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Human–robot collaboration could be advanced by facilitating the intuitive, gaze-based 
control of robots, and enabling robots to recognize human actions, infer human intent, 
and plan actions that support human goals. Traditionally, gaze tracking approaches to 
action recognition have relied upon computer vision-based analyses of two-dimensional 
egocentric camera videos. The objective of this study was to identify useful features 
that can be extracted from three-dimensional (3D) gaze behavior and used as inputs 
to machine learning algorithms for human action recognition. We investigated human 
gaze behavior and gaze–object interactions in 3D during the performance of a bimanual, 
instrumental activity of daily living: the preparation of a powdered drink. A marker-based 
motion capture system and binocular eye tracker were used to reconstruct 3D gaze 
vectors and their intersection with 3D point clouds of objects being manipulated. 
Statistical analyses of gaze fixation duration and saccade size suggested that some 
actions (pouring and stirring) may require more visual attention than other actions (reach, 
pick up, set down, and move). 3D gaze saliency maps, generated with high spatial 
resolution for six subtasks, appeared to encode action-relevant information. The “gaze 
object sequence” was used to capture information about the identity of objects in con-
cert with the temporal sequence in which the objects were visually regarded. Dynamic 
time warping barycentric averaging was used to create a population-based set of char-
acteristic gaze object sequences that accounted for intra- and inter-subject variability. 
The gaze object sequence was used to demonstrate the feasibility of a simple action 
recognition algorithm that utilized a dynamic time warping Euclidean distance metric. 
Averaged over the six subtasks, the action recognition algorithm yielded an accuracy of 
96.4%, precision of 89.5%, and recall of 89.2%. This level of performance suggests that 
the gaze object sequence is a promising feature for action recognition whose impact 
could be enhanced through the use of sophisticated machine learning classifiers and 
algorithmic improvements for real-time implementation. Robots capable of robust, real-
time recognition of human actions during manipulation tasks could be used to improve 
quality of life in the home and quality of work in industrial environments.

Keywords: action recognition, bimanual manipulation, eye tracking, gaze fixation, gaze object sequence, gaze 
saliency map, human–robot collaboration, instrumental activity of daily living
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inTrODUcTiOn

Recognition of human motion has the potential to greatly impact 
a number of fields, including assistive robotics, human–robot 
interaction, and autonomous monitoring systems. In the home, 
recognition of instrumental activities of daily living (iADLs) 
could enable an assistive robot to infer human intent and col-
laborate more seamlessly with humans while also reducing the 
cognitive burden on the user. A wheelchair-mounted robot with 
such capabilities could enhance the functional independence of 
wheelchair users with upper limb impairments (Argall, 2015). 
During bimanual iADLs, humans rely heavily on vision to 
proactively gather task-relevant visual information for planning 
(Johansson et al., 2001). For example, task-relevant information for 
manipulation could include the three-dimensional (3D) location 
of an object as well as its structure-related and substance-related 
properties, such as shape and weight, respectively (Lederman and 
Klatzky, 1987). Saccades typically precede body movement (Land 
et al., 1999) and reflect one’s strategy for successful completion 
of a task.

The relationships between human vision, planning, and intent 
have inspired roboticists to adopt similar vision-based principles 
for planning robot movements and to use human gaze tracking 
for the intuitive control of robot systems. For instance, gaze 
fixation data collected during the human navigation of rocky 
terrain have been used to inspire the control of bipedal robots, 
specifically for the identification and selection of foot placement 
locations during traversal of rough terrain (Kanoulas and Vona, 
2014). Human eye tracking data have also been used in the 
closed loop control of robotic arms. Recently, Li et  al. (2017) 
demonstrated how 3D gaze tracking could be used to enable 
individuals with impaired mobility to control a robotic arm in 
an intuitive manner. Diverging from traditional gaze tracking 
approaches that leverage two-dimensional (2D) egocentric 
camera videos, Li et  al. presented methods for estimating 
object location and pose from gaze points reconstructed in 3D.  
A visuomotor grasping model was trained on gaze locations in 
3D along with grasp configurations demonstrated by unimpaired 
subjects. The model was then used for robot grasp planning 
driven by human 3D gaze.

In this work, we consider how human eye movements and 
gaze behavior may encode intent and could be used to inform 
or control a robotic system for the performance of bimanual 
tasks. Unlike repetitive, whole-body motions such as walk-
ing and running, iADLs can be challenging for autonomous 
recognition systems for multiple reasons. For instance, human 
motion associated with iADLs is not always repetitive, often 
occurs in an unstructured environment, and can be subject to 
numerous visual occlusions by objects being manipulated as 
well as parts of the human body. Prior studies on recognition 
of iADLs often applied computer vision-based approaches to 
images and videos captured via egocentric cameras worn by 
human subjects. Video preprocessing methods typically consist 
of first subtracting the foreground and then detecting human 
hands, regions of visual interest, and objects being manipulated 
(Yi and Ballard, 2009; Fathi et al., 2011, 2012; Behera et al., 2014; 
Nguyen et al., 2016).

A variety of methods have been presented for feature extrac-
tion for use in machine learning classifiers. In some studies, 
hand–hand, hand–object, and/or object–object relationships 
have been leveraged (Yu and Ballard, 2002; Fathi et al., 2011; 
Behera et  al., 2012). The state of an object (e.g., open vs. 
closed) has been used as a feature of interest (Fathi and Rehg, 
2013). Another study leveraged a saliency-based method to 
estimate gaze position, identify the “gaze object” (the object 
of visual regard), and recognize an action (Matsuo et  al., 
2014). Other studies have employed eye trackers in addition 
to egocentric cameras; researchers have reported significant 
improvements in action recognition accuracy as a result of 
the additional gaze point information (Yu and Ballard, 2002; 
Fathi et al., 2012).

In the literature, the phrase “saliency map” has been used to 
reference a topographically arranged map that represents visual 
saliency of a corresponding visual scene (Itti et al., 1998). In this 
work, we will refer to “gaze saliency maps” as heat maps that 
represent gaze fixation behaviors. 2D gaze saliency maps have 
been effectively employed for the study of gaze behavior while 
viewing and mimicking the grasp of objects on a computer screen 
(Belardinelli et  al., 2015). Belardinelli et  al. showed that gaze 
fixations are distributed across objects during action planning 
and can be used to anticipate a user’s intent with the object  
(e.g., opening vs. lifting a teapot). While images of real world 
objects were presented, subjects were only instructed to mimic 
actions. In addition, since such 2D gaze saliency maps were con-
structed from a specific camera perspective, they cannot be easily 
generalized to other views of the same object. One of the objec-
tives of this work was to construct gaze saliency maps in 3D that 
could enable gaze behavior analyses from a variety of perspec-
tives. Such 3D gaze saliency maps could be mapped to 3D point 
clouds trivially obtained using low-cost RGB-D computer vision 
hardware, as is common in robotics applications. Furthermore, 
given that all manipulation tasks occur in three dimensions, 
3D gaze saliency maps could enable additional insights into 
action-driven gaze behaviors. Although our experiments were 
conducted in an artificial lab setting using an uncluttered object 
scene, the experiment enabled subjects to perform actual physi-
cal manipulations of the object as opposed to only imagining or 
mimicking the manipulations, as in Belardinelli et al. (2015).

The primary objective of this study was to extract and rigor-
ously evaluate a variety of 3D gaze behavior features that could 
be used for human action recognition to benefit human–robot 
collaborations. Despite the increasing use of deep learning tech-
niques for end-to-end learning and autonomous feature selec-
tion, in this work, we have elected to consider the potential value 
of independent features that could be used to design action 
recognition algorithms in the future. In this way, we can consider 
the physical meaning, computational expense, and value added 
on a feature-by-feature basis. In Section “Materials and Methods,” 
we describe the experimental protocol, methods for segmenting 
actions, analyzing eye tracker data, and constructing 3D gaze 
vectors and gaze saliency maps. In Section “Results,” we report 
trends in eye movement characteristics and define the “gaze 
object sequence.” In Section “Discussion,” we discuss observed 
gaze behaviors and the potential and practicalities of using gaze 
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FigUre 1 | (a) Each subject was seated in the motion capture area.  
A blackout curtain was used to minimize visual distractions. (B) The subject 
wore a head-mounted eye tracker. Motion capture markers were attached to 
the Yale-CMU-Berkeley objects, the eye tracker, and subjects’ upper limbs. 
Each trial used the object layout shown. (c) Retroreflective markers were 
placed on a mug, spoon, pitcher, pitcher lid, and table. These objects will be 
referenced using the indicated color code throughout this manuscript. The 
subject shown in panels (a,B) has approved of the publication of these 
images.
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saliency maps and gaze object sequences for action recognition. 
Finally, in Section “Conclusion,” we summarize our contributions 
and suggest future directions.

MaTerials anD MeThODs

experimental Protocol
This study was carried out in accordance with the recommen-
dations of the UCLA Institutional Review Board with written 
informed consent from all subjects. All subjects gave written 
informed consent in accordance with the Declaration of Helsinki. 
The protocol was approved by the UCLA Institutional Review 
Board. A total of 11 subjects (nine males, two females; aged 
18–28 years) participated in the study, whose preliminary results 
were first reported in Haji Fathaliyan et al. (2017). According to 
a handedness assessment (Zhang, 2012) based on the Edinburgh 
Handedness Inventory (Oldfield, 1971), two subjects were “pure 
right handers,” seven subjects were “mixed right handers,” and 
two subjects were “neutral.”

Subjects were instructed to perform a bimanual tasks involv-
ing everyday objects and actions. In this work, we focus on one 
bimanual task that features numerous objects and subtasks: the 
preparation of a powdered drink. To investigate how the findings 
of this study may generalize to other iADL tasks, we plan to apply 
similar analyses to other bimanual tasks in the future. The objects 
for the drink preparation task were selected from the benchmark 
Yale-CMU-Berkeley (YCB) Object Set (Calli et al., 2015b): mug, 
spoon, pitcher, and pitcher lid. The actions associated with these 
objects were reach for, pick up, set down, move, stir, scoop, drop, 
insert, and pour.

Subjects were instructed to repeat the task four times with a 
1 min break between each trial. The YCB objects were laid out and 
aligned on a table (adjusted to an ergonomic height for each sub-
ject) as shown in Figure 1. The experimental setup was reset prior 
to each new trial. Subjects were instructed to remove a pitcher lid, 
stir the contents of the pitcher, which contained water only (the 
powdered drink was imagined), and transfer the drink from the 
pitcher to the mug in two different ways. First, three spoonfuls 
of the drink were to be transferred from the pitcher to the mug 
using a spoon. Second, the pitcher lid was to be closed to enable 
to pouring of the drink from the pitcher to the mug until the 
mug was filled to two-third of its capacity. In order to standardize 
the instructions provided to subjects, the experimental procedure 
was demonstrated via a prerecorded video.

Subjects wore an ETL-500 binocular, infrared, head-mounted 
eye tracker (ISCAN, Inc., Woburn, MA, USA) that tracked their 
visual point of regard, with respect to a head-mounted egocentric 
scene camera, at a 60 Hz sampling frequency. Calibration data 
suggest that the accuracy and precision of the eye tracker are 
approximately 1.43° and 0.11°, respectively. Six T-Series cameras 
sampled at 100 Hz and a Basler/Vue video camera (Vicon, Culver 
City, CA, USA) were used to track the motion of the subjects and 
YCB objects (Figure 1). Retroreflective markers were attached to 
the YCB objects, eye tracker, and subjects’ shoulders, upper arms, 
forearms, and hands (dorsal aspects). Visual distractions were 
minimized through the use of a blackout curtain that surrounded 
the subject’s field of view.

action segmentation: Task, subtask,  
and action Unit hierarchy
Land et al. (1999) reported on gaze fixation during a tea-making 
task. In that work, a hierarchy of four activity levels was consid-
ered: “make the tea” (level 1), “prepare the cups” (level 2), “fill the 
kettle” (level 3), and “remove the lid” (level 4). Spriggs et al. (2009) 
reported on a brownie-making task and divided the task into 29 
actions, such as “break one egg” and “pour oil in cup.” Adopting a 
similar approach as these prior works, we defined an action hier-
archy using a task–subtask–action unit format (Table 1). Subtasks 
were defined similar to Land et al.’s “4th level activities” while the 
action units were defined according to hand and object kinemat-
ics. All subjects performed all six subtasks listed in Table 1, but 
not all subjects performed all action units. For example, a couple 
of subjects did not reach for the pitcher during Subtask 2 (“move 
spoon into pitcher”).

The start and end time of each action unit were identified accord-
ing to hand and object kinematics and were verified by observing 
the egocentric video recorded from the eye tracker. For example, 
the angle of the spoon’s long axis with respect to the pitcher’s long 
axis and the repetitive pattern of the angle were used to identify the 
beginning and end of the action unit “stir inside pitcher” (Figure 2).

gaze Fixation and saccade labeling
Saccadic movements of the eye were discovered by Edwin 
Landott in 1890 while studying eye movements during reading 
(Kandel et  al., 2000). According to Kandel et  al., saccadic eye 
movements are characterized by “jerky movements followed by 
a short pause” or “rapid movements between fixation points.” 
In our study, saccades were detected using the angular velocity 
of the reconstructed gaze vector (see 3D Gaze Vector and Gaze 
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FigUre 3 | (a) A given gaze fixation period was associated with a specific action 
unit if the gaze fixation period overlapped with the action unit period ranging from 
0.3 to 0.7 T (blue shaded region), where T was the duration of the specific action 
unit. (B) A given saccade was associated with a specific action unit if the 
saccade occurred during the action unit period ranging from −0.2 to 0.8 T.

FigUre 2 | The repetitive nature of the spoon’s kinematics with respect to the 
pitcher was used to identify the start and end of the action unit “stir inside pitcher.” 
Although the spoon was not manipulated until approximately 6 s had elapsed in 
the representative trial shown, the full trial is provided for completeness.

TaBle 1 | Six subtasks (bold) were defined for the task of making a powdered drink; action units were defined for each subtask according to hand and object 
kinematics.

subtask 1: remove 
pitcher lid

subtask 2: move  
spoon into pitcher

subtask 3:  
stir inside  
pitcher

subtask 4: transfer  
liquid from pitcher  
to mug using spoon

subtask 5: replace  
pitcher lid

subtask 6: pour  
liquid into mug

Action  
units

Reach for pitcher lid Reach for pitcher Stir Scoop inside pitcher Reach for pitcher lid Reach for mug
Reach for pitcher Reach for spoon Reach for mug Reach for pitcher Pick up mug
Pick up pitcher lid Pick up spoon Move mug to pitcher Pick up pitcher lid Move mug to pitcher
Set down pitcher lid Move spoon Move spoon to mug Move pitcher lid to pitcher Reach for pitcher handle

Drop liquid into mug using spoon Insert pitcher lid into pitcher Pick up pitcher
Set down mug Pour liquid
Set down spoon Set down pitcher
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end of action units were defined based on hand and object kin-
ematics. A heuristic approach, as outlined in Figure 3, was used 
to associate gaze fixation periods and saccades in the eye tracker 
data with action units. A given gaze fixation period was associated 
with a specific action unit if the gaze fixation period overlapped 
with the action unit period ranging from 0.3 to 0.7 T, where T 
was the duration of the specific action unit. A given saccade was 
associated with a specific action unit if the saccade occurred dur-
ing the action unit period ranging from −0.2 to 0.8 T. Saccade 
to action unit associations were allowed prior to the start of the 
action unit (defined from hand and object kinematics) based on 
reports in the literature that saccades typically precede related 
motions of the hand (Land et al., 1999; Johansson et al., 2001). 
The results of the approach presented in Figure 3 were verified 
through careful comparison with egocentric scene camera videos 
recorded by the eye tracker.

3D gaze Vector and gaze saliency  
Map construction
The eye tracker provided the 2D pixel coordinates of the gaze 
point with respect to the image plane of the egocentric scene 
camera. The MATLAB Camera Calibration Toolbox (Bouguet, 
2015; The MathWorks, 2017) and a four-step calibration proce-
dure were used to estimate the camera’s intrinsic and extrinsic 
parameters. These parameters enabled the calculation of the pose 
of the 2D image plane in the 3D global reference frame. The origin 
of the camera frame was located using motion capture markers 
attached to the eye tracker. The 3D gaze vector was reconstructed 
by connecting the origin of the camera frame with the gaze point’s 
perspective projection onto the image plane.

Using the reconstructed 3D gaze vector, we created 3D gaze 
saliency maps by assigning RGB colors to the point clouds 
obtained from 3D scans of the YCB objects. The point cloud 
for the mug was obtained from Calli et  al. (2015a). The point 
clouds for the pitcher, pitcher lid, and spoon were scanned with 
a structured-light 3D scanner (Structure Sensor, Occipital, Inc., 
CA, USA) and custom turntable apparatus. This was necessary 
because the YCB point cloud database only provides point clouds 
for the pitcher lid assembly and because the proximal end of the 
spoon was modified for the application of motion capture markers 
(Figure 1C). Colors were assigned to points based on the duration 
of their intersection with the subject’s 3D gaze vector. In order 
to account for eye tracker uncertainty, colors were assigned to a 
5 mm-radius spherical neighborhood of points, with points at the 

Saliency Map Construction) and intervals between saccades that 
exceeded 200 ms were labeled as gaze fixations, as in Nyström and 
Holmqvist (2010). As described previously, the beginning and 
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FigUre 4 | Box and whisker plots are shown for each of the six  
action unit verb groups for (a) normalized gaze fixation duration and  
(B) saccade size. The tapered neck of each box marks the median  
while the top and bottom edges mark the first and third quantiles.  
The whiskers extend to the most extreme data points that are not 
considered outliers (black dots). For normalized gaze fixation duration, 
both “pour” and “stir” were statistically significantly different from the 
other action unit verb groups, as indicated by underlines. For saccade 
size, both “move” and “stir” were statistically significantly different from 
the other action unit verb groups.

TaBle 2 | The lower left triangle of the table (shaded in gray) summarizes 
p-values for t-tests of average normalized gaze fixation duration for different pairs 
of action unit verbs while the upper right triangle represents p-values for t-tests 
with regards to saccade size.

saccade
Fixation

reach Pick  
up

set 
down

Move Pour stir

Reach 0.012 0.050 3e−6* 0.030 2e−13*

Pick up 0.707 0.450 5e−10* 0.462 3e−12*

Set down 0.242 0.496 3e−10* 0.938 2e−9*

Move 0.666 0.992 0.432 9e−8* 9e−23*

Pour 1e−10* 6e−9* 2e−8* 4e−10* 3e−8*

Stir 3e−9* 1e−7 4e−7* 1e−8* 0.512

Asterisks indicate the t-tests that were statistically significant for a Bonferroni-corrected 
α = 0.003.
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center of the sphere (intersected by the 3D gaze vector) being most 
intense. Color intensity for points within the sphere decreased 
linearly as the distance from the center of the sphere increased. 
Both gaze fixation and saccades were included during RGB color 
assignment. For each subtask, the RGB color intensity maps were 
summed across subjects and then normalized to the [0, 1] range, 
with 0 as black and 1 as red. The normalization was performed 
with all task-relevant objects considered simultaneously and not 
on an object-specific basis. This enabled the investigation of the 
relative visual importance of each object for each subtask.

resUlTs

eye Movements: gaze Fixation Duration 
and saccade size
Gaze fixation duration and saccade size have previously been iden-
tified as important features for gaze behaviors during iADLs. As in 
Morrison and Rayner (1981), we use “saccade size” to refer to the 
angle spanned by a single saccade. Land et al. (1999) reported over-
all trends and statistics for the entire duration of a tea-making task. 
However, information about dynamic changes in gaze behavior is 
difficult to extract and analyze when eye tracker data are convolved 
over a large period of time. In order to address eye movements at a 
finer level of detail, we investigated trends in gaze fixation duration 
and saccade size at the action unit level. Gaze fixation duration data 
were normalized by summing the durations of gaze fixation periods 
that belonged to the same action unit and then dividing by the total 
duration of that action unit. This normalization was performed to 
minimize the effect of action unit type, such as reaching vs. stir-
ring, on gaze fixation duration results. Gaze fixation duration and 
saccade size were analyzed according to groupings based on six 
common action unit verbs: “reach,” “pick up,” “set down,” “move,” 
“pour,” and “stir” (Figure 4). “Drop” and “insert” were excluded, as 
they occurred infrequently and their inclusion would have further 
reduced the power of the statistical tests.

We conducted two ANOVA tests with a significance level of 
α  =  0.05. One test compared the distributions of gaze fixation 
duration across the six action unit verb groups while the other 
test compared the distributions of saccade size. In both cases, 
the ANOVA resulted in p < 0.001. Thus, post hoc pairwise t-tests 
were conducted to identify which verb groups were significantly 
different (Table  2). A Bonferroni correction was additionally 
applied (α = 0.05/k, where k = 15, the total number of pairwise 
comparisons) to avoid type I errors when performing the post hoc 
pairwise comparisons. It was found that the average gaze fixation 
durations for “pour” and “stir” were significantly greater than 
those of other verbs (Figure 4A). Saccade sizes for “move” and 
“stir” were significantly different from those of other verbs 
(Figure  4B). Saccade sizes for “move” were significantly larger 
than those of other verbs while those for “stir” were significantly 
smaller (Figure 5).

3D gaze saliency Maps and gaze Object 
Percentages
The 3D gaze saliency map for each object is shown for each of the 
six subtasks in Figure 5. We use “gaze object” to refer to the object 
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FigUre 6 | (a) Each raw gaze object sequence was represented by a 
(1 × N) set of frames. In this example, the gaze object transitioned from the 
pitcher lid to the pitcher. The colors in the figure correspond to the 
color-coded objects in Figure 1c. (B) The raw sequence of gaze objects 
was filtered using a rolling window of 10 frames. (c) The gaze object 
sequence was represented by an (M × N) matrix for M task-relevant objects.

FigUre 5 | Three-dimensional gaze saliency maps of the task-related objects (mug, spoon, pitcher, and pitcher lid) are shown for each of the six subtasks  
(a–F). The RGB color maps were summed across subjects and then normalized to the [0, 1] range for each subtask. The RGB color scale for all gaze saliency 
maps is shown in panel (a). Gaze object percentages are reported via pie charts. The colors in the pie charts correspond to the color-coded objects in Figure 1c.
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that is intersected by the reconstructed 3D gaze vector. This 3D 
approach is analogous to the use of 2D egocentric camera videos 
to identify the gaze object defined as the “object being fixated 
by eyes” or the “visually attended object” (Yi and Ballard, 2009). 
In the case that multiple objects were intersected by the same 
gaze vector, we selected the closest object to the subject as the 
gaze object. We defined the gaze object percentage as the amount 
of time, expressed as a percent of a subtask, that an object was 
intersected by a gaze vector. Gaze object percentages, averaged 
across all 11 subjects, are presented for each of the six subtasks in 
pie chart form (Figure 5). Although the table in the experiment 
setup was never manipulated, during some subtasks, the gaze 
object percentage for the table exceeded 20% for subtasks that 
included action units related to “set down.”

recognition of subtasks Based on gaze 
Object sequences
The Gaze Object Sequence
In order to leverage information about the identity of gaze objects 
in concert with the sequence in which gaze objects were visu-
ally regarded, we quantified the gaze object sequence for use in 
the automated recognition of subtasks. The concept of a gaze 
object sequence has been implemented previously for human 
action recognition, but in a different way. Yi and Ballard (2009) 
performed action recognition with a dynamic Bayesian network 
having four hidden nodes and four observation nodes. One of the 
hidden nodes was the true gaze object and one of the observation 
nodes was the estimated gaze object extracted from 2D egocentric 
camera videos. In this work, we define the gaze object sequence as 
being comprised of an (M × N) matrix, where M is the number of 

objects involved in the manipulation task and N is the total num-
ber of instances (frames sampled at 60 Hz) that at least one of the 
M objects was visually regarded, whether through gaze fixation 
or saccade (Figure 6C). Each of the M = 5 rows corresponds to 
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FigUre 7 | Characteristic gaze object sequences were produced using 
dynamic time warping barycenter averaging over data from 11 subjects for 
each of six subtasks (a–F). The colors in the figure correspond to the 
color-coded objects in Figure 1c. The lengths of the sequences were 
normalized for visualization.
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a specific object. Each of the N columns indicates the number of 
times each object was visually regarded within a sliding window 
consisting of 10 frames (Figures 6A,B).

A sliding window was used to filter the raw gaze object 
sequence to alleviate abrupt changes of values in the matrix. The 
size of the sliding window was heuristically selected to be large 
enough to smooth abrupt changes in the object sequence that 
could be considered as noise, but also small enough so as not to 
disregard major events within its duration. In preliminary analy-
ses, this sliding window filtration step was observed to improve 
recognition accuracy.

Creating a Library of Characteristic Gaze Object 
Sequences
Intra- and inter-subject variability necessitate analyses of human 
subject data that account for variations in movement speed and 
style. In particular, for pairs of gaze object sequences having 
different lengths, the data must be optimally time-shifted and 
stretched prior to comparative analyses. For this task, we used 
dynamic time warping (DTW), a technique that has been widely 
used for pattern recognition of human motion, such as gait recog-
nition (Boulgouris et al., 2004) and gesture recognition (Gavrila 
and Davis, 1995).

Dynamic time warping compares two time-dependent sequ-
ences X and Y, where X S U∈ ×  and Y S V∈ × . A warping path 
W p p p pi i i ij iKi= … …[ , , , , , ]1 2  defines an alignment between pairs of 
elements in X and Y by matching element(s) of X to element(s) 
of Y. For example, pij = (u, v) represents the matched pair of xu 
and yv. If the warping path is optimized to yield the lowest sum 
of Euclidean distances between the two sequences, the DTW 
distance between the two sequences X and Y can be defined as 
the following:
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In order to identify a characteristic gaze object sequence for 
each subtask, we employed a global averaging method called 
dynamic time warping barycenter averaging (DBA), which 
performs the DTW and averaging processes simultaneously. This 
method uses optimization to iteratively refine a DBA (average) 
sequence until it yields the smallest DTW Euclidean distance  
(see Recognition of Subtasks Using DTW Euclidean Distances) 
with respect to each of the input sequences being averaged 
(Petitjean et al., 2011). The gaze object sequences were averaged 
across all trials for all subjects for each subtask using an open 
source MATLAB function provided by the creators of the DBA 
process (Petitjean, 2016). A total of 43 trials (4 repetitions per 
each of 11 subjects, less 1 incomplete trial) were available for each 
subtask. Figure 7 shows visual representations of the DBA gaze 
object sequence for each of the six subtasks.

Recognition of Subtasks Using DTW Euclidean 
Distances
Traditionally, the Euclidean distance is used as a metric for 
similarity between two vectors. However, the Euclidean distance 

alone is not an accurate measure of similarity for time series data 
(Petitjean et al., 2011). Here, we use the “DTW Euclidean distance,” 
which is calculated as the sum of the Euclidean distances between 
corresponding points of two sequences. The DTW process mini-
mizes the sum of the Euclidean distances, which enables a fair 
comparison of two sequences. The smaller the DTW Euclidean 
distance, the greater the similarity between the two sequences. 
A simple way to associate a novel gaze object sequence with a 
specific subtask is to first calculate the DTW Euclidean distance 
between the novel sequence and a characteristic sequence (gener-
ated using the DBA process) for each of the six candidate subtasks 
and to then select the subtask label that results in the smallest 
DTW Euclidean distance.

Figure  8 shows a novel gaze object sequence and its DTW 
Euclidean distance with respect to each of the candidate DBA 
sequences (one for each of six subtasks). The DTW Euclidean 
distance is reported as a function of the (equal) elapsed times for 
the novel and DBA gaze object sequences. This enables us to relate 
recognition accuracy to the percent of a subtask that has elapsed 
and to comment on the feasibility of real-time action recognition. 
For instance, for Subtask 4 (“transfer water from pitcher to mug 
using spoon”), the DTW Euclidean distance between the novel 
gaze object sequence and the correct candidate DBA sequence 
does not clearly separate itself from the other five DTW distances 
until 30% of the novel gaze object sequence has elapsed for the 
specific case shown (Figure 8). Subtask recognition accuracy gen-
erally increases as the elapsed sequence time increases. Figure 8 
illustrates how a primitive action recognition approach could be 
used to label a subtask based on a gaze object sequence alone. 
However, only one representative novel gaze object sequence was 
shown as an example.

In order to address the accuracy of the approach as applied to 
all 43 gaze object sequences, we used a leave-one-out approach. 
First, one gaze object sequence was treated as an unlabeled, 
novel sequence. Dynamic time warping barycenter averaging 
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FigUre 9 | Using a leave-one-out approach, the performance of the action recognition algorithm is reported as a function of the elapsed time of a novel gaze 
object sequence for each subtask. Accuracy (black solid line), precision (red dashed line), and recall (blue dotted line) are shown for each of the six subtasks  
(a–F). The characteristic gaze object sequence is shown above each subplot. The colors in the sequence correspond to the objects shown in Figure 1c.

FigUre 8 | (a) A representative novel gaze object sequence is shown. The 
colors in the figure correspond to the color-coded objects in Figure 1c.  
(B) A DBA gaze object sequence is shown for Subtask 4, which is the 
correct subtask label for the novel gaze object sequence shown in panel (a). 
(c) The DTW Euclidean distance is shown for the comparisons of a novel 
gaze object sequence and the DBA sequence for each of the six subtasks. 
The DTW distance was calculated using equal elapsed times for the novel 
and DBA sequences. The lowest DTW distance would be used to apply a 
subtask label. Subtask recognition accuracy generally increases as the 
elapsed sequence time increases.

8

Haji Fathaliyan et al. 3D Gaze-Based Action Recognition

Frontiers in Robotics and AI | www.frontiersin.org April 2018 | Volume 5 | Article 25

was applied to the remaining sequences. The DTW Euclidean 
distance was calculated between the novel and candidate DBA 
sequences, and the pair with the smallest DTW distance was 
used to label the novel sequence. This process was repeated 
for each of the gaze object sequences. The DTW distance was 
calculated using equal elapsed times for the novel and DBA 
sequences.

The resulting recognition accuracy, precision, and recall for 
each subtask are reported in Figure 9 as a function of the percent 
of the subtask that has elapsed. Accuracy represents the fraction 
of sequences that are correctly labeled. Precision represents the 
fraction of identified sequences that are relevant to Subtask i. 
Recall represents the fraction of relevant sequences that are 
identified (Manning et al., 2008)
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TPi, TNi, FPi, and FNi represent the number of true positive, 
true negative, false positive, and false negative sequences when 
attempting to identify all sequences associated with Subtask i. 
For example, consider the task of identifying the 43 sequences 
relevant to Subtask 1 out of the total of (43*6) unlabeled 
sequences. Using all sequence data, at 100% elapsed time of a 
novel gaze object sequence, the classifier correctly labeled 36 of 
the 43 relevant sequences as Subtask 1, but also labeled 10 of the 
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FigUre 10 | The confusion matrix is shown for 100% of the elapsed time of 
a novel gaze object sequence for each subtask. Predicted subtask labels 
(columns) are compared to the true subtask labels (rows). Each subtask has 
a total of 43 relevant sequences and (43*5) irrelevant sequences. Each 
shaded box lists the number of label instances and parenthetically lists the 
percentage of those instances out of 43 relevant subtasks.
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(43*5) irrelevant sequences as Subtask 1. In this case, TP1 = 36, 
TN1 = 205, FP1 = 10, and FN1 = 7. Using Eqs 2–4, this results in 
an accuracy of 93.4%, precision of 78.2%, and recall of 83.7% for 
Subtask 1, as shown in Figure 9A.

Figure 10 shows a confusion matrix that summarizes the subtask 
labeling performance of our simple action recognition algorithm 
at 100% of the elapsed time for the novel and DBA gaze object 
sequences. Predictions of subtask labels (columns) are compared 
to the true subtask labels (rows). Consider again the task of 
identifying the 43 sequences relevant to Subtask 1. TP1 is shown 
as the first diagonal element in the confusion matrix (row 1,  
column 1). FP1 and FN1 are the sum of off-diagonal elements in 
the first column and first row, respectively.

DiscUssiOn

gaze Fixation Duration and saccade size 
May reflect Differences in Visual attention
Eye movements were investigated at the action unit level through 
gaze fixation duration and saccade size. For gaze fixation duration, 
both “pour” and “stir” were statistically significantly different from 
the other action unit verb groups (Figure 4A). The median nor-
malized gaze fixation duration values for “pour” and “stir” were, 
respectively, 41 and 33% greater than the largest median duration 
value of the “reach,” “pick up,” “set down,” and “move” verb groups 
(36% for “move”). The lengthier gaze fixation durations could be 
due to the fact that pouring and stirring simply took longer than 
the other movements. The trends could also indicate that more 
visual attention is required for successful performance of pouring 
and stirring. For instance, pouring without spilling and stirring 
without splashing might require greater manipulation accuracy 
than reaching, picking up, setting down, or moving an object. 
However, based on the data collected, it is unknown whether 

subjects were actively processing visual information during these 
fixation periods. Gaze fixation durations could also be affected by 
object properties, such as size, geometry, color, novelty, etc. For 
instance, fixation durations might be longer for objects that are 
fragile, expensive, or sharp as compared to those for objects that 
are durable, cheap, or blunt. The effects of object properties on gaze 
fixation duration and saccade size require further investigation.

For saccade size, both “move” and “stir” were statistically signifi-
cantly different from the other action unit verb groups (Figure 4B).  
The relatively large saccade size for “move” was likely a function 
of the distance by which the manipulated objects were moved 
during the experimental task. The relatively small saccade size 
for “stir” (4.7° ± 2.7°) could be due to the small region associated 
with the act of stirring within a pitcher and the fact that subjects 
did not follow the cyclic movements of the spoon with their gaze 
during stirring.

The concept of “quiet eye,” originally introduced in the litera-
ture with regards to the cognitive behaviors of elite athletes, has 
been used to differentiate between expert and novice surgeons 
(Harvey et  al., 2014). Quiet eye has been defined as “the final 
fixation or tracking gaze that is located on a specific location or 
object in the visuomotor workspace within 3° of the visual angle 
for ≥100 ms” (Vickers, 2007). It has been hypothesized that quiet 
eye is a reflection of a “slowing down” in cognitive planning (not 
body movement speed) that occurs when additional attention is 
paid to a challenging task (Moulton et al., 2010). Based on the 
gaze fixation duration trends (Figure 4A), one might hypothesize 
that pouring and stirring require additional attention. Yet, “stir” 
was the only verb group that exhibited a small saccade size in the 
range reported for quiet eye. We are not suggesting that stirring 
is a special skill that can only be performed by experts; we would 
not expect a wide range of skill sets to be exhibited in our subject 
pool for iADL. Nonetheless, it could be reasoned that certain 
action units may require more visual attention than others and 
that gaze fixation and saccade size could assist in recognition of 
such action units employed during everyday tasks.

gaze saliency Maps encode action-
relevant information at the subtask  
and action Unit levels
Gaze saliency maps at the subtask level can be used to represent 
gaze fixation distribution across multiple objects. The gaze sali-
ency maps for the six subtasks (Figure  5) supported Hayhoe 
and Ballard’s finding that gaze fixation during task completion 
is rarely directed outside of the objects required for the task 
(Hayhoe and Ballard, 2005). Considering Subtask 4, (“transfer 
water from pitcher to mug using spoon”), the objects comprising 
the majority of the gaze object percentage pie chart (Figure 5D) 
were grasped and manipulated (spoon) or were directly affected 
by an action being performed by a manipulated object (pitcher 
and mug). While the table was not manipulated, it was often 
affected by action units that required the picking up or setting 
down of an object, as for the pitcher lid, spoon, and pitcher in 
Subtasks 1, 2, and 6 (Figures 5A,B,F), respectively. The gaze fixa-
tion percentage for the table was dwarfed by the importance of 
other objects in Subtasks 4 and 5 (Figures 5D,E).
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FigUre 11 | Three-dimensional gaze saliency maps of the task-related 
objects [mug (a), spoon (B), pitcher (c), and pitcher lid (D)] are shown for a 
subset of action units. The RGB color scale for all gaze saliency maps is 
shown in panel (a).
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In some cases, a gaze saliency map could be easily associated 
with a subtask. For instance, gaze saliency was uniquely, simul-
taneously intense on the spoon bowl and tip, inner wall of the 
mug, and inner wall of the pitcher for Subtask 4 (“transfer water 
from pitcher to mug using spoon”) (Figure 5D). In other cases, 
differences between gaze saliency maps were subtle. For example, 
the gaze saliency maps were quite similar for the inverse subtasks 
“remove pitcher lid” and “replace pitcher lid” (Figures  5A,E). 
In both cases, gaze saliency was focused near the handle of the 
pitcher lid and the upper rim of the pitcher. However, gaze fixa-
tion was slightly more intense near the pitcher spout for Subtask 
5 (“replace pitcher lid”) because subjects spent time to carefully 
align the slots in the pitcher lid with the spout for the “pour liquid 
into mug” Subtask 6 that was to immediately follow.

Likewise, the gaze saliency maps for Subtask 2 (“move spoon 
into pitcher”) and Subtask 3 (“stir inside pitcher”) were distin-
guished only by the subtle difference in gaze fixation distribution 
on the spoon (Figures  5B,C). The diffuse and homogeneous 
distribution across the entirety of the spoon for Subtask 2 was 
contrasted by a focused intensity on the bowl of the spoon for 
stirring. This was because the “reach for,” “pick up,” and “move” 
action units performed with the spoon were summed over time 
to produce the gaze saliency map at the subtask level. Given that 
the details of each action unit’s unique contribution to the sali-
ency map becomes blurred by temporal summation, it is worth 
considering gaze saliency maps at a finer temporal resolution, at 
the action unit level. Due to the short duration of action units 
(approximately 1 s long), the gaze saliency maps at the action unit 
level only involve one object at a time. A few representative gaze 
saliency maps for different action units are shown in Figure 11. 
The RGB color intensity maps were summed across subjects and 
then normalized to the [0, 1] range, with 0 as black and 1 as red, 
according to the duration of the action unit.

Some gaze saliency maps could also be easily associated 
with specific action units. For instance, gaze saliency intensity 
was greatest at the top of the pitcher for the action unit “reach 
for pitcher,” but greatest at the bottom for “set down pitcher” 
(Figure 11C). By contrast, the gaze saliency maps for the pitcher 
lid were similar for action units “pick up pitcher lid” and “insert 
pitcher lid into pitcher.” Subtle differences were observed, 
such as more focused gaze intensity near the slots in the lid, in 
preparation for the “pour liquid into mug” Subtask 6 that was 
to immediately follow. Gaze saliency maps for different action 
units were also similar for the mug (Figure 11A), possibly due to 
its aspect ratio. Not only is the mug a relatively small object but 
also its aspect ratio from the subject’s viewpoint is nearly one. 
During both “reach for mug” and “set down mug,” gaze fixation 
was spread around the mug’s centroid. This was surprising, as we 
had expected increased intensity near the mug’s handle or base 
for the “reach” and “set down” action units, respectively, based 
on the findings of Belardinelli et al. (2015). There are a couple of 
possible explanations for this. First, the Belardinelli et al. study 
was conducted with a 2D computer display and subjects were 
instructed to mimic manipulative actions. In this work, subjects 
physically interacted with and manipulated 3D objects. It is also 
possible that subjects grasped the mug with varying levels of pre-
cision based on task requirements (or lack thereof). For instance, 

a mug can be held by grasping its handle or its cylindrical body. 
Had the task involved a hot liquid, for example, perhaps subjects 
would have grasped and fixated their gaze on the handle of the 
mug for a longer period.

Although 3D gaze saliency maps are not necessarily unique 
for all subtasks and action units, it is likely that a combination 
of the gaze saliency maps for a subtask and its constituent action 
units could provide additional temporal information that would 
enable recognition of a subtask. While beyond the scope of this 
work, we propose that a sequence of gaze saliency maps over time 
could be used for action recognition. The time series approaches 
presented for the analysis of gaze object sequences could similarly 
be applied to gaze saliency map sequences.

Practical Considerations and Limitations of Gaze 
Saliency Maps
If the dynamic tracking of 3D gaze saliency maps is to be practi-
cally implemented, one must address the high computational 
expense associated with tracking, accessing, and analyzing 
dense 3D point clouds. In this work, the 3D point clouds for the 
spoon and pitcher were comprised of approximately 3,000 and 
20,000 points, respectively. At least two practical modifications 
could be made to the gaze saliency map representation. First, 
parametric geometric shapes could be substituted for highly 
detailed point clouds of rigid objects, especially if fine spatial 
resolution is not critical for action recognition. The use of a 
geometric shapes could also enable one to analytically solve for 
the intersection point(s) between the object and gaze vector. 
Second, gaze fixation can be tracked for a select subset of regions 
or segments, such as those associated with “object affordances,” 
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which describe actions that can be taken with an object (Gibson, 
1977), or “grasp affordances,” which are defined as “object-
gripper relative configurations that lead to successful grasps” 
(Detry et al., 2009). Computational effort could then be focused 
on regions that are most likely to be task-relevant, such as the 
spout, rim, handle, and base of a pitcher. Additionally, techniques 
can be leveraged from computer-based 3D geometric modeling. 
For example, triangle meshes and implicit surfaces have been 
used for real-time rendering of animated characters (Leclercq 
et al., 2001). A similar approach could be used to simplify the 
3D point clouds. In addition to tracking the shape and move-
ment of an object, one could track the homogeneous properties 
(e.g., RGB color associated with gaze fixation duration) of patch 
elements of surfaces. The spatial resolution of each gaze saliency 
map could be tuned according to the task-relevant features of 
the object and reduced to the minimal needs for reliable action 
recognition.

One limitation of this work is that we cannot comment on 
the subject’s true focal point or whether subjects were actively 
processing visual information. A gaze vector may pass through 
multiple objects, or even through materials that are not rigid 
objects (e.g., a stream of flowing water). We calculated the 
intersection points between a gaze vector and objects in its path 
and then treated the closest intersection point to the user as a 
gaze fixation point. This approach may not work if some of the 
task-relevant objects are transparent and subjects look through 
one object to visually attend to a more distant object. In this 
work, objects sometimes passed through the path of a stationary 
gaze vector, but may not have been the focus of active visual 
attention. For example, the gaze saliency map for Subtask 3 
(“stir inside pitcher”) displayed regions of greater intensity on 
both the bowl of the spoon and the inner wall of the pitcher 
(Figure 5C). However, the egocentric camera attached to the eye 
tracker revealed that the gaze fixation point remained near the 
water level line in the pitcher. Since the spoon was moved cycli-
cally near the inner wall of the pitcher, in the same region as the 
surface of the water, the gaze fixation point alternated between 
the spoon and the pitcher. As a result, both the spoon and pitcher 
gaze saliency maps were affected. In one case, a subject’s gaze 
fixation point was calculated as being located on the outer wall 
of the pitcher during stirring. This interesting case highlights the 
fact that a direct line of sight (e.g., to the spoon, water, or inner 
pitcher surface) may not be necessary for subtask completion, 
and mental imagery (“seeing with the mind’s eye”) may be suf-
ficient (Pearson and Kosslyn, 2013).

Future work should address methods for enhancing the robust-
ness of action recognition algorithms to occlusions. For example, 
if a gaze object is briefly occluded by a moving object that passes 
through the subject’s otherwise fixed field of view, an algorithm 
could be designed to automatically disregard the object as noise 
to be filtered out. In addition, a more advanced eye tracker and/
or calibration process could be leveraged to estimate focal length. 
Focal length could be combined with 3D gaze vector direction to 
increase the accuracy of gaze object identification in cases, where 
the 3D gaze vector intersects multiple objects.

Human gaze behavior “in the wild” will differ to some (as yet 
unknown) extent as compared to the gaze behavior observed in 

our laboratory setting. Our use of black curtains and the provi-
sion of only task-relevant objects enabled the standardization of 
the experimental setup across subjects. However, this protocol 
also unrealistically minimized visual clutter, the presence of novel 
objects, and distractions to the subject. In a more natural setting, 
one’s gaze vector could intersect with task-irrelevant objects in 
the scene. This would result in the injection of noise into the gaze 
object sequence, for example, and could decrease the speed and/
or accuracy of action recognition. Probabilistic modeling of the 
noise could alleviate this challenge.

The gaze Object sequence can Be 
leveraged for action recognition to 
advance human–robot collaborations
During everyday activities, eye movements are primarily associ-
ated with task-relevant objects (Land and Hayhoe, 2001). Thus, 
identification of gaze objects can help to establish a context for 
specific actions. Fathi et  al. (2012) showed that knowledge of 
gaze location significantly improves action recognition. However, 
action recognition accuracy was limited by errors in the extraction 
of gaze objects from egocentric camera video data (e.g., failing to 
detect objects or detecting irrelevant objects in the background), 
and gaze objects were not treated explicitly as features for action 
recognition. Moreover, model development for gaze-based action 
recognition is challenging due to the stochastic nature of gaze 
behavior (Admoni and Srinivasa, 2016). Using objects tagged 
with fiducial markers and gaze data from 2D egocentric cameras, 
Admoni and Srinivasa presented a probabilistic model for the 
detection of a goal object based on object distance from the center 
of gaze fixation. In this work, we propose to leverage 3D gaze 
tracking information about the identity of gaze objects in concert 
with the temporal sequence in which gaze objects were visually 
regarded to improve the speed and accuracy of automated action 
recognition.

In the context of human-robot collaboration, the gaze object 
sequence could be used as an intuitive, non-verbal control signal 
by a human operator. Alternatively, the gaze object sequence 
could be provided passively to a robot assistant that continuously 
monitors the state of the human operator and intervenes when 
the human requires assistance. A robot that could infer human 
intent could enable more seamless physical interactions and col-
laborations with human operators. For example, a robot assistant 
in a space shuttle could hand an astronaut a tool during a repair 
mission, just as a surgical assistant might provide support during 
a complicated operation. Maeda et al. (2014) introduced a proba-
bilistic framework for collaboration between a semi-autonomous 
robot and human co-worker. For a box assembly task, the robot 
decided whether to hold a box or to hand over a screwdriver 
based on the movements of the human worker. As there were 
multiple objects involved in the task, the integration of the gaze 
object sequence into the probabilistic model could potentially 
improve action recognition accuracy and speed.

The practical demonstration of the usefulness of gaze object 
sequence is most likely to occur first in a relatively structured 
environment, such as that of a factory setting. Despite the unpre-
di ctability of human behavior, there are consistencies on a 
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manufacturing line that suggest the feasibility of the gaze object 
sequence approach. The number of parts and tools used during 
manual manufacturing operations are uniform in their size and 
shape and are also limited in number. Although the speed with 
which a task is completed may vary, the task itself is repetitive. 
Luo et al. (2017) have demonstrated human–robot collaboration 
for industrial manipulation tasks for which human reaching 
motions were predicted to enable robot collaboration without 
collision in a small-shared workspace. In that work, the robot 
had access to real-time information about the human collabora-
tor’s upper limb kinematics, such as palm and arm joint center 
positions. Focusing on the safety of human–robot collaboration, 
Morato et  al. (2014) developed a framework that uses a colli-
sion avoidance strategy to assist human workers performing an 
assembly task in close proximity with a robot arm. Numerous 
RGB-D cameras were used to track the location and configura-
tion of humans within the collaborative workspace. The common 
theme of such approaches is to track human kinematics and infer 
intent from kinematic data alone. The additional use of the gaze 
object sequence could infer human intent at an earlier stage and 
further advance safety and efficiency for similar types of human–
robot collaboration tasks.

The gaze object sequence could also be demonstrated in the 
familiar environment of someone’s home if a recognition system 
were properly trained on commonly used objects, where the 
objects are typically located (e.g., kitchen vs. bathroom), and 
how they are used. The performance of household robots will 
largely depend on their ability to recognize and localize objects, 
especially in complex scenes (Srinivasa et al., 2012). Recognition 
robustness and latency will be hampered by large quantities of 
objects, the degree of clutter, and the inclusion of novel objects 
in the scene. The gaze object sequence could be used to address 
challenges posed by the presence of numerous objects in the 
scene. While the combinatorial set of objects and actions could 
be large, characteristic gaze object sequences for frequently used 
subject-specific iADLs could be utilized to quickly prune the 
combinatorial set.

Up to now, we have focused primarily on the task-based aspects 
of gaze tracking for human–robot collaboration. However, gaze 
tracking could also provide much needed insight into intangible 
aspects such as human trust in robot collaborators (Jenkins and 
Jiang, 2010). Our proposed methods could be used to quantify 
differences in human gaze behavior with and without robot inter-
vention and could enhance studies on the effects of user familiar-
ity with the robot, human vs. non-human movements, perceived 
risk of robot failure, etc. Consider, for example, a robot arm that 
is being used to feed oneself (Argall, 2015). Such a complicated 
task requires the safe control of a robot near sensitive areas such 
as the face and mouth and may also be associated with a sense 
of urgency on the part of the user. A gaze object sequence could 
reveal high-frequency transitions between task-relevant objects 
and the robot arm itself, which could indicate a user’s impatience 
with the robot’s movements or possibly a lack of trust in the robot 
and concerns about safety. As the human–robot collaboration 
becomes more seamless and safe, the frequency with which the 
user visually checks the robot arm may decrease. Thus, action 
recognition algorithms may need to be tuned to inter-subject 

variability and adapted to intra-subject variability as the beliefs 
and capabilities of the human operator change over time.

Other potential applications of the gaze object sequence include  
training and skill assessment. For instance, Westerfield et  al. 
(2015) developed a framework that combines Augmented Reality 
with an Intelligent Tutoring System to train novices on computer 
motherboard assembly. Via a head-mounted display, trainees 
were provided real-time feedback on their performance based 
on the relative position and orientation of tools and parts during 
the assembly process. Such a system could be further enhanced 
by, for example, using an expert’s gaze object sequence to cue 
trainees via augmented reality and draw attention to critical 
steps in the assembly process or critical regions of interest dur-
ing an inspection process. Gaze object sequences could also be 
used to establish a continuum of expertise with which skill level 
can be quantified and certified. Harvey et  al. (2014) described 
the concepts of “quiet eye” and “slowing down” observed with 
surgeons performing thyroid lobectomy surgeries. Interestingly, 
expert surgeons fixated their gaze on the patient’s delicate laryn-
geal nerve for longer periods than novices when performing 
“effortful” surgical tasks that required increased attention and 
cognition. Gaze behavior has also been linked with sight reading 
expertise in pianists (Truitt et al., 1997). Gaze fixation duration 
on single-line melodies was shorter for more skilled sight-readers 
than less skilled sight-readers.

In short, the gaze object sequence generated from 3D gaze 
tracking data has been demonstrated as a potentially powerful 
feature for action recognition. By itself, the gaze object sequence 
captures high-level spatial and temporal gaze behavior informa-
tion. Moreover, additional features can be generated from the 
gaze object sequence. For instance, gaze object percentage can 
be extracted by counting instances of objects in the gaze object 
sequence. Gaze fixation duration and saccades from one object 
to another can be extracted from the gaze object sequence. Even 
saccades to different regions of the same object could potentially 
be identified if the resolution of the gaze object sequence were 
made finer through the use of segmented regions of interest for 
each object (e.g., spout, handle, top, and base of a pitcher).

Practical Considerations and Limitations of Gaze 
Object Sequences
In this work, we have presented a simple proof-of-concept 
methods for action recognition using a DTW Euclidean distance 
metric drawn from comparisons between novel and character-
istic gaze object sequences. In the current instantiation, novel 
and characteristic sequences were compared using the same 
elapsed time (percentage of the entire sequence) (Figure  8). 
This approach was convenient for a post hoc study of recognition 
accuracy as a function of time elapsed. However, in practice, the 
novel gaze object sequence will roll out in real-time and we will 
not know a  priori what percent of the subtask has elapsed. To 
address this, we propose the use of parallel threads that calculate 
the DTW Euclidean distance metric for comparisons of the novel 
sequence with different portions of each characteristic sequence. 
For instance, one thread runs a comparison with the first 10% 
of one characteristic gaze object sequence; another thread runs 
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a comparison for the first 20% of the same characteristic gaze 
object sequence, etc. Such an approach would also address sce-
narios in which an individual happens to be performing a subtask 
faster than the population, whose collective behavior is reflected 
in each characteristic gaze object sequence. For example, it can 
be seen that the novel gaze object sequence in Figure  8A has 
a similar pattern as the characteristic gaze object sequence in 
Figure 8B. However, the individual subject is initially perform-
ing the subtask at a faster rate than the population average. The 
(yellow, blue, black, red, etc.) pattern occurs within the first 
10% of the novel sequence, but does not occur until 30% of the 
characteristic sequence has elapsed. The delayed recognition of 
the subtask could be addressed using the multi-thread approach 
described above Figure 8. To further address the computational 
expense commonly associated with DTW algorithms, one could 
implement an “unbounded” version of DTW that improves the 
method for finding matching sequences, which occur arbitrarily 
within other sequences (Anguera et al., 2010).

For human-robot collaborations, the earlier that a robot can 
recognize the intent of the human, the more time the robot will 
have to plan and correct its actions for safety and efficacy. Thus, 
practical limitations associated with the computational expense 
of real-time gaze object sequence recognition must be addressed. 
At the least, comparisons of a novel sequence unfolding in 
real-time could be made with a library of characteristic subtask 
sequences using GPUs and parallel computational threads (one 
thread for each distinct comparison). The early recognition 
of a novel subtask is not just advantageous for robot planning 
and control. The computational expense of DTW increases for 
longer sequences. Thus, the sooner a novel sequence can be 
recognized, the less time is spent on calculating the proposed 
DTW Euclidean metric. Since DTW uses dynamic program-
ming to find the best warping paths, a quadratic computational 
complexity results. While not implemented in this work, the 
computational expense of the DTW process could be further 
reduced by leveraging a generalized time warping technique 
that temporally aligns multimodal sequences of human motion 
data while maintaining linear complexity (Zhou and De la 
Torre, 2012).

Potential Advancements for a Gaze Object 
Sequence-Based Action Recognition System
As expected, recognition accuracy increased as more of the novel 
gaze object sequence was compared with each characteristic gaze 
object sequence (Figure  9). However, the simple recognition 
approach presented here is not perfect. Even when an entire 
novel gaze object sequence is compared with each characteristic 
gaze object sequence, the approach only achieves an accuracy 
of 96.4%, precision of 89.5%, and recall of 89.2% averaged 
across the six subtasks. The confusion matrix (Figure 10) shows 
which subtasks were confused with one another even after 100% 
elapsed time. Although the percentage of incorrect subtask 
label predictions is low, the subtasks that share the same gaze 
objects have been confused the most. For instance, the Subtask 1 
(“remove pitcher lid”) and Subtask 5 (“replace pitcher lid”) were 
occasionally confused with one another. It is hypothesized that 
the training of a sophisticated machine learning classifier could 

improve the overall accuracy of the recognition results, especially 
if additional features were provided to the classifier. Potential 
additional features include quantities extracted from upper limb 
kinematics and other eye tracker data, such as 3D gaze saliency 
maps.

As with the processing of any sensor data, there are trade-
offs with speed and accuracy in both the spatial and temporal 
domains. In its current instantiation, the gaze object sequence 
contains rich temporal information, but at the loss of spatial 
resolution; entire objects are considered rather than particular 
regions of objects. By contrast, the 3D gaze saliency map and 
gaze object percentage contain rich spatial information, but at 
the loss of temporal resolution due to the convolution of eye 
tracker data over a lengthy period of time. For practical pur-
poses, we are not suggesting that spatial and temporal resolution 
should be maximized. In practice, an action recognition system 
need not be computationally burdened with the processing of 
individual points in a 3D point cloud or unnecessarily high 
sampling frequencies. However, one could increase spatial 
resolution by segmenting objects into affordance-based regions 
(Montesano and Lopes, 2009), or increase temporal resolution 
by considering the temporal dynamics of action units rather 
than subtasks.

While object recognition from 2D egocentric cameras is an 
important problem, solving this problem was not the focus of 
the present study. As such, we bypassed challenges of 2D image 
analysis such as scene segmentation and object recognition, and 
used a marker-based motion capture system to track each known 
object in 3D. Data collection was performed in a laboratory set-
ting with expensive eye tracker and motion capture equipment. 
Nonetheless, the core concepts presented in this work could be 
applied in non-laboratory settings using low-cost equipment 
such as consumer-grade eye trackers, Kinect RGB-D cameras, 
and fiducial markers (e.g., AprilTags and RFID tags).

cOnclUsiOn

The long-term objective of the work is to advance human-robot 
collaboration by (i) facilitating the intuitive, gaze-based control 
of robots and (ii) enabling robots to recognize human actions, 
infer human intent, and plan actions that support human goals. 
To this end, the objective of this study was to identify useful 
features that can be extracted from 3D gaze behavior and used 
as inputs to machine learning algorithms for human action 
recognition. We investigated human gaze behavior and gaze-
object interactions in 3D during the performance of a bimanual, 
iADL: the preparation of a powdered drink. Gaze fixation 
duration was statistically significantly larger for some action 
verbs, suggesting that some actions such as pouring and stirring 
may require increased visual attention for task completion. 3D 
gaze saliency maps, generated with high spatial resolution for 
six subtasks, appeared to encode action-relevant information 
at the subtask and action unit levels. Dynamic time warping 
barycentric averaging was used to create a population-based 
set of characteristic gaze object sequences that accounted for 
intra- and inter-subject variability. The gaze object sequence 
was then used to demonstrate the feasibility of a simple action 
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recognition algorithm that utilized a DTW Euclidean distance 
metric. Action recognition results (96.4% accuracy, 89.5% pre-
cision, and 89.2% recall averaged over the six subtasks), suggest 
that the gaze object sequence is a promising feature for action 
recognition whose impact could be enhanced through the use 
of sophisticated machine learning classifiers and algorithmic 
improvements for real-time implementation. Future work 
includes the development of a comprehensive action recogni-
tion algorithm that simultaneously leverages features from 3D 
gaze–object interactions, upper limb kinematics, and hand–
object spatial relationships. Robots capable of robust, real-time 
recognition of human actions during manipulation tasks could 
be used to improve quality of life in the home as well as quality 
of work in industrial environments.
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