a common 
response to sudden stress, it is surprising 
that there was significant down-regulation in 
the majority of cytosolic HSPs and HSP sub-
units under our adapted stress conditions 
(Supplemental Table S2). Because HSP tran-
script levels increase with decreasing spe-
cific growth rate of yeast, the observed phe-
nomena in our experiments can be explained 
by already high HSP levels at relatively low 
specific growth rate used as the reference 
condition, providing a different background 
for data comparison (Regenberg et  al., 
2006). In addition, HSPs need to quickly re-
arrange the proteome or address dysfunc-
tional proteins. Under adapted stress condi-
tions, this function could no longer be as 
critical. There is increasing evidence that 
protein turnover is higher under conditions 
of high glucose-uptake rates (Boender et al., 
2011; Lahtvee et al., 2014), resulting in lower 
need for additional HSPs in the adapted 
steady-state conditions. In contrast to cyto-
solic HSPs, however, HSPs mainly related to 
mitochondrial activities, such as HSP10 and 
HSP60, showed significant up-regulation at 
the transcriptional level under stressful con-
ditions (Böettinger et al., 2015; Chong et al., 
2015), indicating a requirement for proper 
mitochondrial functions under stress condi-
tions. Transcriptome data comparison with 

previously published stress experiments using batch cultures with 
nutrient excess showed significant differences, as ESR genes were 
largely unchanged under stress conditions applied in chemostats 
(Supplemental Figure S7). One can argue that differences are due to 
the different reference conditions and that cells grown in a chemo-
stat culture with carbon limitation are already experiencing stressful 
conditions. With the present experimental setup, we are not able to 
reject this hypothesis. We can claim, however, that typical stress-re-
lated physiological changes observed in our experiments (decrease 
in biomass yield, initiation of glycerol or ethanol production, changes 
in the membrane composition, etc.) are not fully covered by the 
previously described ESR genes but instead rely on other mecha-
nisms, which are also addressed in this study.

Although the general stress response showed consequential ef-
fects in increased maintenance, decreased biomass yield, and inhib-
ited respiration, different stress types contributed differently to the 
effects (Figure 5). Increased membrane permeability has been re-
ported as the main stress response in the case of high ethanol con-
centrations (Cartwright et al., 1987; Rosa and Sá-Correia, 1996). In 
accordance with the literature, we detected significant changes in 
the membrane composition, both in fatty acid composition and to-
tal ergosterol content. However, in contrast to the changes in re-
ported unsaturated fatty acids, our data demonstrated that under 
adapted environmental conditions, the levels of C18 saturated and 
unsaturated fatty acids increased, whereas C16 fatty acid content 
decreased with the increase of ethanol concentration in the me-
dium. In bacteria, the presence of ethanol increases errors in transla-
tion (Haft et al., 2014). Although we lack this information for yeast, 

consistency of the relationship between respiration and glucose up-
take rate under conditions in which yeast is exposed to different 
types and levels of stress, we performed four additional chemostat 
experiments in three biological replicates at the same dilution rate 
(0.1 h−1) but with different stress factors. A few additional data points 
were generated around the critical glucose uptake rate value and 
were found to fit very well with the overall profile (Figure 4).

DISCUSSION
There are evident differences between a sudden effect of stress and 
an adapted stress response (Gibney et al., 2013). Our study focused 
on the adapted stress response to observe how the transcriptome 
of yeast cells adapt to different stressful conditions and determine 
the effect of a general stress response. Previously it was observed 
that general environmental stress response genes have a high over-
lap with expression changes occurring when a specific growth rate 
is reduced at optimal conditions in substrate-limited continuous cul-
tivations (Gasch et al., 2000; Regenberg et al., 2006). This overlap 
exists because a significant decrease in the specific growth rate, 
which is associated with nutrient limitations, is evidently accompa-
nied by the application of stressful conditions. Owing to this change 
in the specific growth rate, cell cycle genes are often described as 
one of the main stress responses (Gasch et al., 2000; Kanshin et al., 
2015). Using a traditional experimental design, it has been difficult 
to identify the true stress response. Our experimental design, how-
ever, for the first time provides data giving us insight into the tran-
scriptional reprogramming that is specifically due to an adapted 
response to three different types of stress.

FIGURE 5:  Overview of key differences among the three studied stress conditions. High ethanol 
concentrations affect the cell membrane and increase maintenance due to impaired membrane 
permeability. Osmotic stress causes oxidative stress, which results in increased maintenance. 
High temperature increases protein turnover, which increases maintenance. High maintenance 
energy causes an increase in specific flux rates and an increased demand for ATP, which 
eventually results in the onset of fermentation and a reduction in respiration, which is consistent 
with what occurs at high specific growth rates. Upward- and downward-facing arrows represent 
up- and down-regulation, respectively.
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turbidity, and external O2 and CO2 sensors (BlueSens GmbH, 
Herten, Germany). The dO2 levels were kept at >30% throughout 
the experiments. Base medium used contained 10 g of glucose, 5 g 
of (NH4)2SO4, 3 g of KH2PO4, and 0.5 g of MgSO4 per liter, in addi-
tion to 1 ml of trace elements solution and 1 ml of vitamin solution. 
The trace element solution contained, per liter (pH = 4), EDTA (so-
dium salt), 15.0 g; ZnSO4⋅7H2O, 4.5 g; MnCl2⋅2H2O, 0.84 g; 
CoCl2⋅6H2O, 0.3 g; CuSO4⋅5H2O, 0.3 g; Na2MoO4⋅2H2O, 0.4 g; 
CaCl2⋅2H2O, 4.5 g; FeSO4⋅7H2O, 3.0 g; H3BO3, 1.0 g; and KI, 0.10 
g. The vitamin solution contained, per liter (pH = 6.5), biotin, 0.05 g; 
p-amino benzoic acid, 0.2 g; nicotinic acid, 1 g; Ca pantothenate, 1 
g; pyridoxine-HCl, 1 g; thiamine-HCl, 1 g; and myoinositol, 25 g. 
Batch phase on base medium was always started at reference 
conditions (pH 5.5, 600 rpm, 30°C, 1 vvm of air) from 1% of over-
night culture inoculum. After the end of the ethanol phase in batch, 
the chemostat mode was started at stress conditions. Sampling was 
carried out in steady-state conditions after passage through at least 
six culture volumes of fresh medium. For extracellular metabolome 
measurements, culture broth was withdrawn from bioreactors and 
filtered into vials that were stored at −20°C. For all other samples, 
biomass was withdrawn from bioreactors into precooled Eppendorf 
tubes and centrifuged for 22 s at 4°C and 14,000 rpm, and biomass 
was snap-frozen after decanting of the supernatant. The whole sam-
pling process took <45 s. Samples were stored at −80°C. For bio-
mass concentration measurements, ∼40 ml of culture broth was col-
lected from the outflow into Falcon tubes placed in ice and measured 
gravimetrically using preweighed filter plates.

Extracellular metabolome, total fatty acid, and ergosterol 
measurements
Levels of glucose, acetate, glycerol, and ethanol in the culture me-
dium were measured with liquid chromatography (ultimate 3000 
HPLC system; Thermo Fisher Scientific, Waltham, MA), using a Bio-
Rad (Hercules, CA) HPX-87H column with isocratic elution of 5 mM 
H2SO4 at a flow rate of 0.6 ml/min and at 45°C. A refractive index 
detector was used for detection and quantification of substances. 
Because evaporation of ethanol from the environment was de-
tected during the cultivation, blank (not inoculated) cultivation ex-
periments at similar environmental conditions were run to detect 
average ethanol evaporation rate and taken into account in the fi-
nal reported concentrations for ethanol. Total fatty acid composi-
tion was measured according to Khoomrung et al. (2012), which is 
a modification of a method described in Abdulkadir and Tsuchiya 
(2008). Briefly, the biomass sample (∼10 mg) was mixed with 4 ml 
of hexane, 2 ml of 14% BF3 in MeOH, and 25 μl of internal stan-
dard (17:0; 4000 μg/ml). The sample was flushed into the tube with 
nitrogen gas for 30 s, and the tube was closed tightly. The tube 
was heated using a microwave digestion system equipped with a 
PRO-24 medium-pressure high-throughput rotor (Milestone Start 
D; Sorisole, Bergamo, Italy). After cooling of the sample to room 
temperature, 2 ml of Milli-Q water was added and shaken vigor-
ously and centrifuged. The upper phase (hexane phase, which 
contained the fatty acid methyl esters [FAMEs]) was analyzed by 
gas chromatography (GC)–mass spectrometry (MS). The FAMEs 
were separated and quantified using a Focus GC ISQ single-quad-
rupole GC mass spectrometer (Thermo Fisher Scientific). The sep-
aration of FAMEs was performed on a Zebron (ZB-WAX; Phe-
nomenex, Torrance, CA) GC column (30 m × 0.25 mm inside 
diameter, 0.25-μm film thickness). The sample was injected in split-
less injection mode (1 μl at 240°C), and helium was used a carrier 
gas (1 ml/min). The identification of unknown FAMEs from yeast 
cells was achieved by comparing their retention times and mass 

we observed decreased gene expression profiles for several amino 
acid biosynthesis pathways, which could be caused by inefficient 
translation and therefore higher intracellular amino acid pools, 
which feed back to inhibit biosynthesis. Regarding osmotic stress, 
the major physiological response is related to glycerol excretion, in 
which glycerol is known to serve as an osmolyte of proliferating 
yeast cells (Hohmann, 2002). Although we failed to find connections 
between osmotic and oxidative stress in the literature, our analysis 
demonstrated that many oxidoreductase genes that were up-regu-
lated under osmotic stress belong to the oxidative stress category (p 
< e-7). Oxidative stress hinders the activity of proteins and therefore 
contributes to increased maintenance. Increased temperature has a 
direct effect on protein folding, and we found indirect evidence of 
increased protein turnover in our experiments. Faster protein turn-
over under high- temperature conditions was also reported in early 
studies of yeast stress response (McAlister and Finkelstein, 1980; 
Peter and Loomis, 1982). Increased protein turnover also increases 
the maintenance costs of the cell (Figure 5). We observed that in-
creased flux rates have a similar effect on cells as reflected by in-
creased specific growth rate at optimal conditions, and a similar 
tradeoff between production of translational and respirational pro-
teins can be observed as the synthesis of total protein is limited. 
With a limitation in translational capacity, respiration is hindered, 
which in turn accelerates increases in fermentative capacity and is 
less demanding in terms of the production of the total proteome 
but also less energy efficient (Nilsson and Nielsen, 2016). In addi-
tion, respirofermentative metabolism in yeast is accompanied by 
the production of ethanol, which affects the permeability of mem-
branes at high concentrations.

A confounding metabolic response for all three stress conditions 
is increased energy expenditure for maintenance, which results in 
decreased biomass yield (Figure 5). This imposes a requirement for 
increased glucose uptake rate, which causes a similar effect on the 
cells as observed for increased specific growth rates under optimal 
environmental conditions. We therefore observe a similar tradeoff 
between the production of translational and respirational proteins 
for these two conditions (Figure 4). This results in replacement of 
respiratory with respirofermentative growth and subsequent pro-
duction of ethanol (van Hoek et al., 1998; Vemuri et al., 2007), indi-
cating more efficient allocation of the proteome (Molenaar et al., 
2009; Basan et al., 2015; Schmidt et al., 2015; Nilsson and Nielsen, 
2016). In conclusion, we showed how three different types of stress 
initiate different cellular adaptation mechanisms, which converge on 
altered mitochondrial metabolism. As cells seek to retain the global 
ATP balance, they allocate their proteome to address increased re-
quirements for maintenance energy.

MATERIALS AND METHODS
Yeast strain, cultivation conditions, and sampling
S. cerevisiae CEN.PK113-7D (MATa, MAL2-8c, SUC2) was used 
throughout the study. To screen maximal stress conditions possible 
to apply in chemostat experiments, micro titer-plate batch experi-
ments were carried out for ethanol and osmotic stress (NaCl) experi-
ments. For temperature experiments, turbidostat experiments with 
slowly changing temperature were carried out in triplicate (Supple-
mental Figure S13). Maximal concentrations that still supported 
growth at 0.1 h−1 were selected and divided roughly into three equal 
categories to represent the dynamic dose-dependent profile. The 
stress conditions were as follows: ethanol, 20, 40, and 60 g/l; osmo-
larity, 0.2, 0.4, and 0.6 M NaCl; temperature, 33, 36, and 38°C. Cul-
tivations were carried out in 1-l bioreactors (DasGip GmbH, Jülich, 
Germany; working volume, 0.5 l) equipped with in situ pH, dO2, 
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spectrum profiles with known standards. The quantification of FA-
MEs was performed based on the five-point external calibration 
curve in the range of 0.1–25 μg/ml.

Ergosterol was measured as described in Khoomrung et  al. 
(2013). Briefly, dry biomass was extracted in anaerobic conditions in 
CHCl3:MeOH (2:1) solution and microwaved for 10 min at 60°C and 
1000 W. After addition of 0.73% NaCl solution, the organic layer 
was transferred to a new tube, concentrated, and analyzed using 
high-performance liquid chromatography (ultimate 3000 HPLC sys-
tem; Dionex) equipped with a charged aerosol detector (Corona; 
ESA, Chelmsford, MA).

RNA sequencing
RNA from the biomass samples was extracted and purified using 
Qiagen RNeasy Mini Kit extraction and DNA degradation according 
to the user’s manual (Qiagen, Hilden, Germany). The integrity of the 
product was verified using a 2100 Bioanalyzer according to the 
user’s manual (Agilent Technologies, Santa Clara, CA). RNA concen-
tration was determined by a NanoDrop 2000 (Thermo Scientific, 
Wilmington, DE).

The Illumina TruSeq sample preparation kit, version 2 (Illumina, 
San Diego, CA), with poly-A selection, was used to prepare RNA 
samples for sequencing. Fragments were clustered on cBot and se-
quenced on two lanes on an Illumina HiSeq 2500 with paired ends 
(2× 100 base pairs), according to the manufacturer’s instructions.

The short reads were mapped to the CEN.PK 113-7D refer-
ence genome (cenpk.tudelft.nl) using TopHat version 2.0.10 (Kim 
et al., 2013). Each sample had between 8.3 and 16.2 million map-
pable reads, with an average map rate of 88%. Read counts were 
determined using the featureCounts software from the subread 
package, version 1.4.0-p1 (Liao et al., 2014). The number of ex-
pected fragments per kilobase of transcript per million fragments 
mapped was calculated using Cufflinks version 2.1.1 (Trapnell 
et al., 2010).

Read counts were used in the differential expression analysis, 
with the software DESeq (Anders and Huber, 2010). The p values 
were adjusted for multiple testing using the Benjamini–Hochberg 
procedure (Benjamini and Hochberg, 1994) as implemented in 
DESeq. All conditions were compared with the reference samples. 
Raw data from the experiments were deposited in ArrayExpress and 
assigned the identifier E-MTAB-4044.

Metabolic modeling and integrative data analysis
Transcriptome data were used to create condition and biological 
replicate–specific near genome–scale metabolic models of yeast 
based on the model iTO977 (Osterlund et al., 2013). The tINIT algo-
rithm was used with the 30% cut-off, expecting that low-abundance 
mRNAs are not translated into active proteins (Agren et al., 2014). 
Models were tested to be able to produce biomass and constrained 
with the measured exchange fluxes. All models were deposited in 
BioModels (Chelliah et al., 2015) and assigned the identifiers from 
MODEL1511100000 to MODEL1511100030. Intracellular flux distri-
bution was calculated using FBA and the RAVEN toolbox with 
Mosek solver on MATLAB R2012b (Agren et al., 2013), where ATP 
drain was used as an optimization function. FBA was used sepa-
rately for every condition and biological replica, and SDs for flux 
values were calculated based on biological replicates. Additional 
data analysis included hierarchical clustering (R), gene set analysis 
(Platform for Integrative Analysis of Omics data [PIANO]; Väremo 
et  al., 2013), enrichment analysis (Reimand et  al., 2011), and TF 
analysis, with TF-gene relationships acquired from Yeastrack (on 
12.02.2015; PIANO).
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