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Abstract 

Cerebral pericytes are an integral component of the neurovascular unit, which governs the blood–brain barrier. There is 
paucity of knowledge on cortical pericytes across different dementias. We quantified cortical pericytes in capillaries in 124 
post-mortem brains from subjects with post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD) 
and AD-VaD (Mixed) and, post-stroke non-demented (PSND) stroke survivors as well as normal ageing controls. Collagen 4 
(COL4)-positive nucleated pericyte soma were identified as protrusions on capillaries of the frontal cortex. The COL4-positive 
somata or nodule-like cell bodies were also verified by platelet derived growth factor receptor-β (PDGFR-β) immunohis-
tochemistry. The mean (± SEM) pericyte somata in frontal cortical capillaries in normal young controls (46–65 years of 
age) was estimated as 5.2 ± 0.2 per mm capillary length. This number was reduced by 45% in older controls (> 78 years) to 
2.9 ± 0.1 per mm capillary length (P < 0.001). We further found that the numbers of pericyte cell bodies per COL4 mm2 area 
or per mm capillary length were not decreased but rather preserved or increased in PSD, AD and Mixed dementia groups 
compared to similar age older controls (P < 0.01). Consistent with this, we noted that capillary length densities identified by 
the endothelial marker glucose transporter 1 or COL4 were not different across the dementias compared to older controls. 
There was a negative correlation with age (P < 0.001) suggesting fewer pericyte somata in older age, although the % COL4 
immunoreactive capillary area was increased in older controls compared to young controls. Using a proven reliable method 
to quantify COL4-positive nucleated pericytes, our observations demonstrate ageing related loss but mostly preserved 
pericytes in the frontal cortex of vascular and AD dementias. We suggest there is differential regulation of capillary pericytes 
in the frontal lobe between the cortex and white matter in ageing-related dementias.
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Background
Brain pericytes have become of increased interest in 
health and disease. Pericytes are pluripotent cells with 

characteristic phenotype, distribution and function [6, 
7, 15, 21]. Pericytes form one of the key cellular com-
ponents of the neurovascular unit, which controls the 
blood–brain barrier (BBB). Experimental evidence sug-
gests pericytes regulate BBB integrity by differentially 
expressing proteins such as α-smooth muscle actin [47]. 
The platelet-derived growth factor (PDGF) is one of the 
major signalling pathways identified in pericytes [29] that 
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has been used to monitor pericyte pathophysiology in 
several neurological diseases including dementia [21, 31]. 
Soluble PDGF-β released from endothelial cells recruits 
pericytes via the PDGF receptor-β (PDGFR-β) and dis-
ruption of PDGFR-β signalling results in fewer recruited 
pericytes to the vessel, causing vessel leakage, tortuos-
ity, microaneurysms, and microbleeds [10]. In addition 
to PDGFR-β, a proportion of pericytes also express the 
bone morphogenetic protein-4 (BMP4) [48] that can be 
altered in cerebral small vessel disease. BMP4 expression 
is upregulated during cerebral hypoperfusion to promote 
angiogenesis but induces astrogliogenesis at the expense 
of other cells such as oligodendrocyte precursor cell pro-
liferation [48]. In the hypoxic environment, pericytes 
may adopt microglial phenotypes and upregulate reac-
tive cell responses [41]. Experimental studies also sug-
gest while pericyte somata can be immobile, the tips of 
their processes undergo extensions and retractions over 
prolonged periods of time [5]. This indicates pericytes are 
highly ‘plastic’ and pericyte coverage may readily change 
during different homeostatic conditions. Furthermore, 
acute ablation of cortical pericytes may lead to rapid neu-
rovascular uncoupling [32]. These observations also sup-
port the role of pericytes in cerebral blood flow (CBF) 
regulation and collectively have implications for neu-
rological conditions associated with rapid pericyte loss 
such as cerebral hypoperfusion and stroke, as well as con-
ditions where the time course of regional pericyte loss 
is less clear, such as Alzheimer’s disease (AD) and other 
neurogenerative disorders [51].

Previous studies have indicated pericytes or their cov-
erage specifically alter during neurodegenerative and 
vascular disease processes [16, 34, 36, 39, 40, 49]. In the 
parietal cortex of AD subjects, loss of PDGFR-β immu-
noreactivity was associated with fibrinogen leakage and 
reduced oxygenation, and related to fibrillar amyloid β 
accumulation [34]. Direct capillary constriction by amy-
loid β at perivascular sites was proposed to reduce energy 
lack and neurodegeneration in AD [40]. However, a very 
recent study [18], further reported that the pericyte 
population was maintained in tandem with increased 
capillary density in the frontal cortex of AD subjects. 
The investigators suggested that pericyte loss at least 
in the frontal cortex was not a general hallmark of AD 
pathology.

We previously reported that collagen 4 (COL4)-pos-
itive pericytes in the frontal deep white matter were 
markedly decreased across different dementias includ-
ing AD, Mixed AD-vascular dementia (VaD) as well as 
post-stroke dementia (PSD) and VaD subjects [16]. Peri-
cyte numbers were correlated with PDGFR-β reactiv-
ity and associated with damage to the BBB as indicated 
by disintegration of the gliovascular unit incorporating 

clasmatodendrosis of perivascular astrocytes [11, 23]. 
However, it is not clear how cerebral pericytes in the cer-
ebral cortex above alter in different common dementias. 
Here, we used a previously validated method to identify 
nucleated pericytes and determined their status across 
different neurocognitive disorders including PSD, VaD, 
AD and mixed dementia with Alzheimer and vascular 
pathologies. Given their highly plastic nature, we tested 
the hypothesis that pericytes are differentially regulated 
in neurodegenerative and vascular diseases. We mainly 
focussed on abluminal located pericyte somata on capil-
laries of the frontal cortex as key cellular elements of the 
neurovascular unit [22].

Methods
Human subjects
In total, we assessed brain tissues from 124 subjects 
enrolled in our longitudinal prospective studies on brain 
ageing and dementia. Dementia was diagnosed in life 
and confirmed at post-mortem examination as either 
AD, mixed AD-VaD, (Mixed), VaD or PSD. In addition, 
we assessed post-stroke no dementia (PSND) subjects 
enrolled in the Newcastle Cognitive Function After 
Stroke (CogFAST) study [2]. The VaD and PSD sub-
jects were also from the CogFAST study [2]. We com-
pared dementia subjects with young (46–65 years of age) 
and older controls (78–94  years) without any demen-
tia causing neurological or psychiatric disorder and no 
neuropathological diagnosis. Controls subjects were 
participants either in previous prospective studies or 
from unrelated brain donations to the Newcastle Brain 
Tissue Resource (NBTR). The mean age of the older con-
trols was not different from any of the dementia subjects 
but significantly greater in comparison to young con-
trols (Table  1). Local research ethics committees of the 
Newcastle upon Tyne NHS Foundation Hospitals Trust 
granted ethical approvals. Permission to use brains for 
post-mortem research was also granted by consent from 
the individuals themselves when they had been still alive 
or next-of-kin or family member. All brain tissues were 
retained in the NBTR.

Neuropathological examination and scoring
Neuropathological examination was carried out as 
described previously [24]. Tinctorial stains were used 
for assessment of structural integrity and infarcts, pat-
terns of white matter attenuation and myelin loss and 
neuritic pathology. Amyloid-β immunohistochemistry 
for ABC rating of neuritic plaques, Gallays stain for neu-
ritic pathology, and tau immunohistochemistry for Braak 
staging of neurofibrillary tangles. The clinical diagnosis 
of AD was confirmed on evidence of significant Alzhei-
mer’s-type pathology incorporating Braak stages V–VI, 
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moderate-severe CERAD [33] and high ABC scores per 
National Institute of Aging-Alzheimer’s Association 
guidelines [37] and an absence of significant vascular 
pathology. VaD diagnosed clinically, was confirmed by 
the presence of single, multiple or cystic infarcts, lacu-
nes, border-zone infarcts, microinfarcts and arterioscle-
rosis and Braak stage ≤ IV [27, 28]. Mixed AD and VaD 
cases were classified in presence of high degrees of AD 
pathology (Braak V-VI) and significant vascular pathol-
ogy (Table 1).

Vascular pathology scores were derived from the pres-
ence of vascular lesions/pathologies as described previ-
ously [14]. WM lesion (WML) scores were determined 
on scale of 0 to 3 signifying none, mild, moderate, and 
severe. Previously, we had shown there was 95% agree-
ment in scoring between two assessors [14]. WM/vas-
cular lesion severity was graded from low to severe in 
quartiles essentially as described previously [26]. Vascu-
lar indices were compatible with the recently established 

vascular cognitive impairment neuropathology consor-
tium criteria [45]. Neuropathological examination was 
verified by TP and RNK. The entire morphological analy-
ses were undertaken under operator-blinded conditions 
and samples were coded with sequential numbers. In 
addition, at least two of both positive and negative con-
trols were included to monitor staining quality.

Immunohistochemistry
We analysed formalin-fixed paraffin-embedded whole 
coronal sections at levels 6–8 [27, 42] containing the 
frontal cortex (Brodmann area 9). We ensured to select 
the cortical regions without any obvious infarction. 
Unless otherwise stated, 2–5 adjacent or alternate whole 
or half-coronal sections were used for the morphologi-
cal analyses. Immunohistochemistry was performed to 
examine different microvascular structures essentially 
as described before [13, 22]. The following antibodies 
were used to assess various cellular features: collagen IV 

Table 1  Demographic details of all the cases and controls

Numbers represent mean values (± SEM) and where given with the range of values in parentheses. The causes of death included bronchopneumonia (95%), sudden 
cardiac arrest, carcinoma, renal failure, and gastrointestinal bleed with no distribution pattern in any group. The post-mortem interval between death and tissue 
retrieval ranged 24–47 h for all the cases. There were no differences in the length of post-mortem delay between groups. Mean age of young controls was different 
compared to older controls (*P < 0.05). Braak staging scores and Alzheimer’s Disease Neuropathologic changes [37] were different in mixed and AD cases compared to 
all other groups (*P < 0.05)
† Mean vascular pathology scores (range) derived as described previously  [14] (*P < 0.05)
†† Cortical infarct pathology includes small infarcts and microinfarcts in frontal and temporal lobes, designated as % was number of cases in which score was more 
than 4 (moderate to severe) [14]
‡ WML Score, white matter pathology score assessed using the scale from [14]. Mean WML Score was high in all post-stroke and dementia subjects compared to 
controls (**P < 0.01)

‖WM/Vascular lesions, **P < 0.01 compared to all post-stroke and dementia subjects

⁋Determined at length density (Lv) with GLUT1 as marker of capillaries [9, 22]. Abbreviations: ABC, AD Neuropathology scoring system; AD, Alzheimer’s disease; CAA, 
cerebral amyloid angiopathy; CAMCOG, Cambridge cognition examination; F, female; GLUT1, glucose transporter 1; M, male; MMSE, Mini Mental state examination; 
N, number of subjects; na, not available; NPD, no pathological diagnosis; PSND, post-stroke non-demented; PSD, post-stroke dementia; VaD, vascular dementia; WM, 
white matter; WML, white matter lesions

Variable Young Controls Older Controls PSND PSD VaD AD Mixed

N 12 20 21 20 17 16 18

Mean Age, years (range) 57.5* (46–65) 79.3 (78–94) 85.1 (75–96) 87.1 (75–96) 84.2 (71–98) 84.2 (76–96) 85.1 (72–93)

Gender (M:F ratio) 55:45 35:65 57:43 30:70 41:59 56:44 44:56

MMSE, mean ± SEM na 29 ± 1 27 ± 0.4 16 ± 1 13 ± 4 7 ± 2 11 ± 2

CAMCOG, mean ± SEM na na 90 ± 1 66 ± 3 na 39 ± 7 na

Braak Stage, mean (range) 0.25 (0–1) 1.9 (0–4) 2.6 (1–4) 2.6 (1–4) 2.0 (0–4) 5.6 (5–6) * 5.2 (5–6) *

CERAD, mean (range) 0.0 (0–0) 0.5 (0–2) 1.7 (1–2) 1.3 (1–3) 1.0 (0–2) 2.9 (2–3) * 2.9 (2–3) *

ABC Scores, mean na A0.5, B1.2, C0.5 A0.5, B1.2, C0.7 A0.5, B1.2, C0.8 A0.6, B1.2, C0.8 A3, B3, C3 A2.5, B2.6, C2.6

CAA frequency (moderate-
severe), %

0% 6% 15% 18% 17% 39% 9%

Vascular pathology score, mean 
(range)†

na 6.7 (0–10) * 13.5 (13–14) 13.3 (9–17) 13.2 (10–16) 10.8 (3–16) 11.0 (6–14)

Cortical Infarct pathology (%)†† 0% 0% 90% 90% 67% 41% 73%

WML score, mean (range)‡ na 0.5 (0–2) ** 2.5 (2–3) 2.4 (2–3) 2.9 (2–3) 1.8 (0–3) 2.9 (2–3)

WM/ Vascular lesions, moder-
ate—severe (%)‖

na 17.6%** 100% 100% 100% 72% 95%

Length density (Lv) of Cortical 
GLUT1 Capillaries (mm/mm3)⁋

na 0.72 ± 0.10 0.62 ± 0.17 0.78 ± 0.07 0.72 ± 0.09 0.72 ± 0.13 0.70 ± 0.10
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(COL4 at dilation 1:1000, C1926, Merck (Sigma-Aldrich), 
Branchburg, NJ, USA), a marker of basement membrane 
in the vessels, platelet-derived growth factor receptor-β 
(PDGFR-β at 1:200 dilution, clone 42G12, #AF385, R&D 
systems, Minneapolis, MN, USA), a marker for pericytes, 
bone morphogenetic protein 4 (BMP4 dilution at 1:100, 
MBA1049, Millipore, MA, USA), α-smooth muscle 
actin (αSMA at dilution 1:1000, Clone 1A4, Dako, Cam-
bridge, UK), a marker for mural cells, and glucose trans-
porter-1 (GLUT-1 at 1:200, PA1-21,041, Fisher Scientific, 
Waltham, MA, USA), a marker of endothelial cells. Vec-
tastain ABC mouse kits (PK-6102, Vector Laboratories, 
Burlingame, CA, USA) and Diaminobenzidine were used 
for single or double immunohistochemistry. Haematoxy-
lin counterstain was used for ease in localising regions of 
interest.

Immunofluorescence methods
Tissue sections were first treated with 0.1 mg/ml protease 
and then incubated overnight at 4 °C with primary antibod-
ies to anti-COL4 (C1926 Sigma) monoclonal antibody, anti-
PDGFR-β, (1:200 dilution, AF385, R&D Systems), αSMA 
(1:500 dilution, Clone 1A4, Dako), glucose transporter-1 
(GLUT-1, 1:200, Thermo Scientific). Sections were washed 
with PBS and further incubated with donkey anti-goat con-
jugated Alexa Fluor 594 (1:1000, A11058, Thermo Fisher 
Scientific, Waltham, MA, USA) and rabbit anti-mouse 
Alexa Fluor 488 (1:1000, A11059, Thermo Fisher Scien-
tific). Sections were then washed in PBS before mounting 
in Vectashield with DAPI (H-1200, Vector Laboratories). 
Images were captured using a Leica TCS SP2 (upright) 
and Zeiss Spinning Disk (Invert) confocal microscopes as 
described previously [12].

Pericyte soma quantification
In accord with our work on the white matter [16], we used 
COL4 immunohistochemistry as a readily applied method 
to determine densities of capillary pericytes in regions 
remote from obvious infarcts or capillary cerebral amyloid 
angiopathy (CAA). Two to 5 sections were immunostained 
with COL4 antibodies only or in combination with GLUT1 
or αSMA and then usually counterstained lightly with hae-
matoxylin. In COL4 immunostained sections, nucleated 
pericyte cell bodies characteristically recognised as protru-
sions or “bumps” were counted manually along capillary 
profiles from more than 2000 captured images. The total 
number of pericyte cell bodies were then determined for 
each case from 8–25 frames per case and then a mean num-
ber was calculated per case. We encountered 11–20 nucle-
ated pericyte cell bodies in each image and this ensured a 
consistent counting method. In total, we counted over 
3,000 pericytes involving > 1,500 images within each group 
comprising of at least 10 cases. The pericyte somata were 

counted only if it had the characteristic shape and there was 
a haematoxylin-stained nucleus within identified at × 40 
magnification. Different from previous studies [36], our 
counts were limited to cell bodies rather than pericyte cov-
erage of the processes or extensions. Our aim was to assess 
potential alterations in pericyte nuclei per se for as accurate 
as possible assessment of pericyte cells.

Stereological analysis of length density
To measure length density (Lv) of capillaries in 3 × 30 μm 
thick sections of the frontal cortex, we used the Stereolo-
ger2000 software (Stereologer, WV, USA) with the spher-
ical probe ‘space ball’ option as described previously [9]. 
The operating system was connected to a Zeiss Axio-
lab microscope with a motorised stage (Prior Scientific, 
UK). The spherical probe with a diameter of 18 μm was 
selected to allow for section shrinkage and an appropri-
ate guard volume. An outline was drawn denoting the 
area of interest, which corresponded to the relevant cor-
tical region at low magnification (× 5). A digitally gener-
ated, equally spaced grid was overlaid and used to ensure 
random sampling within x and y axis of the reference 
area. Lv was then calculated by counting the number of 
intersections between the probe and the parameter –n 
this instance microvasculature (ΣQ), and the area of sam-
pling probe (ΣA) (Lv = 2(ΣQ/ ΣA)) at × 100 magnification 
[38]. The number of intersections was used to estimate 
the Lv for each case.

Cortical atrophy analysis
Cortical atrophy in PSD and PSND versus older con-
trol subjects was estimated using the method proposed 
by White and colleagues [20]. We used three markers 
to estimate atrophy of the cortical ribbon of Brodmann 
area 9: the ratio of brain weight to intracranial volume, 
the ratio of cortical thickness to head diameter, and neu-
ronal loss. Brain weight were available from the records. 
Intracranial volume was measured from magnetic reso-
nance scans [11]. Cortical thickness was taken from the 
sulcus of area 9 at 2.5 × objective. The raw data were con-
verted into a Z score allowing for each individual marker 
to be compared to one another: Z = (x-u)/σ, where: 
X = raw score, U = mean, and σ = standard deviation. 
Each marker was assigned a percentage weight indicating 
the extent of influence of the Z score. Thus, brain weight 
vs. intracranial volume (50%), cortical thickness vs. head 
diameter (40%) and neuron density (10%). The final score 
for each subject group was the total Z score based on the 
above percentages.

Image acquisition and analysis
Images of capillary beds or regions of interest (ROI) 
within the cortical ribbon were captured on a Zeiss 
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Axioplan 2.0 microscope and Image capture software 
(Infinity Capture V4.6.0, Lumenera Corporation), taking 
care to avoid arterioles > 50 µm external diameter. Immu-
nohistochemical staining was quantified using Image-
Pro Plus (V.6.3; Media Cybernetics, Silver Spring, MD, 
USA). We assessed the percent area (% Area) for each 
case from at least 10 ROI images representing the vascu-
lar area stained with COL4 (as % COL4 Area) and to test 
the quality of the immunoreactvities between individual 
sections and cases, we ascertained the integrated optical 
density (IOD). There were no significant differences in 
IOD values between disease and control samples. There 
was no obvious relationship between immunohistochem-
ical staining of COL4 or PDGFR-β and length of fixation, 
or post-mortem interval among any of the groups. The % 
COL4 area, capillary length and diameters were analysed 
manually with Image-Pro Plus Analyzer. Throughout 
histopathological analyses were performed blind to the 
operator.

Statistical analyses
Data were analysed using GraphPad Prism and SPSS 
(V19.0, IBM). Data were first confirmed for normality 
using the Shapiro–Wilk test. Differences between means 
of groups were first tested using one-way ANOVA fol-
lowed by Tukey’s post-hoc test or Kruskal–Wallis H test 
where appropriate. Linear correlations between age and 
COL4-positive pericyte numbers per COL4 area (mm2) 
were performed using the Pearson’s correlation [13]. Dif-
ferences were considered significant with P value less 
than 0.05 and data are presented as mean ± SEM.

Results
Clinicopathological characteristics of the sample
Mean age of older controls and all disease groups was 
on average 20  years greater than that of young con-
trols (Table  1). Where available, MMSE and CAMCOG 
scores showed subjects had evidence of dementia at least 
6  months prior to death. Compared to both young and 
old controls, there was significant neurodegenerative or 
vascular pathology across all the disease groups. Total 
vascular pathology scores in PSND, PSD, AD, VaD and 

Mixed subjects was nearly 1.6–2.0 fold higher than old 
controls (P < 0.05). There was greater burden of neurode-
generative pathology in terms of Braak, CERAD and ABC 
scores in AD and Mixed (AD + VaD) subjects compared 
to all other groups (P < 0.05). The WML and WM/vascu-
lar lesion scores were also greater in PSND and across all 
dementias compared to controls (P < 0.01). Notably, there 
were no significant differences in any of the neurodegen-
erative pathology staging results between the PSND and 
PSD subjects (Table 1).

Pericyte cell bodies in capillaries
As previously noted in the frontal white matter, COL4 
immunopositive protrusions or “bumps” on segments 
of cortical microvessels were characterised as cell bod-
ies of capillary pericytes (Fig. 1). Their precise abluminal 
location and being enveloped by COL4 immunostained 
basement membranes clearly differentiated them from 
luminally located endothelial cells (Fig.  1a, b, e, f ). In 
cortical capillaries of 5-7  µm diameter, cell bodies of 
pericytes were observed to be localised at an approxi-
mate distance of 3–5 per mm length in the microvascular 
network of normally ageing subjects. Double immu-
nostained tissue sections of the frontal cortex showed 
there was distinct overlap between COL4 and PDGFR-β 
immunoreactivties, indicating that COL4-positive “pro-
trusions” were pericyte somata (Fig.  1c, d). They were 
negative for specific markers of the endothelium such 
as GLUT1 but positive for laminin, another basement 
membrane marker, which could be used to identify 
pericyte somata (data not shown). Upon double immu-
nofluorescence with COL4 and PDGFR-β antibodies, 
we confirmed pericyte cell processes emanating from 
nucleated cell bodies were positive for PDGFR-β immu-
noreactivity (Fig. 1g–j). Our observations also confirmed 
PDGFR-β immunoreactivity was largely restricted to per-
icyte processes on capillaries and in the virtual absence of 
αSMA imunoreactivity (< 0.1% in 50 capillaries).

Given our previous quantitative data in the frontal 
white matter in different dementias, we focussed on the 
frontal cortex, particularly the medial and dorsolateral 
region, which is associated with pyramidal cell atrophy 

Fig. 1  Capillaries with pericytes in the frontal cortex. A and B, Cerebral cortical capillaries immunostained with COL4 from a 95-year-old female 
PSND subject. Pericytes (black arrows) were identified by the morphology of ‘protrusion’ from the capillary walls surrounded by the COL4-positive 
membrane and separated from vascular lumen by COL4-positive basement membrane. Insets showing detailed structures of capillary pericytes 
at higher magnification. C and D, The cortical capillary networks immunostained with COL4 (blue/grey) and PDGFR-β (brown) were similar in both 
layers III and V [19]. COL4 and PDGFR-β double-positive cells (black arrows) are likely to be pericytes. E and F, Immunofluorescent staining with COL4 
(green) and DAPI (blue) in the cerebral cortex, representing a pericyte (white arrow). G-J, Another segment of capillary immunostained with COL4 
(green), PDGFR-β (red) and DAPI (blue). Nucleated pericytes double positive for COL4 and PDGFR-β (white arrow) are clearly visible. Images C-D 
were derived from an 81-year-old female with PSD, E–F, from a 74-year-old VaD and G-J from a 78-year-old PSND subject. Scale bars; A-E = 50 µm; 
F = 20 µm; J = 10 µm

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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across dementias [19]. Quantification of COL4 immu-
nostained pericyte somata with clear nuclei in the frontal 
cortex in normal young controls (Fig. 2) showed the over-
all mean (± SEM) densities to be 613 ± 26 per COL4 area 
mm2 and 5.2 ± 0.2 mm capillary length. These estimates 
in older controls were 340 ± 15 and 2.9 ± 0.1 per COL4 
area mm2 and mm capillary length, respectively. Thus, 
there were differences in numbers between young and 
older controls with a reduction of ~ 45% in older controls 
(P < 0.001) (Fig. 2). However, we did not observe any obvi-
ous age-related differences in the size or shape of pericyte 
somata by light microscopy. Consistent with our previous 

report [22], we also found that the % COL4 immunore-
active capillary area was increased by 42% in older com-
pared to young controls (Additional file  1). This may 
reflect increased capillary density as well as thickening 
of the basement membranes in ageing that could modify 
pericyte densities [22].

We next quantified pericyte cell bodies within corti-
cal capillaries across different dementias characterised 
by variable degrees of vascular and neurodegenerative 
pathologies (Fig.  2). We found that irrespective of the 
method used for calculation i.e., numbers of pericyte cell 
bodies per COL4 mm2 area or cell densities per mm cap-
illary length, pericytes were significantly greater in the 
dementia groups including PSD, AD and Mixed groups 
compared to similar age older controls (Fig. 2). Surpris-
ingly, there were no significant differences in frontal cor-
tical capillary pericytes density between the PSD and 
PSND groups (P > 0.05). Thus, although pericyte numbers 
were decreased in older controls compared to young con-
trols (P < 0.001), they were not decreased in PSND, PSD, 
Mixed and AD groups compared to the older controls 
(P > 0.05). To negate whether global atrophy or diffuse 
neocortical ribbon reductions might have affected the 
observed results, we found no evidence for differences 
in the total Z scores between PSND and PSD subjects 
compared to controls. Thus, the total Z scores for corti-
cal atrophy in PSND and PSD groups were 0.12 and 0.22, 
respectively compared to those in controls was—0.02 
(P > 0.05).

We also noted there were no substantial changes in 
the measured % COL4-positive immunostained area in 
any of the dementia types or post-stroke survivor groups 
compared to older controls (> 0.05). This was remarkably 
consistent with no change across these dementias com-
pared to older age controls in our previous independent 
study [22]. We verified that 3D-stereological assessment 
of capillary length densities (Lv) and identified by GLUT1 
were also not significantly different across the demen-
tias compared to older controls (Table 1). We previously 
showed GLUT1 and COL4 immunostained profiles are 
closely related although there is endothelial thinning 
and basement membrane thickening in some dementias. 
However, GLUT1 Lv followed a similar pattern to COL4 
changes, predominantly labelling capillaries [9, 22]. There 
was also no trend between any of the ABC scores and 
numbers of pericyte somata within the dementia groups 
(P > 0.05). This was likely because amyloid β and neurofi-
brillary pathology had reached the ceiling.

In further analysis, we correlated pericyte cell body 
numbers per COL4 area mm2 against age of all normal 
control subjects and those of all controls and demen-
tia groups (Fig.  3a and b). We found negative correla-
tion with age amongst controls ((Pearson’s r = −0.73, 

Fig. 2  Quantification of frontal cortical pericytes in dementias and 
ageing controls. A-B, Individual data points and box plots showing 
number of pericytes per COL4 area (mm2) (A) and per unit (mm) 
capillary length (B). Dots demonstrate distribution of pericytes in all 
the cases and controls whereas box plots represent mean distribution 
of pericytes within cases. Per Methods, pericytes were determined 
in capillaries within regions free of infarcts or CAA. Mean pericyte 
numbers were increased in PSND, PSD, Mixed and AD compared 
to older control subjects (***P < 0.001 Control vs PSND and PSD; 
**P < 0.01 Control vs Mixed and AD). The mean numbers were also 
greater in young controls compared to older controls. (***P < 0.001). 
VaD group showed similar pericyte number to controls (P > 0.05)
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P < 0.001) and controls and dementia groups (Pearson’s 
r = −0.28, P = 0.02) suggesting fewer pericyte somata 
were apparent in older age in controls although % COL4 
immunoreactive capillary area was increased between 
young and older controls (Additional file  1). However, 
correlation analysis limited between pericyte soma num-
bers per COL4 area mm2 and age of different disease 

groups including PSND, and PSD did not show a signifi-
cant trend (P > 0.05).

Discussion
In accord with our previous study on the underlying 
white matter [16], we estimated numbers of nucleated 
pericytes on cortical capillaries rather than pericyte 
coverage in the frontal cortex across several dementias 

Fig. 3  Correlation of number of pericytes per COL4 area and age in the frontal cortex. A, Scatter plot showing negative correlation between 
number of pericytes per COL4 area (mm2) and age amongst young control and older control (Control) subjects, suggesting ageing effects on 
pericytes numbers in the cerebral cortex (Pearson’s r =  − 0.73, P = 0.0003). B, Number of pericytes per COL4 area (mm2) and age in all dementias 
and control subjects were also negatively correlated (Pearson’s r =  − 0.28, P = 0.02), implicating pericytes tend to be reduced with ageing in the 
total sample indicating an ageing effect in disease groups
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with vascular and neurodegenerative pathologies. 
Using conventional immunohistochemical (and immu-
nofluorescence) methods, we found that pericyte cell 
density was approximately 2–threefold greater in the 
cortex than the underlying frontal white matter. The 
differences in pericyte densities are also consistent 
with the differential densities of capillaries in cerebral 
cortex and underlying white matter we have reported 
on previously [22]. We estimated that in the frontal 
cortex there are 5–6 pericyte cell bodies per mm cap-
illary length or approximately 600 pericyte per COL4 
area mm2 in normal 46–65-year-olds. Our estimates of 
pericyte densities in human cortex are consistent with 
the mid-capillary region of the mouse cortex [5] but are 
inconsistent with the 2000–3000 pericyte number per 
mm2 vascular area reported previously in human fron-
tal cortex and the hippocampus [44]. We are also confi-
dent that our results are not confounded by changes in 
perivascular microglia or macrophages, which could be 
mistaken for pericyte cell bodies. While macrophages 
have different shapes, in a separate study, we found 
that perivascular macrophages along capillary profiles 
were not altered across the dementias compared to 
PSND or similar age controls [25] (Ameen-Ali K et al., 
unpublished observations). However, the most inter-
esting observation here is that we found an age-related 
loss of pericyte cell bodies in the frontal cortex. This 
means that increasing age appears to have a stronger 
effect on cortical pericyte cell bodies in capillaries than 
any disease pathology did, either neurodegenerative or 
vascular of origin. Our observations suggest within the 
disease groups frontal cortical pericytes were overall 
preserved [18].

In principle, our observations on age-related pericyte 
loss are consistent with a previous ultrastructural study 
on neurosurgical biopsies [46]. They showed that peri-
cyte cell area in capillaries of the frontal and temporal 
cortex was substantially reduced (> 50%) in 80-year-olds 
compared to 20-year-olds. In an earlier experimental 
study [4], age-dependent vascular damage in pericyte-
deficient mice was shown to precede neuron degenera-
tive changes accompanied by inflammatory responses 
and learning and memory impairment. They suggested 
that pericyte loss results in a progressive age-dependent 
vascular-mediated neurodegeneration. Previous stud-
ies have suggested that while ablation of a single pericyte 
soma in rodents does not affect focal BBB function [5], 
the absence of pericytes induces microvessel leakage and 
microvessel regression [36, 50]. Taken together, the loss 
of pericytes with age suggests disturbed neurovascular 
unit and more importantly decreased ability of the BBB 
to precisely compensate for transient leaks in the elderly. 

We are not aware of other similar ageing study as ours 
that could verify our observations.

We also found that cortical pericyte somata were either 
preserved or marginally increased in different dementias 
characteristic of neurodegenerative and vascular patholo-
gies. The observations were consistent irrespective of the 
denominator used to express the results. In contrast with 
what might be predicted albeit expressed as pericyte cov-
erage [30, 34, 35, 39], we did not observe disease related 
loss of pericytes in the frontal cortex. These observa-
tions are much unlike those in the underlying frontal 
white matter assessed in the same large coronal sections 
as the cortex [16, 22]. This indicates cortical pericyte cell 
numbers are largely preserved or tended to increase in 
vascular as well as AD and Mixed dementia. We further 
observed that pericyte cell bodies were increased in post-
stroke survivors who did not develop dementia (PSND 
group) suggesting that even remote vascular changes may 
increase or remodel the capillary network. These obser-
vations are, however, inconsistent with previous studies 
in which PDGFR-β immunoreactivity was used to assess 
pericytes [36]. While pericyte cell bodies are preserved 
or appear immobile [5], it is not unlikely that cell pro-
cesses or extensions are altered due to energy demand, 
local perfusion and tissue changes or even proteinaceous 
toxicity [12, 34, 40]. It is plausible that pericyte cell popu-
lations are constantly changing in tandem with angiogen-
esis, restructuring and microvascular modelling during 
chronic disease. Our prior observations (Kalaria R et al., 
unpublished) have shown that markers of angiogenesis 
such as Ki67 and proliferating cell nuclear antigen seldom 
labelled endothelial cells in ageing brains. Thus, our find-
ings here do not necessarily reflect a robust angiogenic 
process. However, the consequence of preserved or even 
increased pericytes in the context of ischemic injury or 
neurodegenerative pathology may indicate the presence 
of microvascular anomalies. Previous experimental stud-
ies showed the overexpression of pericyte markers could 
occur due to impaired revascularization in retinopathy 
[17] or due to vascular instability during vascular devel-
opment [8].

Our observations in AD on generally preserved peri-
cyte numbers in the frontal cortex are in contrast with 
pericyte coverage measured by PDGFR-β immunoreac-
tivity in the prefrontal cortex [30, 36]. They found losses 
of pericyte coverage associated with accumulation of AD 
pathology both amyloid β and neurofibrillary tangles 
[30]. In the study of Miners et al. [34] in which PDGFR-β 
reactivity was assayed by ELISA as surrogate of peri-
cytes, PDGFR-β reactivity was significantly decreased in 
AD subjects in the precuneus of the parietal lobe. While 
there may likely be regional differences in cell bodies, it 
is possible that surface areas of pericyte cell processes 
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are retracted or reduced in the parietal cortex in AD, but 
this may not reflect a change in the number of cell bod-
ies. Our results in AD are, however, remarkably in agree-
ment  with the recent study in which 3D-stereological 
quantification showed increased capillary density with 
largely preserved pericytes in the frontal cortex [18]. 
Consistent with our observations, the study suggested 
that cortical pericyte demise is not characteristic of AD 
pathology although it may be different in the hippocam-
pus [30].

Studies showing lower expression of PDGFR-β immu-
noreactivity in AD may be explained by increased retrac-
tion or atrophy of pericyte cell processes that had not yet 
lost their nuclei. Previous studies [34, 40] have further 
suggested that amyloid β is likely directly toxic to peri-
cytes. Our results do not appear to promote the role of 
soluble or insoluble amyloid β in pericyte degeneration 
at least in the frontal cortex in AD or Mixed dementia. 
In addition, we previously reported that both PSD and 
PSND groups had similar amyloid β load [1] and pericyte 
numbers were similar yet capillary densities were greater 
between these groups and high amyloid β load bearing 
dementias. Thus, our results argue for a different mecha-
nism associated with pericyte changes that may impact 
on processes but not the cell soma in the cerebral cortex 
[36]. As far as we could discern, these findings were not 
influenced by tissue shrinkage or atrophy due to the pres-
ence of other pathologies at least in the PSD cases where 
compaction of the capillary network could occur. In addi-
tion, increased cortical capillary densities in AD may 
occur in a region-specific manner as reported by other 
investigators [9, 30, 43].

This study has some limitations. First, we did not assess 
pericyte numbers in other cortical areas, for example 
in previously anticipated regions such as the precuneus 
with greater amyloid β load. We surmised that quanti-
fication of other regions required a monumental effort 
that may not reveal different results given that we previ-
ously found that cortical capillary densities were largely 
unchanged or increased in AD. Second, we did not 
verify the entire quantitative results by also assessing 
pericytes using PDGFR-β immunoreactivity as another 
marker. While we irrefutably demonstrated it labels peri-
cytes, PDGFR-β immunostaining was found to be rather 
capricious for reliable quantification in large numbers 
of human post-mortem tissues. PDGFR-β immunore-
activity is a frequently used pericyte marker but it also 
identifies, albeit diffusely, neurons, myofibroblasts, fibro-
blasts, vascular smooth muscle cells and endothelial pre-
cursor cells [3, 15]. This also means that our results are 
based on pericyte soma counts and could not be entirely 
related to PDGFR-β immunoreactivity, which is widely 
used for pericyte coverage (processes) per se. Indeed, 

the availability of more specific markers of pericytes 
would also have been useful to verify our findings on the 
mechanics of pericyte cell impairment or turnover and 
determine if PDGFR-β is increased intracellularly as reac-
tive response to tissue and microvascular remodelling.

In summary, we found ageing-related loss of numbers 
of capillary pericytes in the frontal cortex in cognitively 
normal individuals. Pericyte cell loss is likely associated 
with age-related disintegration of the neurovascular unit 
of the cortex that impairs BBB function. This suggests 
even if one cell type is aberrant within the neurovascular 
or even the gliovascular unit [23] there could be sequalae 
to local permeability and perfusion. However, pericyte 
numbers were largely preserved or marginally increased 
in dementia compared to similar age controls. They 
may be modified along with microvascular or capillary 
remodelling during vascular or stroke injury in elderly 
individuals. These observations suggest that changes in 
tissue perfusion and local cellular needs modify pericyte 
cell responses in capillaries which likely undergo tissue-
specific remodelling during chronic disease.
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