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Abstract

Without vaccines and treatments, societies must rely on non-pharmaceutical intervention

strategies to control the spread of emerging diseases such as COVID-19. Though complete

lockdown is epidemiologically effective, because it eliminates infectious contacts, it comes

with significant costs. Several recent studies have suggested that a plausible compromise

strategy for minimizing epidemic risk is periodic closure, in which populations oscillate

between wide-spread social restrictions and relaxation. However, no underlying theory has

been proposed to predict and explain optimal closure periods as a function of epidemiologi-

cal and social parameters. In this work we develop such an analytical theory for SEIR-like

model diseases, showing how characteristic closure periods emerge that minimize the total

outbreak, and increase predictably with the reproductive number and incubation periods of

a disease– as long as both are within predictable limits. Using our approach we demonstrate

a sweet-spot effect in which optimal periodic closure is maximally effective for diseases with

similar incubation and recovery periods. Our results compare well to numerical simulations,

including in COVID-19 models where infectivity and recovery show significant variation.

1 Introduction

The COVID19 pandemic, caused by the novel RNA virus SARS-CoV-2 [1], has resulted in

devastating health, economic, and social consequences. In the absence of vaccines and treat-

ments, non-pharmaceutical intervention (NPI) strategies have been adopted to varying

degrees around the world. Given the nature of the virus transmission, NPI measures have

effectively reduced human contacts– both slowing the pandemic, and minimizing the risk of

local outbreaks [2, 3]. The use of drastic NPI strategies in China reportedly reduced the basic

reproductive number, R0, to a value smaller than 1, strongly curbing the epidemic within a

short period of time [3, 4]. On the other hand widespread testing protocols and contact trac-

ing, in e.g., South Korea, significantly controlled spread during the initial phase of the pan-

demic [5]. In other countries, the implementation of NPI policies has not been as strict [2],

with an optimistic reduction in transmission of roughly a half. To complicate the containment

of the disease, early reports indicated significant amounts of pre-symptomatic and asymptom-

atic transmission [6, 7]. For instance, recent estimates point to asymptomatic infection
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accounting for around 20–30% of the total, with a similar percentage for pre-symptomatic

infections [8]– together producing a majority. These findings have been supported by other

experimental studies [9] and analysis of the existing data [10, 11].

As NPI controls such as quarantine, social distancing and testing are enforced, it is impor-

tant to understand the impact of early release and relaxation of controls on the affected popula-

tions [12, 13]. Recent studies have attempted to address how societies can vary social contacts

optimally in time in order to maintain economic activity while controlling epidemics [14]. For

instance, preliminary numerical studies suggest that periodic closure to control outbreak risk,

where a population oscillates between 30-50 days of strict lockdown followed by 30-50 days

of relaxed social restrictions, may efficiently contain the spread of COVID-19 and minimize

economic damage [15]. These studies test interesting hypotheses, but cannot be immediately

generalized to new emerging diseases. A basic understanding of why and when such risk mini-

mizing strategies are effective remains unclear, and may benefit from a general analytical

approach.

As a first step in this direction we analyze SEIR-like models with tunable periodic contact

rates. Our methods reveal the existence of a characteristic optimal period of contact-breaking

between individuals that minimizes the risk of observing a large outbreak, and predicts exactly

how such an optimal period depends on epidemic and social parameters. In particular, we

show that the optimal period for closure increases (or decreases) predictably with R0 and the

incubation period of a disease, and exists as long as R0 is below a predictable threshold, and

when there is not a time-scale separation between incubation and recovery. We demonstrate

analytically that periodic closure is maximally effective for containing disease outbreaks when

the typical incubation and recovery periods for a disease are similar—in such cases suppressing

large outbreaks with R0’s as large as 4. Our results compare well to numerical simulations and

are robust to the inclusion of heterogeneous infection and recovery rates, which are known to

be important for modeling COVID-19 dynamics.

To begin, we first consider the canonical SEIR model with a time-dependent infectious con-

tact rate parameter, β(t). Individuals in this model are in one of four possible states: suscepti-

ble, exposed, infectious, and recovered. Following the simplest mass-action formulation of the

disease dynamics, and assuming negligible background births and deaths, the fraction of sus-

ceptible (s), exposed (e), infectious (i), and recovered (r) individuals in a population satisfy the

following differential equations in time (t), where dots denote time derivatives:

_s ¼ � bðtÞsi; ð1Þ

_e ¼ bðtÞsi � ae; ð2Þ

_i ¼ ae � gi; ð3Þ

_r ¼ gi: ð4Þ

Such equations are valid in in the limit of large, well-mixed populations and constitute a

baseline description for the spreading of many diseases [16, 17]. Note that α is the rate at

which exposed individuals become infectious, while γ is the rate at which infected individuals

recover. If β(t) = β0 = constant, it is straightforward to show that the basic reproductive num-

ber for the SEIR model, R0, which measures the average number of new infections generated

by a single infectious individual in a fully susceptible population, is R0 = β0/γ [17–19]. Note in

this work when R0 is written as a constant (no time dependence) it should be taken to mean
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this value. Typical values for the R0 of COVID-19 range from 1–4, depending on local popula-

tion contact rates [4, 20].

2 Methods

As a simple model for periodic closure we assume a step function for β(t) with infectious con-

tacts occurring for a period of T days with rate β0, followed by no contacts for the same period,

β(t) = β0 �mod(floor{[t + T]/T}, 2) [21]. A schematic of β(t) is plotted in the inlet panel of Fig

1(a). In S1 Appendix we show results for smoothly varying β(t) and asymmetric closure, where

lockdown and open contacts occur for different amounts of time. It is demonstrated that the

results presented in the main text do not qualitatively change under these generalizations. Also

in Fig 1(a), we plot an example time-series of the infectious fraction, normalized by the initial

fraction of non-susceptibles, for three different closure periods: green (short), blue (intermedi-

ate), and red (long). For periods that are not too long or short, the disease remains in a linear

spreading regime (as we will show below), and therefore normalizing by the initial conditions

gives time series that are initial-condition independent.

Intuitively, since the incubation period, α−1, is finite, it takes time to build-up infection

from small initial values. As a consequence, we expect that it may be possible to allow some

disease exposure, before cutting contacts, and the result may be a net reduction in infection at

the end of a closure period. For instance, notice that all i(t) decrease over a full closure cycle,

2T, in Fig 1(a). If the closure period is too small, infection can still grow (e.g., as T! 0, R0(t)�
hR0(t)it = R0/2 which could be above the epidemic threshold), while if the period is too long, a

large outbreak will occur before the control is applied. Between these two limits, there should

be an optimal T (Tmin), that results in a minimum outbreak. To illustrate, in Fig 1(b) we show

an example of the final outbreak-size, r(t!1)� rf starting from i(t = 0) = 10−3, as a function

of the closure period for different, equally spaced values of R0: the bottom curves correspond

to smaller values of R0, while the top curves correspond to larger values.

As expected from the above intuitive argument, simulations show an optimal period that

minimizes rf. A natural question is, how does Tmin depend on model parameters? Our

Fig 1. Periodic closure examples. (a) fraction infectious, normalized by initial conditions, versus time for T = 10 � days (green), T = 25 � days (blue),

T = 40 � days (red) closure periods. The inlet panel shows a schematic of β(t). Other model parameters are: γ−1 = 10 � days, α−1 = 8.33 � days, and

b
� 1

0
¼ 5 � days. (b) Outbreak size versus the closure period. Curves correspond to different R0 = β0/γ, starting from the bottom: first (R0 = 1.5), second

(R0 = 1.7), . . ., top (R0 = 3.3). Other model parameters are identical to (a).

https://doi.org/10.1371/journal.pone.0244706.g001
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approach in the following is to develop theory for Tmin in the SEIR-model, and then show how

such a theory can be easily adapted to predict Tmin in more complete models, e.g., in COVID-

19 models that include heterogeneous infectivity and asymptomatic spread [11, 20].

3 Results

3.1 Optimal control

It is possible to estimate Tmin by calculating its value in the linearized SEIR model, applicable

when the fraction of non-susceptibles is relatively small. When e(t), i(t), r(t), 1 − s(t)� 1, the

dynamics of Eqs (1)–(4) are effectively driven by a 2-dimensional system:

dΨ
dt

¼ gMðtÞ �Ψ; ð5Þ

MðtÞ ¼
� a R0ðtÞ

a � 1

" #

; ð6Þ

where a� α/γ, R0(t)� β(t)/γ, and C(t)> = [e(t), i(t)].
The first step in calculating Tmin is to construct eigen-solutions of Eqs (5) and (6) in the

form

Ψp
ð2TÞ ¼ nðTÞ �Ψp

ð0Þ; ð7Þ

where ν(T) is the largest such eigenvalue; the superscript p denotes the corresponding principal

eigenvector. Ignoring the subdominant eigenvalues assumes that after a sufficiently large num-

ber of iterations of periodic closure, the dynamics is well aligned with the principle solution no

matter what the initial conditions. Unless stated otherwise, simulations are started in this state

so that initial-condition effects are minimized. The second step is to calculate the integrated

incidence, r(2T) from the solution of Eq (7), by integrating i(t) over a full cycle

rð2TÞ ¼
Z 2T

0

½Ψp
ðtÞ�

2
� gdt; ð8Þ

where [Cp(t)]2 denotes the infectious-component of Cp(t). The third step is to calculate the

final outbreak size from r(2T). To this end, it is important to realize that as long as ν(T)< 1,

the outbreak will decrease geometrically after successive closure cycles, and therefore rf(T) =

r(2T) + ν(T)r(2T) + ν(T)2 r(2T) + . . ., or

rf ðTÞ ¼ rð2TÞ=½1 � nðTÞ�: ð9Þ

Finally, we can find the local minimum of rf(T) when ν(T) < 1 by solving

drf
dT

�
�
�
�
Tmin

¼ 0: ð10Þ

This algorithm gives a single fixed-point equation that determines Tmin.

Since our analysis is based on a piecewise 2-dimensional linear system, it is possible to give

every quantity in the previous paragraph an exact expression [22] in terms of epidemiological

and social parameters. See S1 Appendix for full derivation and exact expressions for Eqs (7)–

(10). Following our procedure gives the prediction curves shown in Fig 2(a). The solid red line

indicates the solution to Eq (10), and agrees well with simulation-determined minima of rf(T)

over a range of R0 given initial fractions of infectious 10−6 (circles), 10−4 (squares), and 10−2
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(diamonds). The simulation-determined minima are computed from rf(T) curves like Fig 1(b).

It is important to note that our optimal-control theory assumes the validity of the linearized

SEIR model, applicable when the total outbreak size, rf� 1. In general, the total outbreak size

will increase with the initial fraction of infectious and R0, and hence, the larger both are, the

more simulations will disagree with theory. For example, this explains the better agreement for

initial fractions of infectious 10−6, as compared to 10−2 in Fig 2(b).

On the other hand, the solid blue line in Fig 2(a) indicates the threshold closure period, sat-

isfying

nðTthreshÞ ¼ 1: ð11Þ

The closure period Tthresh results in the largest eigenvalue of Eqs (5) and (6) equalling unity

such that the principal component of exposed and infectious fractions is unchanged after a full

closure cycle. If T< Tthresh, ν(T)> 1 and a large outbreak occurs, even with closure, as infec-

tion grows over a full cycle for any small non-zero C(0). Given this property, Tthresh gives a

lower bound for the optimal period, Tmin > Tthresh. Note: the red curve is always above the

blue curve in Fig 2(a).

Before analyzing Eqs (5)–(10) further, we point out two basic dependencies in the (normal-

ized) optimal period Tmin � γ. The first is intuitive: as the reproductive number R0 increases, so

does Tmin � γ. Hence, the faster a disease spreads the longer a population’s closure-cycle must

be in order to contain it. The second is more interesting. Notice in Fig 2(c) that Tmin � γ!1
as a! 0, and Tmin � γ! 0 as a!1. Therefore, recalling a = α/γ, if a disease has a long incu-

bation period, then the optimal closure cycle is similarly long. On the other hand, if a disease

has a short incubation period, then the optimal closure cycle is short. In order for periodic clo-

sure to be a practical strategy, with a finite Tmin, our results indicate that a � Oð1Þ, roughly

speaking, or that the recovery and incubation periods should be on the same time scale– a con-

dition that generally applies to acute infections [19].

Another observation from our approach that we can make is that periodic closure is not an

effective strategy for arbitrarily large R0, as one might expect. One way to see this from the

analysis is to notice that the optimal period diverges for the linear system at some Rmax
0

, as Tthresh

! Tmin!1 (at fixed a). This transition can be seen in Fig 2(a), as the blue and red curves

collide. Above the transition R0 > Rmax
0

, no periodic closure can keep a disease from growing

over a cycle. In this sense Rmax
0
ðaÞ gives an upper bound on contact rates between individuals

Fig 2. Optimal periodic closure. (a) Period versus R0 = β0/γ. The solid-red and dashed lines are theoretical predictions (exact and approximate,

respectively), and the points are simulation-determined minima for initial fractions infectious: 10−6 (circles), 10−4 (squares), and 10−2 (diamonds). The

blue and dotted curves are predictions for the threshold closure period (exact and approximate, respectively). Other model parameters are: γ−1 = 10 �

days and α−1 = 8.33 � days. (b) A refocused version of (a) for smaller values of R0. (c) Period versus a = α/γ. The color scheme and parameters are

identical to (a), except β−1 = 5.55 � days.

https://doi.org/10.1371/journal.pone.0244706.g002
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that can be suppressed by periodic-closure as a control strategy. We note that an optimal Tmin

still exists even when our linear approximation no longer applies, e.g., R0 > Rmax
0

(in the sense

that r(t!1) is minimized by some Tmin), but the benefit of control becomes smaller and

smaller as R0 is increased, and the optimal period becomes increasingly dependent on initial

conditions. In such cases, one must resort to numerical simulations of the full non-linear sys-

tem, Eqs (1)–(4).

A sharper analytical understanding can be found by making the additional approximation

thatC(t)� exp[λ11 γt]v11, for t< T and β(t) = β0, where

l11 ¼
� a � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ 1Þ
2
þ 4aðR0 � 1Þ

q

2
:

ð12Þ

Eq (12) is the largest eigenvalue of M(t<T) with eigenvector v11. Hence, we ignore the

time-decaying part,C(t)dec� exp[−(a + 1 + λ11)γt]v12, of a general solution where v12 is the

other eigenvector of M(t<T). Our assumption becomes increasingly accurate with increasing

T, and Eqs (7)–(11) simplify significantly:

nðTÞ � eTgl11 ½ fe� Tg þ ð1 � f Þe� Tag �; ð13Þ

rð2TÞ
�r
�

eTgl11 � 1

l11

þ

eTgl11

1 � a
ðl11 þ 1Þð1 � e� TgaÞ

a
� ðaþ l11Þð1 � e� gTÞ

� �

;

ð14Þ

where

f ¼
ðl11 þ aÞ2

ða � 1Þð2l11 þ aþ 1Þ
; ð15Þ

and �r is a constant that depends on β0, α, γ and initial conditions, but is independent of T.

Substituting Eqs (13)–(15) into Eqs (10) and (11) gives a single fixed-point equation for the

approximate Tmin and Tthresh each, which can be easily solved. See S1 Appendix for further

details. Examples of the approximate solutions are plotted with dotted and dashed lines in Fig

2, and are almost indistinguishable from the complete linear-theory predictions shown with

solid lines.

Using the simplified expressions, we can now show several interesting features of periodic

closure. First, since Eqs (13) and (14) are exact for large T, we can determine Rmax
0

as a function

of a. As T!1, Eq (13) has two scaling limits depending on whether a� 1 or a< 1. In the

former, the second term on the RHS of Eq (13) becomes negligible. As T!1 the solution of

ν = 1 is λ11! 1. Solving for R0 in λ11 = 1 gives Rmax
0

. Similarly when a< 1, as T!1 the solu-

tion of ν = 1 is λ11! a. Putting the two cases together, gives Rmax
0
ðaÞ, and the phase-diagram

for optimal-periodic closure:

Rmax
0
¼

(
1þ ðaþ 2Þ=a if a � 1;

2ðaþ 1Þ if a < 1:
ð16Þ

Eq (16) is plotted in Fig 3. In region I, the optimal period is predicted to be finite, in which

case small outbreaks can be contained by optimal closure. In region II, such outbreaks can not

be contained. The blue squares plot numerically-determined thresholds for the piecewise lin-

ear system Eqs (5)–(7) in the long closure-time limit. We compute each point by: picking a
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fixed value of a (starting with R0 = 2), solving for Tthresh according to Eqs (5)–(7) and (11), and

then repeatedly incrementing R0 in small steps of 0.001 and solving for Tthresh(R0; a) until it is

a large number, i.e., Tthresh(R0, a) � = 500. Note that as long as the system Eqs (1)–(4) is below

threshold, we can always start with initial fractions of infectious and exposed that are small

enough for the linear system to apply.

There are several important cases to notice in Fig 3. The first is that Rmax
0

has a peak when

a = 1 (α = γ). The implication is that periodic closure has the largest range of effectiveness, as

measured by the ability to keep infection from growing over any closure-cycle, for diseases

with equal exposure and recovery times. In this symmetric case, periodic closure can prevent

large outbreaks as long as R0 < 4 (compare this to the usual epidemic threshold without clo-

sure, R0 = 1). On the other hand, when there is a time-scale separation between incubation and

recovery, a!1 or a! 0, the phase-diagram nicely reproduces the intuitive, time-averaged

effective epidemic threshold hR0(t)it = 1, or Rmax
0
¼ 2.

3.2 COVID-19 model

Now we turn our attention to more complete models that derive from the basic SEIR-model

assumptions, but have more disease classes and free parameters which are necessary for

Fig 3. The largest reproductive number R0 for which periodic closure can keep an SEIR-model disease under threshold. The two regimes are a = α/

γ� 1 (solid line) and a< 1 (dashed line). Blue squares represent the numerically-determined threshold for the piecewise linear system Eqs (5)–(7) in

the long closure-time limit. In region I, outbreaks are contained by optimal closure. In region II, they are not.

https://doi.org/10.1371/journal.pone.0244706.g003
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accurate predictions. In particular, epidemiological predictions for COVID-19 seem to require

an asymptomatic disease state, i.e., a group of people capable of spreading the disease without

documented symptoms. Such asymptomatic transmission is thought to be a significant driver

for the worldwide distribution of the disease [23, 24], since symptomatic individuals can be

easily identified for quarantining while asymptomatics cannot (without widespread testing).

Many models have been proposed to incorporate the broad spectrum of COVID-19 symp-

toms, as well as control strategies such as testing-plus-quarantining [11, 20]. A common fea-

ture of such models is the assumption that exposed individuals enter into one of several

possible infectious states according to a prescribed probability distribution (e.g., asymptom-

atic, mild, severe, tested-and-infectious, etc.) with their own characteristic infection rates and

recovery times. Following this general prescription, we define M infectious classes, im, where

m 2 {1, 2, . . .M}, each with its own infectious contact rate βm(t) and recovery γm rate, and

which appear from the exposed state with probabilities pm. The relevant heterogeneous SEIR-

model equations become

de
dt
¼

X

m

bmðtÞims � ae; ð17Þ

dim
dt
¼ apme � gmim: ð18Þ

Taking a common closure cycle for all individuals in the population, βm(t) = β0,m �mod

(floor{[t + T]/T}, 2) [21], we would like to test our method for predicting Tmin in the more gen-

eral model Eqs (17) and (18), and demonstrate robustness to heterogeneity. In terms of an

algorithm, we could simply repeat our approach for the effective 1 + M dimensional linear sys-

tem; though, we loose analytical tractability. On the other hand, because Tmin is well captured

by a linear theory, which depends only on R0, a, and γ, we might guess that quantitative accu-

racy can be maintained for higher dimensional models such as Eqs (17) and (18) by swapping

in suitable values for these parameters in our SEIR-model formulas above. This is analogous to

the epidemic-threshold condition (R0 = 1) being maintained in such models, as long as the cor-

rect value of R0 is assumed.

The R0 for Eqs (17) and (18) is easy to derive using standard methods [17, 18],

R0 ¼
X

m

pmb0;m=gm: ð19Þ

Note: the updated R0 is simply an average over the reproductive numbers for each infec-

tious class. Using this averaging pattern as a starting point, our approach is to substitute the

average values of α/γm and γm,

a ¼
X

m

pma=gm ð20Þ

g ¼
X

m

pmgm; ð21Þ

into Eqs (7)–(10), or Eqs (13)–(15) for approximate solutions. Namely, for the SEIR model we

have an equation 0 = F(R0, a, γ, Tmin), where F is a function that is determined from Eq (10).

Our averaging approximation entails solving the same Eq (10) for Tmin, but with parameters

given by Eqs (19)–(21).
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We point out that this approximation is not arbitrary since in the limit of heterogeneous

infectivity only, γm = γ8m, one solution of Eqs (17) and (18) is im(t) = pm i(t), where i(t) is the

total fraction of the population infectious. In this case, the linearized system is still effectively

2-dimensional with parameters γ, α/γ, and R0, where R0 is given by Eq (19). For this reason we

expect our averaging approximation to be exact in the limit of heterogeneous infectivity only,

and a good approximation when the variation in recovery rates is not too large.

Examples are shown in Fig 4, where each panel shows results for an M = 2 model in which

asymptomatics are significantly more (a) and less (b) infectious than symptomatics [11].

Symptomatic infectives are denoted with the subscript 1 and asymptomatics with the subscript

2. The optimal closure period is plotted versus the fraction of asymptomatics, p2. Within each

panel the different colors correspond to no variation in recovery rates (red), moderate varia-

tion (blue), and large variation (green). Simulation determined Tmin are shown with points

and predictions from the averaging theory shown with solid lines. The initial conditions for

simulations follow the SEIR model convention– parallel to the principal solution of Eq (7),

Cp(0)—except that the fraction in each infectious class is im(0) = pm[Cp]2. The model parame-

ters were chosen to match similar models [11, 20], which were fit to multiple COVID-19 data

sources. As expected, the agreement between theory and simulations ranges from excellent to

fair depending on the heterogeneity in recovery rates.

4 Discussion

Fig 4 demonstrates that the optimal closure period for COVID-19 can depend significantly on

the amount of asymptomatic spread, particularly if there is a large difference in infection rates

compared to symptomatic cases. Since asymptomatic spread is difficult to measure directly,

especially in the early stages of an emerging disease outbreak, it may be difficult to estimate the

optimal control accurately enough for periodic closure to be an actionable strategy on its own.

A possible solution is to deploy effective and widespread testing within a population, early,

and capture the fraction of asymptomatic infections. In any case, if basic parameters are

Fig 4. Optimal closure period for a heterogeneous SEIR model with symptomatic and asymptomatic infection as a function of the fraction of

asymptomatics. (a) Increased infectivity for asymptomatics, β1 = 2.1 � γ1 and β2 = 2.6 � γ2. The solid lines are theoretical predictions and the points are

simulation-determined minima for initial fractions of non-susceptibles 10−5. Each series has different recovery times: red (g� 1
1
¼ 10 � days,

g� 1
2
¼ 10 � days), blue (g� 1

1
¼ 12 � days, g� 1

2
¼ 8 � days), and green (g� 1

1
¼ 14 � days, g� 1

2
¼ 7 � days). The incubation period is α−1 = 7 � days. (b)

Decreased infectivity for asymptomatics. Model parameters are identical to (a) except β2 = 1.5 � γ2.

https://doi.org/10.1371/journal.pone.0244706.g004
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known for an emerging disease dynamics, periodic closure is very effective—producing large

reductions in the final outbreak size (e.g., Fig 1(b))– and can be predicted using our methods.

An additional component of population heterogeneity not treated in this work is age

dependence, which is known to be particularly important for modelling the COVID-19 pan-

demic. When considering expanded models that include age compartments, various mixing

mechanisms across age groups generate different reproductive rates of infection [25–27]. One

extreme compartmented grouping is to decompose a population into young, middle aged, and

seniors with age-dependent contact rates between groups, age-dependent recovery periods,

and some modest age-dependence in incubation periods. Under weak inter-age mixing

assumptions, the result is a system of equations similar to Eqs (17) and (18). As demonstrated

in Sec.3.2, the emergence of an optimal periodic control depends primarily on R0 and the

mean incubation period, and persists in spite of population heterogeneity. Although our con-

trols are based on mean epidemiological parameters, it is easy to see how such controls may be

distributed across age-dependent groups, and/or spatial clusters. Thus, we expect the inclusion

of age-dependent effects to quantitatively change the results presented, but leave our method-

ology and qualitative findings intact.

Finally, we should remark that in addition to the heterogeneity discussed, parameter fluctu-

ations for COVID-19 spread can occur in space and time. In fact, noise in reporting, differ-

ences in local policies, and adherence to the various forms of intervention may cause drastic

fluctuations in the local spreading parameters. Given these facts, the well-mixed nature of our

model may be insufficient to provide accurate optimal-control predictions. In such cases, a

meta-population or network framework may be more appropriate. Yet, the approach that we

lay out can be naturally generalized to more accurate and heterogeneous contact-network

models, particularly since SIR and SEIR model dynamics on random networks can be

described by relatively low-dimensional dynamical systems [28–31], which could be analyzed

using the methods described in Sec.2. For small levels of infection, the main contribution from

contact heterogeneity is to increase the effective, network R0. Once the correct R0 is assumed,

however, we expect the network results to be similar to those presented here, though this is a

subject for future study.

5 Conclusion

In conclusion, a main socio-economic issue with an emerging virus, in the absence of vaccines

and treatments, is the enormous damage at all levels of a population. Here we considered a

simple approach to model and control an emerging virus outbreak with a finite incubation

period. We show that by tuning periodic control of social contact rates, there exists an optimal

period that naturally minimizes the outbreak size of the disease, as long as the reproductive

number is below a predictable threshold and there is not a time-scale separation between incu-

bation and recovery. Our basic assumption for the existence of such an optimal control rests

on early detection of the disease, in which non-susceptible populations are small. Such a basic

assumption allows one to analytically predict the optimal period, and provide parameter

regions in which an optimal control exists. While in general it has been suggested that periodic

closure may help curb the spread of an infectious disease like COVID-19, the implementation

of such measures has been, to the best of our knowledge, mostly based on observations of

recovery periods and absence of new cases for a given period of time. In this paper, we provide

a general formulation that can be utilized to rationally design optimal intervention release pro-

tocols. While we start from an SEIR model and expand to heterogeneous models that capture

the basic dynamics of COVID-19, our theory can be generally applied to acute infections, with

the caveat that recovery and incubation periods should be roughly on the same time scale.
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