
RESEARCH Open Access

Exploiting physico-chemical properties in string
kernels
Nora C Toussaint1*, Christian Widmer2, Oliver Kohlbacher1, Gunnar Rätsch2

From Machine Learning in Computational Biology (MLCB) 2009
Whistler, Canada. 10-11 December 2009

Abstract

Background: String kernels are commonly used for the classification of biological sequences, nucleotide as well as
amino acid sequences. Although string kernels are already very powerful, when it comes to amino acids they have
a major short coming. They ignore an important piece of information when comparing amino acids: the physico-
chemical properties such as size, hydrophobicity, or charge. This information is very valuable, especially when
training data is less abundant. There have been only very few approaches so far that aim at combining these two
ideas.

Results: We propose new string kernels that combine the benefits of physico-chemical descriptors for amino acids
with the ones of string kernels. The benefits of the proposed kernels are assessed on two problems: MHC-peptide
binding classification using position specific kernels and protein classification based on the substring spectrum of
the sequences. Our experiments demonstrate that the incorporation of amino acid properties in string kernels
yields improved performances compared to standard string kernels and to previously proposed non-substring
kernels.

Conclusions: In summary, the proposed modifications, in particular the combination with the RBF substring kernel,
consistently yield improvements without affecting the computational complexity. The proposed kernels therefore
appear to be the kernels of choice for any protein sequence-based inference.

Availability: Data sets, code and additional information are available from http://www.fml.tuebingen.mpg.de/
raetsch/suppl/aask. Implementations of the developed kernels are available as part of the Shogun toolbox.

Background
String kernels are a powerful and popular tool for
machine learning in computational biology. They have
been successfully applied to numerous applications ran-
ging from protein remote homology detection [1-3], to
gene identification [4-6], to sub-cellular location predic-
tion [7,8] to drug design [9,10]. The different kernel for-
mulations commonly exploit the sequential structure of
the sequences and by doing so can effectively eliminate
implausible features, leading to improved results. When
using string kernels on protein sequences, one key dis-
advantage is that prior knowledge about the properties

of individual amino acids (AAs), e.g., their size, hydro-
phobicity, secondary structure preference, cannot be
easily incorporated. While these properties can be
learned implicitly by the machine learning methods if
the training data sets are large enough, it would be
advantageous to include this information in the
sequence representation. The goal of this work is to
combine the benefits of string kernels with the ones of
physico-chemical descriptors for AAs. The main idea is
to replace the comparison of substrings, which is com-
puted during kernel computation, with a term that takes
the AA properties into account. While this seems quite
simple at first sight, it is less so, when considering k-
mers instead of single AAs. The key insight is how to
compute the kernels such that the beneficial properties
of sequence kernels do not get lost. In particular, we
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would like that either the use of uninformative descrip-
tors (e.g., each AA corresponds to a unit vector) or the
choice of distinct kernel parameters reduces the new
kernel to the original string kernel.

String kernels for sequence classification
Kernels that have been proposed for classifying nucleic
and amino acids can be divided into two main classes:
(a) kernels describing the sequence content of sequences
of varying length and (b) kernels for identifying localized
signals within sequences of fixed length. The first class
is typically used for classifying whole protein or mRNA
sequences, while the second class is typically used to
recognize a specific site in a window of fixed length slid-
ing over a sequence.
Kernels describing l-mer content
The so-called spectrum kernel was first proposed for
classifying protein sequences [11]:
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where x[i:i+l] is the substring of length l of x at posi-
tion i.
Several algorithms based on string or sparse data

structures have been proposed to efficiently compute
the above kernel and additional variants (for instance,
with gaps, mismatches, mixed-order, etc.). The kernel in
(1) can alternatively be written as
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Here, we consider all pairs of substrings at any posi-
tion in each of the two input sequences. This formula-
tion has the benefit that it makes the comparison
between the substrings more explicit, which is needed in
the derivation of the extensions.

Kernels for localized signals
The spectrum kernel is less well-suited for identifying
localized signals in sequences, since the information
about the position of the substring in the input
sequences is ignored, i.e. lost, during kernel computa-
tion. Several kernels have been proposed to address this
issue. Most notably the weighted degree (WD) kernel
[12] and the oligo kernel [13]. Both kernels work on
sequences of fixed length L and count co-occurring sub-
strings in both sequences at the same or similar posi-
tion. We will use the WD kernel as representative for
localized signal kernels. It is defined as
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lengths. The WD kernel is quite related to the spectrum
kernel formulation in (4), where we consider only the l-
mers occurring at the same position, i.e., where i = j.
The oligo kernel is similar in spirit but it also compares
substrings at different positions.
Incorporation of knowledge on AA properties
In this work we propose modifications to existing string
kernels that supplement the kernels’ beneficial proper-
ties by incorporating prior knowledge on physico-chemi-
cal and other properties of AAs. Previous work on
incorporating prior knowledge has been either focused
on using physico-chemical properties for single AAs,
i.e., ignoring the sequential nature of the sequences (e.g.,
[14,15]), or took advantage of Blast or PSI-Blast profiles
for improving spectrum kernels [2,3,16]. We propose a
complementary approach of employing physico-chemical
or other information to refine the similarity between
two substrings used in most existing string kernels. We
illustrate the usefulness of these modifications for both
classes of string kernels on two problems: (a) the predic-
tion of MHC-binding peptides as an example for loca-
lized signals and (b) protein fold classification as an
example for l-mer content.

Methods
Idea
The string kernels described above (cf. (4),(5)) have in
common that they compare substrings of length l
between the two input sequences x and x′. The involved
term I( )x x= ′ can equivalently be written as:

I( ) ( ), ( ) ,x x x x= ′ = ′Φ Φl l

where x, x′ ∈ ∑l
and Φl

l

( )x ∈
∑

 .
Φl( )x can be indexed by a substring s Î Σl and is

defined as Φl s( )x −1 , if s = x and 0 otherwise. For the sake
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of the derivation, let us consider Φ1 0 1: { , }∑  , generating
a simple encoding of the letters into |Σ|-dimensional
unit vectors. It can be easily seen that we can rewrite
the substring comparison as

I( ) ( ), ( ) ,x x x x= ′ = ′
=

∏ Φ Φ1 1

1

l l

l

l

The main problem of using F1 as the basis of sub-
string comparisons, is that it ignores the relations
between the letters in the alphabet. While this is a negli-
gible problem for nucleotide sequences where each
nucleotide is unique, it is important to consider related-
ness between AAs. The main idea of this work is to
replace F1 with a feature map Ψ that takes relations
between the AAs into account. One way is to use phy-
sico-chemical descriptors of AAs, such as [17]. Alterna-
tively, one may use AA substitution matrices for
defining amino acid similarities, as e.g. done in [18].
The feature space is then not spanned by |Σ|l different
combinations of letters, but by Dl, where D is the num-
ber of properties used to describe the AA. This leads to
the following kernel on AA substrings:
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Using the feature representation corresponding to this
kernel, we can now recognize sequences of AAs that
have certain properties (e.g. first AA: hydrophobic, sec-
ond AA: large, third AA: positively charged, etc.): There
is a feature induced in the kernel corresponding to all
combinations of products of features involving exactly
one AA property per substring position. For instance,
when considering products of the form (x1,1 + x1,2 +…+
x1,n) · (x2,1 +x2,2 +…+ x2,n) · (x3,1 + x3,2 +…+ x3,n), then
we get n3 different monomials which each use exactly
one of the n features from the three different groups.
There are no monomials xi,jxi,k for any i = 1,…,3 and j,
k = 1,…,n.
If one wants to additionally allow the combination of

several properties from every position, then the follow-
ing two formulations are suitable: The first is based on
the polynomial kernel:

kl d l l

l

l d

, ( ) ( ), ( ) ,Ψ Ψ Ψx, x x x′ = ′
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
∑

1

(7)

and the second on the RBF kernel:
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Both kernels induce a considerably richer feature
space, which can be beneficial for accurate classification
of sequences.

AA substring kernel for localized string kernels
Replacing the substring comparison I( )x x= ′ with the
more general formulation in (6), (7), or (8) together
with an informed choice of features Ψ(a) for each letter
a Î Σ (i.e. for each AA), directly implies a generalized
form of the string kernels described above. For the WD
kernel we can write:
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kl
wd, Ψ

is a linear combination of kernels and therefore a
valid kernel [19]. Independent of the choice of AA sub-
string kernel, the modified WD kernel can be computed
efficiently, with a complexity comparable to that of the
original.
Of particular interest is the WD-RBF kernel, i.e. the

combination of the WD kernel and the RBF AA sub-
string kernel:
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For s ® 0 and an encoding Ψ with Ψ(a) = Ψ(b) if and
only if a = b, the WD-RBF kernel corresponds to the
WD kernel: the RBF AA substring kernel will be one
only if the substrings are identical, otherwise it will be
zero.
Relation to non-substring-based kernels
When considering kernels for sequences of fixed length
L, one may alternatively consider a representation of the
sequence as vector of the physico-chemical properties of
all sequence elements/AAs, i.e. Ψ( ) ( ( ), , ( ))x x x=  1  L .
Then one may use a standard kernel to compute simila-
rities between the sequences, as, e.g., done in [20].
When using the polynomial kernel as basis, this would
lead to the following kernel:
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For the RBF kernel we get analogously,
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Please note that here we use the full sequence and do
not separately consider subsequences. Both kernels con-
sider higher order correlations between properties of the
sequence at arbitrary position in the sequence. Hence,
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the sequential nature of the sequences is not fully taken
into account (particularly important for long sequences).

AA substring kernel for l-mer content string kernels
The AA substring kernels (6), (7), (8) can be combined
with the spectrum kernel (1), (4) analogously to the
combination with the WD kernel. For instance in com-
bination with the RBF substring kernel, we arrive at:
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As before, for s ® 0, the above formulation is identi-
cal to the original spectrum kernel. A drawback of this
approach is, however, that one now has to compute the
substring comparisons for every pair of occurring sub-
strings. Hence, the computational complexity, O(|x| ·
|x′|), is much higher than for the original spectrum ker-
nel and makes this kernel impractical.
In order to reduce complexity we turn to modifica-

tions of the spectrum kernel: the mismatch kernel [21]
and the profile kernel [2].
The mismatch kernel
While the spectrum kernel only considers pairs of iden-
tical l-mers, the mismatch kernel allows for some degree
of mismatching. Instead of counting occurences of l-
mers s in x it counts the occurences of l-mers that differ
from s by at most m mismatches. The mismatch kernel
is defined as
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with ∅s(x[i:i+l]) = 1 if x[i:i+l] belongs to the mismatch
neighbourhood N(l,m)(s), i.e. differs from s in at most m
positions. Otherwise, ∅s(x[i:i+l]) = 0. Thus, we can write
alternatively:
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Combination of an AA substring kernel with the (l,m)-
mismatch kernel limits comparisons to those l-mer pairs
with at most 2m mismatches as opposed to all l-mer
pairs for the spectrum kernel. Employing the mismatch
tree data structure from [21], the generalized mismatch
kernel can be calculated efficiently with a complexity of
O(|Σ|mlm (|x| + |x′|)). The (l, m)-mismatch tree is a tree

representation of the feature space: each leaf represents a
fixed l-mer feature s. In order to benefit from this feature
space-based data structure, it suggests itself to apply the
generalization to the feature map F(l,m)(x)s (16). Plugging
one of the AA substring kernels into (16) yields
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Rather than simply counting similar substrings this
feature representation accounts for the degree of simi-
larity: similar substrings contribute stronger than dis-
similar ones. This strategy is particularly beneficial,
when allowing many mismatches.
Once again, the combination with the RBF AA sub-

string kernel, namely the mismatch-RBF kernel, is of
particular interest. The corresponding feature map is
defined as
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For s ® ∞ it corresponds to the mismatch feature
map (16) since the RBF AA substring kernel will be one
for all substring pairs.
The profile kernel
Just like the spectrum and the mismatch kernel, the
profile kernel [2] was proposed for protein classification
and remote homology detection. The main difference
between the mismatch and profile kernel is the defini-
tion of the neighbourhood. For the profile kernel one
uses the positional mutation neighbourhood of x based
on blast or PSI-blast profiles p(xi, k) for each position i
of x and for each letter k Î Σ:
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where δ defines the “radius” of the mutation neighbour-
hood [2]. Then the feature map and kernel, respectively,
are defined as
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and
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In order to incorporate AA properties, we propose to
modify (20) analogously to the mismatch kernel:
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The second term determines whether the substring is
within the mutation neighbourhood and should be
counted and the first term determines the contribution
of the substring based on AA similarities. This kernel
can be computed as efficient as the original profile ker-
nel. Since the elements in the neighbourhood are
weighted based on AA property similarity, the kernel
may be able to take advantage of larger neighbourhoods.
The profile kernel is similar to the profile-based direct

kernels described in [16] and similar ideas to incorpo-
rate AA properties can be applied there as well. The
profile and mismatch kernel have, however, the advan-
tage that they allow for an efficient computation using
the data structures proposed in [2,22]. These data struc-
tures unfortunately are not applicable to the profile ker-
nel formulations in [16].

Experimental methods
Data
We evaluate the performance of the proposed kernels
on two problems: the kernels for localized signals on
MHC-peptide binding classification, and the kernels
describing l-mer content on protein classification. For
MHC-peptide binding experiments we utilized the IEDB
benchmark data set from Peters et al. [23]. It contains
quantitative binding data (IC50 values) of nonameric
peptides with respect to various MHC alleles. Peptides
with IC50 values greater than 500 were considered non-
binders, all others binders. Protein classification data
was taken from the supplementary material of [3]. This
commonly used data set comprises 7,329 protein
domains from 54 families. Corresponding profile infor-
mation was taken from [http://cbio.mskcc.org/leslielab/
software/string-kernels].
Physico-chemical descriptors
A wide range of physico-chemical descriptors of AAs
have been published. Many of them can be obtained
from the amino acid index database (AAIndex) [24].
Within this work we use three sets of descriptors: (1)
five descriptors derived from a principal component
analysis of 237 physico-chemical properties taken from
the AAIndex [17] (pca), (2) three descriptors represent-
ing hydrophobicity, size, and electronic properties
(zscale), and (3) 20 descriptors corresponding to the
respective entries of the Blosum50 substitution matrix
[25] (blosum50).
Evaluation of string kernels for localized signals
Performance analysis. Preliminary experiments on three
human MHC alleles (A*2301, B*5801, A*0201) were car-
ried out to analyze the performance of the different

kernels WD (5), RBF (12), poly (11), WD-RBF (10), WD-
poly (as WD-RBF, but with polynomial substring kernel)
combined with different encodings (pca, zscale, blo-
sum50). The alleles were chosen to comprise a small data
set (A*2301, 104 examples) as well as a medium (B*5801,
988 examples) and a large (A*0201, 3,089 examples) data
set from the IEDB benchmark [23]. Performances of the
WD kernel and the WD-RBF kernel with blosum50
encoding were subsequently analyzed on all 35 human
MHC alleles contained in the IEDB benchmark. We used
two times nested 5-fold cross-validation, i.e. two nested
cross-validation loops, to (1) perform model-selection
over the kernel and regularization parameters (inner
loop), (2) estimate the prediction performance (outer
loop) (see, e.g., page S30 of the supporting online mate-
rial of [26]). Performance is measured by averaging the
area under the ROC curve (auROC).
Learning curve analysis. The performance depen-

dence on the amount of training data was analyzed on
allele A*0201 in 100 runs of two times nested 5-fold
cross-validation to average over different data splits to
reduce random fluctuations of the performance values.
Performance is measured by averaging the area under
the ROC curve (auROC). In each run, thirty percent of
the available data was used for testing. From the
remaining data training sets of different sizes (20, 31,
50, 80, 128, 204, 324, 516, 822, 1,308) were selected
randomly.
Evaluation of string kernels describing l-mer content
Mismatch kernel. For the comparison of the mismatch
kernel and the mismatch-RBF kernel, protein classifica-
tion data and experimental setup were taken from the
supplementary material of [3]. The ROC50 score, i.e. the
area under the ROC curve computed up to the first 50
false positives, is used as performance measure.
Profile kernel. For the comparison of the profile ker-

nel and the profile-RBF kernel, protein classification
data and experimental setup were taken from the sup-
plementary material of [3]. Corresponding PSI-blast pro-
files were taken from [27]. The ROC50 score is used as
performance measure.
SVM computations
All SVM computations were performed using the
Matlab interface of the freely available large scale
machine learning toolbox Shogun [28]. All used kernels
are implemented as part of the toolbox.

Results and discussion
The main goal of this work is the methodological
improvement of existing string kernels by incorporation
of prior knowledge on AA properties. In order to ana-
lyze the benefits of the proposed modifications we con-
ducted performance comparisons between the original
and the modified string kernels.
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String kernels for localized signals
The prediction of MHC-binding peptides is one of the
major problems in computational immunology, highly
relevant for rational vaccine design. MHC-I molecules
bind small peptides derived from intracellular proteins
and present them on the cell surface for surveillance by
the immune system. Given a set of peptide sequences
one would like to predict whether they bind to a certain
MHC-I molecule. Since the majority of binders are of
length nine, the application of kernels for localized sig-
nals suggests itself. For a preliminary analysis we chose
three human MHC alleles from the IEDB benchmark
data set: A*2301 (104 peptides), B*5801 (988 peptides),
and A*0201 (3,089 peptides). The performance of var-
ious kernels utilizing sequential structure only (WD ker-
nel), AA properties only (RBF, poly), and a combination
of both (WD-RBF, WD-poly) was validated on these
alleles. We used three different encodings of AA proper-
ties. Cross-validation results are given in Table 1.Best
performance is achieved by a different kernel type for
each of the alleles: poly (pca) for A*2301, RBF (blo-
sum50) for B*5801 and WD-RBF (blosum50) for
A*0201. The latter performs second-best on A*2301 and
B*5801. As for the benefits of the modification of the
WD kernel, the WD-poly and WD-RBF kernels outper-
form the WD kernel in 17 out of 18 cases. From

Table 1 we can observe the trend that the kernels that
use AA properties benefit more for smaller datasets. To
validate this hypothesis, we performed a learning curve
analysis for WD and WD-RBF (blosum50) on A*0201,
the allele with the highest number of peptides in the
IEDB benchmark data set. Figure 1 shows the mean
auROCs with confidence intervals ( / ) n over 100
cross-validation runs. We can clearly observe that the
fewer examples are available for learning, the stronger is
the improvement of the WD-RBF kernel over the WD
kernel. Intuitively this makes sense, as the more data is
available, the easier it will be to infer the relation of the
AAs from the sequences in the training data alone.
The preliminary analysis showed the WD-RBF kernel

with blosum50 encoding to perform best. For a more
comprehensive comparison, performance of WD and
WD-RBF (blosum50) kernels were assessed on all 35
human MHC alleles from the IEDB benchmark. For 24
alleles WD-RBF outperforms WD (Fig. 2). This is signif-
icant with respect to the binomial distribution (p-Value
= 0.0083).
Finally, we compare our results with the ones obtained

using a multi-task learning (MTL) method for MHC
classification described in [9]. Here, the authors used
two kernels, one to define the similarity between exam-
ples and one to define the similarity between tasks.
They report an auROC of 90.3% using two string ker-
nels. When using the WD-RBF for computing the simi-
larity between the examples, we can slightly improve
upon their performance to 90.5% (data splits and model
selection as in [9]). Hence, the AA property-enhanced
kernels once more have a slight, but consistent advan-
tage over the base-line kernels. Besides the performance
improvement, the modified WD kernel allows, at least
theoretically, for the extraction of biological insights:
employing an analysis method analogous to [29] indivi-
dual patterns of AA properties that are relevant for the
classification can be extracted.

String kernels describing l-mer content
To show that also the modification of kernels for
describing l-mer content of sequences has desirable
properties, we chose the problem of protein remote
homology detection. Here, the task is to classify proteins
into folds, super-families or families based on their
sequence. This problem has been previously tackled in a
series of papers in [11,21,22] which suggested the spec-
trum kernel, followed by the mismatch kernel and
finally the profile kernel. The profile kernel already uses
AA similarities based on blast or PSI-blast profiles
which lead to significant improvements. Here, we would
like to illustrate that using the AA property-enhanced
versions of these kernels can still lead to an improve-
ment. We chose the family classification task for this

Table 1 Performances of kernels utilizing sequential
structure and/or AA properties on three MHC alleles

KERNEL A*2301 B*5801 A*0201

auROC (std) auROC (std) auROC (std)

WD 0.7307 (0.0900) 0.9314 (0.0279) 0.9485 (0.0076)

Poly (pca) 0.8363 (0.0808) 0.9428 (0.0336) 0.9354 (0.0111)

Poly (zscale) 0.7964 (0.0727) 0.8778 (0.0637) 0.9052 (0.0070)

Poly
(blosum50)

0.8220 (0.0442) 0.4948 (0.0560) 0.4729 (0.0246)

RBF (pca) 0.8277 (0.0904) 0.9396 (0.0303) 0.9345 (0.0114)

RBF (zscale) 0.7847 (0.0787) 0.9235 (0.0347) 0.9157 (0.0072)

RBF
(blosum50)

0.8204 (0.0864) 0.9509 (0.0317) 0.9520 (0.0072)

WD-Poly
(pca)

0.7879* (0.0858) 0.9406* (0.0319) 0.9495* (0.0084)

WD-Poly
(zscale)

0.7983* (0.0902) 0.9499* (0.0348) 0.9483 (0.0073)

WD-Poly
(blosum50)

0.8307* (0.1077) 0.9491* (0.0224) 0.9490* (0.0070)

WD-RBF
(pca)

0.8133* (0.0806) 0.9510* (0.0265) 0.9486* (0.0051)

WD-RBF
(zscale)

0.7782* (0.1222) 0.9487* (0.0434) 0.9500* (0.0074)

WD-RBF
(blosum50)

0.8312* (0.0993) 0.9571* (0.0265) 0.9503* (0.0067)

auROCs and standard deviation were determined in two times nested 5-fold
cross-validation. Best (bold) and second-best (underlined) performances per
MHC allele are highlighted. An asterisk marks performance improvement due
to the proposed modifications.
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analysis since it was considered in all mentioned pre-
vious studies.
Table 2 shows the average auROC50 score over the 54

families we obtained for the family classification pro-
blem. Furthermore, the number of times for which each
method outperforms its counterpart is displayed. We
compare the spectrum kernel [11] with the spectrum-
RBF kernel as in (13) with pca features, the mismatch
kernel [22] with the mismatch-RBF kernel as in (18); and
the profile kernel [21] with the profile-RBF kernel as in

(22). For all three cases we find that the AA property-
enhanced kernels improve the original kernels. For
spectrum and mismatch kernel these improvements are
significant with respect to the binomial distribution.
Most notably, the performance of the spectrum kernel
can be drastically improved from 15.1% to 42.1%. How-
ever, the more sophisticated the original kernel already
is, the smaller is the improvement that can be achieved
by using additional AA property information.
In summary, in our experiments we can observe that

the newly proposed kernels lead to consistently better
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Figure 1 Learning Curve Analysis on MHC allele A*0201. Shown are areas under the ROC curves averaged over 100 different test splits
(30%) and for increasing numbers of training examples (up to 70%). The training part was used for training and model selection using 5-fold
cross-validation.

Figure 2 Performance of WD and WD-RBF (blosum50) kernels
on human MHC alleles from the IEDB benchmark data set. The
pie chart displays the number of alleles for which the WD (green)
and the WD-RBF (red) performed best, respectively, and the number
of alleles for which they performed equally (blue).

Table 2 Comparison of kernels for l-mer content with
their AA-property enhanced counterparts

Method auROC50 #Wins

Spectrum (l = 5) 15.2% 7/54

Spectrum-RBF (l = 5, s = 1) 42.1% 45/54

Mismatch (l = 5, m = 1) 42.3% 13/54

Mismatch-RBF (l = 5,m = 1, s = 1) 43.6% 36/54

Profile (l = 5, τ = 7.5) 82.1% 3/54

Profile-RBF (l = 5,τ = 7.5, s = 100) 82.2% 10/54

Comparison of the three kernels proposed in [11,21,22], with their AA-
property enhanced counterparts for remote homology detection of 54 protein
families. auROC50 is the average auROC50 score and #Wins the number of
families for which each method outperforms its counterpart (Spectrum vs.
Spectrum-RBF, Mismatch vs. Mismatch-RBF, Profile vs. Profile-RBF). The kernels
taking advantage of AA properties lead to a higher average accuracy in all
three cases (p-Values: 6.92 10−8 for spectrum, 0.0045 for mismatch, and 1.0 for
profile kernels). For l and τ we use the published parameter settings. For s we
chose the best result among s = {0.1,1,10,100,1000}.
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performances than the string kernels on AA sequences
as well as the non-substring kernels.

Conclusions
We have proposed new kernels that combine the bene-
fits of physico-chemical descriptors for amino acids with
the ones of string kernels. String kernels are powerful
and expressive, yet one needs sufficiently many exam-
ples during training to learn relationships between
amino acids in the very high dimensional space induced
by the string kernel. Standard kernels based on physico-
chemical descriptors of amino acids, on the other hand,
cannot exploit the sequential structure of the input
sequences and implicitly generate many more features,
numerous of which will be biologically implausible.
Here, one also needs more examples to learn which sub-
set of features is needed for accurate discrimination,
especially for longer protein sequences.
We could show that the proposed modifications of the

WD kernel yield significant improvements in the predic-
tion of MHC-binding peptides. As expected, the
improvement is particularly strong when data is less
abundant. For protein remote homology detection AA
property-enhanced kernels can also lead to significant
performance improvements. For the most sophisticated
kernels using blast or PSI-blast profiles, however, infor-
mation about the similarities of AAs can already be
derived from the profiles and the improvement is
marginal.
Overall, our experiments demonstrate that the pro-

posed kernels indeed lead to a better performance than
string kernels and non-substring kernels. These
improvements are not major, but consistent. It has to be
noted that a big difference between the previously pro-
posed kernels and the proposed kernels cannot be
expected: The proposed kernels essentially work on sub-
sets of the features of previously proposed kernels and
the improvements that we observe mainly come from
the SVM’s degraded performance when including unin-
formative features (which typically is not very
pronounced).
In summary, the proposed modifications, in particular

the combination with the RBF AA substring kernel, con-
sistently yield improvements without seriously affecting
the computing time (except for the Spectrum-RBF ker-
nel). In all formulations, the original string kernel for-
mulation can be recovered by appropriately choosing s.
Hence, when s is included in model selection, the per-
formance of the proposed kernels should be at least as
good as the original string kernels. We therefore believe
that the proposed kernels should be preferred over the
original formulations for any protein sequence classifica-
tion task.
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