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Abstract

The brain’s ability to associate different stimuli is vital to long-term memory, but how neural 

ensembles encode associative memories is unknown. Here we studied how cell ensembles in the 

basal and lateral amygdala (BLA) encode associations between conditioned and unconditioned 

stimuli (CS, US). Using a miniature fluorescence microscope, we tracked BLA ensemble neural 

Ca2+ dynamics during fear learning and extinction over six days in behaving mice. Fear 

conditioning induced both up- and down-regulation of individual cells’ CS-evoked responses. This 

bi-directional plasticity mainly occurred after conditioning and reshaped the CS ensemble neural 

representation to gain similarity to the US-representation. During extinction training with 

repetitive CS presentations, the CS-representation became more distinctive without reverting to its 

original form. Throughout, the strength of the ensemble-encoded CS-US association predicted 

each mouse’s level of behavioral conditioning. These findings support a supervised learning model 

in which activation of the US-representation guides the transformation of the CS-representation.

Associative fear conditioning induces a long-term memory that requires BLA1–3 but not 

hippocampal4 activity. Past work found BLA neurons with potentiated responses to a CS, 

such as an auditory tone, after associative conditioning with an aversive US1–3. This 

prompted a Hebbian model in which ‘fear cells’ with co-active inputs conveying the paired 

CS–US presentations potentiate their responses to subsequent CS presentations1,3,5. 

However, the dynamics of individual fear cells seem too stochastic to support reliable 
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memory storage1. Neural ensembles might allow more robust storage, but how cell 

ensembles encode associative memories and whether this fits the Hebbian model remain 

unknown.

To track BLA neural ensemble activity in behaving mice, we combined time-lapse 

microendoscopy, a head-mounted microscope6,7 and expression of the GCaMP6m8 Ca2+-

indicator in excitatory neurons (Fig. 1a,b; Extended Data Fig. 1; Methods). This differs from 

past electrophysiological studies of BLA, which lacked access to ensemble activity patterns 

and had limited recording durations1, and studies of immediate early gene (IEG) 

activation9,10, which poorly reports declines, temporal patterns and gradations of electrical 

activity.

We first examined neural responses to tones and electric shocks in awake mice (Extended 

Data Fig. 2). The cells that responded to these stimuli were sparse and interspersed across 

BLA10,11. This intermingling may help the BLA to link temporally associated signals of 

different types via local circuit interactions10–14.

To study associative memory1,12,14–16, we repeatedly paired an auditory cue (CS+; 25 × 

200-ms-tone-pulses per presentation) with a foot-shock US. As a control, we repeatedly 

presented another tone (CS–) without the US (Fig. 1c). Mice with and without implanted 

microendoscopes had comparable CS+-evoked fear expression, visible as conditioned 

freezing15,17 (Extended Data Fig. 3). Across a six-day protocol, cells responding to the CS+ 

or CS– (P ≤ 0.01; evoked signals vs. baseline; rank-sum test) were sparse, interspersed and 

largely distinct (Fig. 1c–e). CS-evoked Ca2+ transients closely resembled those expected 

from past electrical recordings12 (Extended Data Fig. 4).

Across all six days, the number of active cells stayed constant [152 ± 14 (s.e.m.) cells per 

day per mouse; Friedman Test; 12 mice; see Supplementary Table 1 for P- and χ2-values], 

but after conditioning ~45% more responded1,10 to the CS+ (Fig. 2), [before training, 9 

± 1% (s.e.m) cells were CS+-responsive vs. 14 ± 1% afterward; P ≤ 0.01; rank-sum test; 2 

pre- and 3 post-training sessions]. Percentages of CS–-responsive cells also rose, paralleling 

the small rise in CS–-evoked freezing above baseline levels and suggesting the CS– was not a 

learned safety signal18 (Figs. 1c, 2a; Extended Data Fig. 3g; Supplementary Note). During 

conditioning (Day 3), 14 ± 3% of active cells responded to the US; within this subset a 

minority up- (7 ± 3%) or down-regulated (13 ± 5%) these responses during training (Fig. 

2c,d).

Using image alignment we registered cell identities over the six days (171–438 cells per 

mouse; 3655 total; 12 mice). Similar percentages of cells were active each day [49 ± 2% 

(s.e.m.); Extended Data Fig. 5; Supplementary Table 1]. A plurality of cells was active on 1–

2 days (49 ± 3%) and a minority on all days (16 ± 2%). Individual cells came in and out of 

the active ensemble day-to-day; there were ~55% cells in common for consecutive sessions 

and ~35% for 5 d apart. This turnover resembles that seen in long-term studies of 

hippocampus7,19 and might be a general phenomenon in brain areas processing long-term 

memories.
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We next studied the encoding of the CS+–US association and tested the Hebbian model20. 

Surprisingly, only 38 ± 5% of cells with heightened CS+-evoked responses after training 

responded to the US during training, whereas 65 ± 6% of cells that were initially responsive 

to both the CS+ and US were less CS+-responsive after training (Extended Data Fig. 6). Of 

cells with significant responses to the CS+ on at least one day, 32 ± 2% potentiated these 

responses after training, whereas 28 ± 7% reduced them (Fig. 2d; rank-sum test; P ≤ 0.05; 

125 CS+ tone-pulses per day before training, 300 afterward). CS–-responsive cells 

underwent analogous changes, to a lesser extent (Fig. 2d). Overall, this bi-directional 

plasticity was unpredicted from Hebbian potentiation20.

To study ensemble coding, we tested if CS+ and CS– presentations were identifiable from 

their evoked activity patterns. We trained three-way, Fisher linear decoders to distinguish 

baseline conditions from CS+ and CS– presentations on each day. These decoders classified 

the three conditions accurately [97 ± 0.3% (s.e.m.) of 1 s time-segments] for all 6 days (Fig. 

3a). Accuracy fell modestly using only CS+- and CS–-responsive cells (90 ± 3% accuracy), 

but substantially when we omitted all CS-responsive cells (61 ± 2% accuracy). Across the 

first five tone-pulses of each CS presentation, decoding accuracy and conditioned freezing 

both rose to an asymptote (Extended Data Fig. 7), suggesting BLA coding fidelity improved 

as the tones repeated within a CS presentation.

How did conditioning affect ensemble coding? To separately investigate CS+ and CS– 

encoding, we trained two sets of binary decoders, which discriminated either CS+ or CS– 

presentations from baseline conditions. We trained each decoder on data from one day and 

tested it on data from other days. Despite cells’ day-to-day fluctuations, CS– decoders had 

up to 85% accuracy across days [74 ± 1% (s.e.m.)] (Extended Data Fig. 8). CS+ decoders 

performed similarly, provided the training and testing days were both before or both after 

conditioning (74 ± 1% accuracy), but if they spanned the conditioning session, accuracy fell 

to chance levels (55 ± 1%) (Fig. 3b). Hence, representations of the CS+, but not the CS–, 

changed significantly during memory formation, consistent with the CS+-responsive cells’ 

bi-directional plasticity.

To further study plasticity, we constructed multi-dimensional population vectors (one 

dimension per cell) for each response to a CS or US. To assess the responses’ 

differentiability, we used the Mahalanobis population vector distance21 (PVD). This 

resembles an Euclidean distance, but like the discriminability index (d´) from statistics it 

accounts for mean differences and trial-to-trial variability21, using the correlations in the 

cells’ responses (Extended Data Figs. 8, 9). To examine how training changed the CS+-

representation, we divided Day 3 into early and late training phases and computed the mean 

PVDs between US- and CS+-evoked responses in each phase (Fig. 3c). Notably, training 

increased the similarity and decreased the discriminability of the US and CS+ 

representations. Across five CS+–US pairings, PVDs declined by a significant amount [Δ1: –

8 ± 2% (s.e.m.); P = 0.02; signed-rank test; 12 mice, early vs. late mean PVDs; 3655 cells], 

owing to increased similarity of the mean responses to CS+ and US, not decreases in their 

variability (Extended Data Fig. 9). CS–-representations remained invariant (Δ1 = –0.2 

± 0.3%; P = 0.3).
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Even larger coding changes occurred after training. By Day 4, CS+- and US-representations 

were 32% less differentiable than before training (Fig. 3d,e), unforeseen from studies of 

consolidation that suggested a stabilization of neural coding22. 75% of the total change in 

CS+–US PVD (Δ2) first appeared on Day 4 (Fig. 3d) [CS+: Δ2 = –32 ± 6% relative to Day 1 

PVDs; CS–: Δ2 = 0.5 ± 5%; 2 PVDs before training and 3 afterward, in each of 12 mice]. On 

Days 4–6 the CS+ population vector had increased 210 ± 20% (s.e.m.; 12 mice) in amplitude 

and rotated (32° ± 3°) nearly directly towards the US population vector (Fig. 3f). The re-

scaling reflected increased CS+-evoked responses of many cells that never responded to the 

US, tempered by the decreased CS+-evoked responses of other cells. The rotation toward the 

US-representation reflected newfound CS+-evoked responses in cells previously lacking 

them. These changes differed from the predictions of Hebbian potentiation (changes in 

vector length and angle, each P < 10-4; rank-sum test; 12 mice).

Cells with decreased CS+-evoked responses and those with increased responses were equally 

important for the re-coding (Fig. 3e), during training [P = 0.2; signed-rank test, comparing 

contributions to Δ1 of cells with up- (37 ± 2%) vs. down-regulated (49 ± 2%) CS+ 

responses], and during consolidation [P= 0.9; contributions to Δ2 of cells with up- (46 ± 2%) 

vs. down-regulated (41 ± 2%) CS+ responses]. Changes in US encoding made modest (13 

± 1%) but significant (P = 0.008) contributions to the similarity increase between CS+ and 

US representations.

How did the CS+ encoding changes during consolidation relate to those from training? We 

hypothesized that consolidation proportionally accentuates changes from training. To test 

this, we linearly extrapolated the changes to the CS+-representation from conditioning (ΔA) 

and examined how well this captured the consolidated responses (Extended Data Fig. 10). 

Successful extrapolations should rescue the unsuccessful time-lapse CS+ decoders trained 

and tested on days spanning conditioning. With extrapolations 4–5× ΔA in amplitude, CS+-

decoding reached 72 ± 3% accuracy, nearing that of time-lapse CS–-decoders (74 ± 1%) 

(Fig. 3g). If we limited extrapolation to cells with only up- or only down-regulated CS+-

evoked responses, the rescue of CS+ decoding badly degraded, highlighting the importance 

of bi-directional plasticity during consolidation.

On Days 4–6, mice underwent partial behavioral extinction, comprising acute (within 

session) and consolidated (across session) effects (Figs. 1c, 4, 5). Did this reflect a change in 

the encoded CS+–US association? As found previously1, individual cells up- or down-

regulated their CS+-evoked responses during acute extinction (Fig. 4a). We assessed how 

this affected CS–US PVDs across 4 CS– and 12 un-reinforced CS+ presentations. Between 

the first four and last four CS+ presentations, the CS+- and US-representations became 

significantly more differentiable (Δ3 = 20 ± 1%, normalized to the mean PVD on Day 1; 

signed-rank test; P < 10-3; 144 early vs. 144 late CS+ presentations on Days 4–6; Fig. 4b). 

This acute change reflected an 18 ± 5% (s.e.m.; 12 mice) reduction in CS+ population vector 

amplitude and a 8° ± 3° rotation away from the US vector. These changes were absent for 

the CS– (Δ3 = –3 ± 3%; P = 0.3).

Unlike acute fear learning, during acute extinction cells with decreased CS+-evoked 

responses contributed more to the CS+-representation changes than cells with increased 
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responses (Fig. 4c). However, the rates at which ensemble coding changed during acute 

learning (Day 3) and extinction were equivalent (P = 0.6; Fig. 4d), suggesting a common 

process for initial storage of a memory and its acute extinction. During within-session 

extinction the CS+-representation did not revert and gained no more similarity to its initial 

representation before learning (Fig. 4e) (Δ4 = –2 ± 2%; Friedman Test; P = 0.37). Instead, 

the CS+ population vector rotated out of the plane defined by the US and the initial CS+ 

(Fig. 5e), maintaining a 28° ± 3° angle to its initial form that differed little from the 32° ± 3° 

at the end of learning.

Hence, BLA ensembles explicitly encode extinction training as new learning1. We did not 

find overt signals of US omission, but sub-threshold signals might drive plasticity in an 

extinction-specific subset of cells1 (Fig. 4a). Extinction engages hippocampus, thalamus and 

neocortex23, and their inputs to BLA might signal US omission. Unlike learning 

consolidation, most coding changes that accumulated in each extinction session reversed 

before the next session (Fig. 4f), consistent with the modest behavioral extinction that 

persisted overnight (Figs. 1c, 5d).

We examined how encoding of the CS+–US association related to conditioned behavior. The 

differentiability of the two representations predicted the overall extent of freezing behavior, 

throughout learning and extinction (r = 0.7; P < 10-14; Fig. 5a). Yet, on the seconds time-

scale, mean CS+–US PVDs were no different between freezing and non-freezing epochs 

(Fig. 5b). Thus, resemblance of the CS+- and US-encodings predicts the general acquisition, 

not the instantaneous performance, of learned freezing24. How much the CS+-encoding 

increased in similarity to the US-encoding strongly predicted the behavior of individual mice 

during learning and extinction (Fig. 5c,d).

Discussion

Based on recordings of >3600 BLA cells across six days, the analyses here show how neural 

ensembles represent associative information. The sets of active and CS–-responsive neurons 

exhibited day-to-day turnover, but the neural ensembles encoded information far more 

reliably than individual cells7,19,25,26. It is unclear what mechanisms preserve information 

despite cellular turnover, which might reflect variations in IEG expression that help time-

stamp individual memories26–29.

Single cell recordings have shown that neurons in several amygdalar areas can individually 

depress or potentiate their response properties under various conditions, leading to the 

impression that depression and potentiation may result from opposing influences on memory 

storage1,30,31. The recordings here show that learning simultaneously induces potentiation 

and depression of cells’ CS+-evoked responses in an equally balanced manner (Fig. 2a, 3e). 

This coordinated bi-directional plasticity was crucial to transforming the ensemble level 

CS+-representation to increase its similarity to the US-representation (Fig. 3f), was 

undetectable in past studies using IEG10 or pharmacologic inactivation methods15,17, and 

mainly occurred during consolidation (Fig. 3d–g).
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Notably, our results diverge from the predictions of Hebbian fear-learning1,2,27,32, which 

invokes a bi-conditional rule requiring coincident CS+ and US signals and posits that among 

cells receiving CS+ signals, those activated by the US will potentiate their CS+-evoked 

responses20. Mechanisms associated with this rule, such as NMDA-receptor-dependent 

synaptic potentiation32, likely contribute to transforming the CS+-representation, but the 

basic Hebb rule alone does not predict all the observed plasticity.

First, up- and down-regulation of stimulus-evoked responses were equally prevalent and 

important for transforming coding during learning (Fig. 3e). Second, most cells with 

potentiated CS+ responses were unresponsive to the US (Fig. 3f; Extended Data Fig. 6). 

Third, a majority of cells that were CS+- and US-responsive before training had reduced 

CS+-evoked responses afterward. Fourth, bi-conditional plasticity rules have difficulty 

explaining why many CS+-responsive cells depress their responses but CS–-responsive cells 

generally do not (Fig. 2a,d). A mere lack of US-related input cannot explain this difference. 

Hebbian models require coincident CS+ and US inputs to induce potentiation20, but, in 

reality, amygdala-dependent fear learning does not require coincidence4,33. Explaining this 

temporal permissiveness, and the differences in plasticity between CS+- and CS–-responsive 

cells likely requires a modified Hebb rule.

One possibility is a tri-conditional rule that refers not only to CS and US presentations but 

also a third factor, such as a neuromodulator or network-wide US-evoked inhibition14,34–

36, to explain the plasticity differences between CS+- and CS–-responsive cells 

(Supplementary Table 2; Supplementary Note). Theorists have studied such ‘neo-Hebbian’ 

tri-conditional rules37, and both inhibitory signaling and neuromodulator release are crucial 

for fear learning-induced changes to occur in BLA at normal rates34,35. Our data suggest 

these network-wide factors might aid ensemble encoding by promoting bi-directional 

plasticity for CS+–US pairings in close but not strict concurrence38. Nevertheless, different 

cells might follow different plasticity rules, and some might follow the simple Hebb rule.

The data here naturally suggest an abstract interpretation of how associative information is 

stored and represented, namely that BLA ensembles implement a supervised learning 

algorithm39 to encode the CS–US association. Prior studies proposed the US acts as a 

cellular-level teaching signal20,40. Here, the plasticity of single cells was not strictly 

determined by US-evoked activity. Instead, US-driven activity seemed to provide an 

ensemble-level supervision signal, guiding rotation of the CS+ population vector directly 

toward the US representation (Figs. 3f, 5e), which would have been unapparent in smaller 

recordings1,40. An attraction of this account is its intrinsic measure of memory strength, the 

similarity of the US- and CS+-representations. Conditioned freezing closely tracked the US–

CS+ PVD for each mouse, strongly supporting this interpretation. Principles of supervised 

learning might apply to brain areas beyond BLA, and future work should examine if coding 

transformations similar to those seen here occur in other limbic regions or neocortex.
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Methods

Animals

We housed male C57BL6/J mice (Jackson Labs; 9–10 weeks old) under a normal 12 h light/

dark cycle, and provided food and water ad libitum. Prior to fear conditioning experiments, 

we individually housed mice for ≥ 14 days. To habituate the mice to human handling, we 

handled them at least 7 times in 10 subsequent days. All animal procedures were approved 

and executed in accordance with institutional guidelines (Stanford Administrative Panel on 

Laboratory Animal Care). Mice were randomly assigned to different experimental groups in 

an informal manner, without regard to any of their characteristics.

Viral injection

We performed surgeries when mice were 9–10 weeks of age. We labeled excitatory neurons 

by injecting an adeno-associated virus (AAV, serotype 2/5) driving expression of 

GCaMP6m8 via the CaMK2a promoter. In brief, we anesthetized mice with isoflurane 

(induction, 2%; maintenance, 1–2%) in 95% O2 (Praxair) and fixed them in a stereotactic 

frame (Kopf Instruments). We stabilized the body temperature at 37° C using a temperature 

controller and a heating pad. We injected 500 nL of the AAV (injection coordinates relative 

to bregma: 1.7 mm posterior; 3.4 mm lateral; 4.7 mm ventral) via a borosilicate glass pipette 

with a 50-μm-diameter tip using short pressure pulses applied with a picospritzer (Parker).

Microendoscope implantation

7–12 days after AAV injection we performed a second surgery to implant either a small 

custom-designed 0.6-mm-diameter microendoscope probe (Grintech GmBH), or a stainless 

steel guide tube (1.2 mm diameter) with a custom glass cover slip glued to one end (0.125 

mm thick BK7 glass, Electron Microscopy Science). To avoid damage of the internal 

capsule, we chose implantation coordinates for the tip of the microendoscope that were 

lateral to this structure (1.7 mm posterior; lateral 3.4 mm; 4.5 mm ventral, all relative to 

bregma). To perform the implantation, we first made a round craniotomy centered on the 

injection coordinates using a trephine drill (1.0–1.8 mm in diameter). To prevent increased 

intracranial pressure due to the insertion of the implant, we made a circular incision in the 

brain to a ventral depth of 4.5 mm by using a custom-made trephine (1 mm diameter). We 

aspirated all brain tissue inside the trephine. Next, we lowered either the microendoscope or 

a metal guide tube to the bottom of the incision. We fixed the implanted guide or 

microendoscope to the skull using ultraviolet-light curable glue (Loctite 4305). To ensure a 

stable attachment of the implant, once the cranium had dried we inserted two small screws 

into it above the contralateral cerebellum and contralateral sensory cortex (18-8 S/S, 

Component Supply). We then applied Metabond (Parkell) around both screws, the implant 

and the surrounding cranium. Lastly, we applied dental acrylic cement (Coltene, Whaledent) 

on top of the Metabond, for the joint purpose of attaching a metal head bar to the cranium 

and to further stabilize the implant. Mice recovered for 5–7 weeks, at which point we 

checked the level of GCaMP6m expression using a two-photon microscope and a 20× 

objective lens (LUCPlan FLN, 0.5 NA, Olympus). If expression was sufficiently bright, we 

considered the mouse ready for mounting of the miniature microscope (nVista HD, Inscopix 

Inc.).
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Mouse behavior

For studies comparing a range of unconditioned stimuli (Extended Data Fig. 2), on the first 

day of testing we played eight 10 kHz tones (85 dB, 25× 200 ms duration tone pulses 

delivered at 1 Hz) while the mice were freely moving in an unfamiliar chamber. After one 

day of water restriction, we transferred mice to an experimental chamber where they 

received 30 μL of 4% sucrose water (500 ms reward delivery time). In the same session, 

after delivery of sucrose water we transferred mice to the conditioning chamber, where we 

delivered eight electric shocks above one eyelid (3 mA; 2 s duration) or to the paws (0.6 

mA; 2 s duration) in a pseudo-random order.

Fear conditioning experiments involved a separate cohort of mice than that used for US 

comparisons, and took place in two different isolation chambers, chamber A (Day 1, 2, 4, 5 

and 6) and chamber B (Day 3). The two chambers differed in their odors, shapes, lighting 

pattern, and textures of the walls and floor. Prior to each imaging session, we cleaned the 

chambers with a solution of 1% acetic acid (Chamber A) or 70% ethanol (Chamber B). For 

scoring of freezing behavior we used video-based freezing detection software (Freeze 

Frame, Actimetrics) that provided a binary time-trace of the mouse’s movement amplitude. 

The video frame rate was 20 Hz, but for behavioral analysis we down-sampled the resulting 

time trace to 5 Hz. Mice were scored as freezing if movement was below a minimum 

threshold for ≥1 s. To validate the semi-automated detection of freezing, we compared 

freezing values to a classical time-sampling procedure during which a human observer who 

was blind to the experimental conditions visually scored freezing behavior. Freezing values 

with both procedures were nearly identical (92 ± 3%, n = 12 mice).

Throughout habituation, training and extinction sessions, the CS+ and CS– comprised 

twenty-five, 200-ms-long tone pulses (4 kHz at 85 dB, or 10 kHz at 80 dB, with the twenty-

five pulses delivered at 1 Hz). The acoustic frequencies of 4 kHz and 10 kHz were randomly 

assigned as the CS+ and CS– for the different mice, in a counterbalanced manner. During 

habituation (Days 1, 2) and conditioning (Day 3), mice received five CS+ and five CS– 

presentations in a pseudorandom order. During fear testing and extinction sessions (Days 4–

6), mice received two CS– presentations before and two CS– after a block of 12 unreinforced 

CS+ presentations1,41. On all days, the inter-stimulus intervals between CS presentations 

were pseudo-randomly chosen between 20–180 s.

During conditioning on Day 3, at 800 ms after the termination of the last tone pulse in each 

CS+, the mouse received a US foot shock. To achieve reliable and robust fear learning, we 

used a relatively long (2 s) and strong foot shock (0.6 mA), which led to conditioned, CS+-

evoked freezing levels (70–90%) comparable to those reported previously for similar US 

parameters in mice41. This is a form of auditory, associative fear conditioning that is 

amygdala-dependent1,12,14 (Extended Data Fig. 3) and hippocampal-independent4. We 

analyzed the behavioral performance of all mice tested and retained the data regardless of 

freezing levels.
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Behavior controls

We examined whether microendoscope implantation affected motor behavior by monitoring 

mouse locomotion during the first two sessions in Chamber A, for mice that had no, 

unilateral, or bilateral microendoscope implants. We used a standard video camera (AVT, 

GuppyPro, F125B) and the image acquisition toolbox in MATLAB to acquire movies of the 

mouse’s behavior at a 20 Hz frame rate. To extract the mouse’s locomotor trajectory we 

used a custom video-tracking routine written as a plugin for the ImageJ (NIH) image 

analysis software environment. From these trajectories we calculated the total distance 

traveled, mean speed and mean acceleration (Extended Data Fig. 3a, b).

We also investigated if microendoscope implantation affected fear learning by comparing 

conditioned freezing behaviors for the different groups of mice (Extended Data Fig. 3c–f). In 

addition to the three groups of mice used for locomotor studies, we also included a group of 

mice that had bilaterally implanted guide tubes through which we administered the GABAA 

agonist muscimol 10-15 min before the Day 3 conditioning session. These metal guide tubes 

had the same outer diameter as the implant used for Ca2+ imaging, and we connected them 

to a 10-μL micro-syringe (Hamilton) via polyethylene (PE 20) tubing. We dissolved 

muscimol (Sigma-Aldrich) in artificial cerebrospinal fluid (pH 7.4) and infused this solution 

bilaterally into each BLA through 33-gauge infusion cannulae, each of which extended 0.5 

mm beyond their corresponding metal guide tube. 10-15 min before the Day 3 conditioning 

session, into each BLA we infused a small volume of 0.3 μL that we delivered using a 

syringe pump (UMP3, World Precision Instruments) at a rate of 0.2 μL/min. The infusion 

cannulae remained in place for 1 min after the infusion. The final dosage and volume of 

muscimol delivered was 2.6 nmol and 0.3 μL per BLA, as in prior fear-conditioning studies 

in mice42.

Ca2+ imaging using the miniature microscope

We first characterized the optical working distance between the glass surface of the 

microendoscope inside the brain and the cells at the focal plane, by using a combination of 

empirical measurements and computational ray tracing simulations of the optical pathway. 

First, we empirically determined the distance between the back focal plane, where the image 

of the cells was projected outside the microendoscope, and the microendoscope’s external 

surface protruding from the cranium. To do this, starting with the miniature microscope in a 

position such that the cells of interest were in focus, we lowered the microscope toward the 

microendoscope until we focused upon the microendoscope’s external surface. After noting 

the distance change between these two focal positions, we used the position of the back 

focal plane in combination with the microendoscope’s optical design to determine 

computationally the optical working distance between the cells and the surface of the 

microendoscope inside the brain. For these computations we used optical ray tracing 

software (Zemax). This yielded values for the working distance within the range 77–181 μm. 

Histological reconstructions showed that the tip of the microendoscope generally lay in the 

lateral amygdala (LA). However, because the optical focal plane often spanned ventral parts 

of LA and dorsal parts of the basal amygdala (BA), we use the joint term basal and lateral 

amygdala (BLA) throughout the paper.
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To mount the base plate of the miniature microscope on the cranium, we attached the 

microscope to the base plate and lowered the pair toward the implanted microendoscope 

until we observed green fluorescent cells. We selected a 600 µm × 600 µm field-of-view 

(FOV) medial from the non-fluorescent axonal fiber tract that separated the BLA and the 

cortex (Extended Data Fig. 1c). We glued the base plate onto the skull using blue-light 

curable glue (Flow-it, Pentron). Afterward, we detached the microscope and returned the 

mouse to its home cage.

Before each Ca2+ imaging session, we briefly head-fixed the mouse using its metal head-bar 

while allowing it to walk or run in place on a wheel. We then attached the miniature 

microscope to its base plate and returned the mouse to its home cage for 50–60 min until the 

start of the imaging session. Each session involved 22–28 min of Ca2+ imaging across a 

field-of-view of approximately 600 µm × 600 µm, which we always verified matched that 

seen in any prior sessions in the same animal. After each session we detached the 

microscope and returned the mouse directly to its home cage for ~22 h.

To acquire fluorescence Ca2+ imaging videos, we used 100-150 μW of illumination intensity 

at the specimen and took 12 bit images (1000 × 1000 pixels) at a frame rate of 20 Hz. Each 

pixel covered 0.6 µm × 0.6 µm in tissue. We streamed the video data directly to hard disk 

(90–100 MB/s).

Two-photon imaging

To check the expression of GCaMP6m in the BLA, we used two-photon imaging to image 

the BLA in isoflurane-anesthetized mice (1–2% isoflurane in O2). We head-fixed the mice 

via the implanted metal head bar and positioned the implanted microendoscope under a 20× 

microscope objective (Olympus, LCPLFLN20xLCD) of an upright two-photon fluorescence 

microscope (Bruker). We first used wide-field epi-fluorescence imaging to visualize the 

BLA tissue through the microendoscope. We then switched to two-photon laser-scanning 

imaging and acquired images of 256 × 256 pixels at a 3 Hz frame rate.

Basic processing of the Ca2+ imaging videos

To account for slowly varying illumination non-uniformities across the field-of-view, we 

normalized each image frame by dividing it by a spatially low-pass filtered (length constant: 

120 µm) version of the frame using ImageJ software (NIH). Next, we used the ImageJ 

plugin TurboReg43 to correct for lateral motions of the brain by performing a rigid image 

registration across all frames of the movie. After motion correction, we temporally smoothed 

and down-sampled each movie from 20 Hz to 5 Hz. We then re-expressed each image frame 

in units of relative changes in fluorescence, ΔF(t)/F0 = (F(t) – F0)/F0, where F0 is the mean 

image obtained by averaging the entire movie.

Cell sorting

We identified spatial filters corresponding to individual neurons using an established, 

automated cell sorting routine based on principal and independent component analyses7,44. 

As in prior Ca2+ imaging studies using the miniature microsope7,45, after motion correction 

we identified cells’ spatial filters based on the Ca2+ data acquired over the entire session. For 
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each filter, we then zeroed all pixels with values <50% of that filter’s maximum intensity. To 

obtain time traces of Ca2+ activity, for each cell we applied its thresholded spatial filter to 

the ΔF(t)/F0 movie.

As previously described44, the extracted spatial filters generally had sizes, morphologies 

and activity traces that were characteristic of individual neurons, but there were also some 

spatial filters that were obviously not neurons and that we discarded (Extended Data Fig. 

2b). For the 4–10% of candidates with less common characteristics, we were conservative 

and accepted only those that were plainly cells by human visual scrutiny. We verified every 

cell included in the analyses by visual inspection.

Registration of cell identities across imaging sessions

We generated cell maps for each day by projecting thresholded versions of each cell’s spatial 

filter onto a single image7 (Extended Data Fig. 5a). Taking the map from Day 3 as a 

reference, we aligned the other cell maps to this one via a scaled image alignment using the 

TurboReg image registration algorithm43. This corrected slight translations, rotations, or 

focus-dependent magnification changes between sessions and yielded each cell's location in 

the reference coordinate system.

We then identified candidate cells across sessions that might be the same neuron seen on 

multiple occasions. To do this, we applied the observations that our image registration 

procedure had sub-micron precision, and that the distance between the centroids of 

neighboring somata was always >6 µm (Extended Data Fig. 5d). We thus enforced that all 

observed cells deemed to be the same neuron had all pair-wise separations ≤ 6 µm (Extended 

Data Fig. 5e). The distribution of pair-wise separations between cells assigned the same 

identity yielded the conservative estimate that 99.7% of these assignments were correct 

(Extended Data Fig. 5e inset).

Identification of neuronal sub-classes

We identified functional sub-classes of neurons by comparing the stimulus-evoked 

fluorescence Ca2+ signals of individual cells to their baseline fluorescence levels, using 1 s 

time bins. To compute each cell’s baseline activity level, we averaged its fluorescence signal 

over the complete imaging session excluding all stimulus presentations. For the analyses of 

neural responses to a CS– or CS+ (always in the form of 25 tone pulses, 200 ms in duration, 

delivered at 1 Hz), we defined the stimulus response period as the 25-s-period that began at 

the onset of the first tone pulse and extended 800 ms beyond the offset of the 25th pulse (i.e., 
up to the start of the US). To analyze neural responses to a shock US, we defined the 

stimulus response period as the 2 s period of eyelid or foot shock delivery. To analyze the 

neural responses to sucrose water, we defined the stimulus response period as the 1 s interval 

starting from the onset of stimulus delivery. After computing each cell’s stimulus-evoked 

fluorescence responses in 1 s time bins, we compared the set of all such responses to the 

cell’s baseline activity level using the Wilcoxon rank-sum test. All cells with stimulus-

evoked responses that were significantly different from baseline activity (significance 

criterion: P ≤ 0.01) were classified as CS- or US-responsive.
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We also verified that the definition of baseline activity had little effect on the sets of cells 

identified as having stimulus-evoked responses, by comparing the results obtained using two 

different definitions. In one case, we determined each cell’s level of baseline activity by 

finding its average activity across the full imaging session, excluding stimulus presentations. 

Alternatively, we used the 20-s-period immediately prior to each stimulus presentation to 

assess the magnitude of the stimulus-evoked response. Using all 3655 cells for this 

validation analysis, we found that 3524 cells (96%) were categorized identically under the 

two definitions of baseline activity, indicating that the choice of definition had little effect on 

our subsequent analysis results.

To identify neurons that significantly increased or decreased their CS-evoked activity during 

the five paired CS-US presentations on Day 3, we compared their CS-evoked Ca2+ signals 

for CS presentations early in the session (presentations 1 and 2) versus those late in the 

session (presentations 3-5) (Wilcoxon rank-sum test, using a significance threshold of P ≤ 

0.05). To identify cells with significantly increased or decreased their CS-evoked activity 

after conditioning, we compared CS-evoked Ca2+ signals from the days before (Days 1, 2) 

and after (Days 4–6) the training session on Day 3 (Wilcoxon rank-sum test, using a 

significance threshold of P ≤ 0.05).

Population vector analyses

We analyzed our data with MATLAB (Mathworks) using the imaging and machine learning 

toolboxes. For population vector analysis, decoder training and testing we used neuronal 

Ca2+ signals expressed as relative fluorescence changes (ΔF/F), down-sampled the traces to 

1 s time bins, and organized the data to contain equal numbers of time points for baseline, 

CS+, CS– or US presentations. We chose 1 s bins, because this choice yielded superior 

decoding performance compared to the use of either shorter or longer time bins. To quantify 

the similarity of two sets of neuronal ensemble response patterns, we calculated the 

Mahalanobis distances between the two sets of population activity vectors21. To do this, we 

created a group of N-dimensional (N = number of neurons) activity vectors, x, for each 

stimulus type (baseline, CS–, CS+ or US) and calculated the population vector distances 

(PVD) between the two groups (Extended Data Fig. 10). For example, the Mahalanobis 

PVD (M) between sets of CS- and US-evoked ensemble activity patterns is:

where x and μ are individual and mean population vectors for CS and US ensemble 

responses, respectively, and xT and μT are their transposes. Σ is the covariance matrix for the 

set of ensemble responses. The Mahalanobis distance takes into account the differences in 

the means of the two sets of ensemble responses as well as their co-variances (Extended 

Data Fig. 9).

To track the CS-US PVDs across the Day 3 training session, we down-sampled all neural 

activity traces to one-second time bins. This resulted in 25 time bins for each twenty-five-

second CS presentation and two time bins for each two-second US presentation. Next, we 

constructed the mean CS+, CS– and US population vectors by averaging the evoked neural 
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responses over all five presentations of each stimulus and all the time bins associated with 

each stimulus presentation. To calculate the change in the CS+ population vector expected 

under a cellular, Hebbian model of associative potentiation, we restricted the changes to the 

CS+ population vector to those cells that were US-responsive and used the empirically 

determined mean stimulus-evoked responses of these cells to calculate the vector entries.

Decoding ensemble neural activity

We constructed all binary (Fig. 3b; Extended Data Fig. 8) and three-way (Fig. 3a; Extended 

Data Fig. 7) Fisher linear decoders21 in MATLAB. To construct the three-way decoders, we 

used an established approach based on multiclass Fisher linear discriminant analysis that 

maximizes the ratio of the mean variances between the different classes to that within the 

individual classes21. We used the set of neural ensemble Ca2+ response traces (ΔF/F) from 

each mouse and trained decoders to discriminate the Ca2+ activity patterns that occurred 

during baseline epochs, CS+ or CS– presentations. Before training we down-sampled the 

data into 1 s time bins. We determined decoder performance values as the mean rate of 

correct predictions over a 10-fold cross-validation. For cross-validation, we split each 

dataset into ten equally sized blocks and randomly assigned each time bin to one of the ten 

blocks; we used nine of the blocks for decoder training and one for testing. To evaluate the 

statistical significance of decoding performance, we trained control decoders on temporally 

shuffled datasets, and compared the mean, cross-validated performance values to those of 

the real decoders.

When making comparisons across decoders involving unequal numbers of cells (Fig. 3a), we 

confirmed all results via a control analysis that used statistical re-sampling methods46 to 

construct decoders based on equal numbers of cells; this yielded decoding results virtually 

indistinguishable from those shown in Fig. 3a. As a further check, we also verified that the 

small performance difference between decoders based on all cells and those based only on 

CS-responsive neurons was not simply due to the smaller number of cells used for the latter 

decoders, as opposed to the information content of their activity traces. For this purpose, we 

constructed control decoders (Fig. 3a; dashed green curve) based on the same number of 

cells as used for the decoders of CS-responsive cells, but with the cells randomly chosen. 

The accuracy difference between these control decoders and that of the decoders of CS-

responsive neurons was dramatic, as the control decoders performed at levels very close to 

chance and no better than decoders based on temporally shuffled neural activity traces (Fig. 

3a; dashed gray curve).

Construction of the CS+ rescue decoder

We constructed and validated the rescued time–lapse CS+ decoder in five main steps 

(Extended Data Fig. 10a,b). Step 1: We recorded CS+ ensemble activity before conditioning 

(Day 1 and 2). Step 2: We recorded neuronal population activity during conditioning with 

five CS-US paired presentations (Day 3) and identified individual neurons that altered their 

CS+-evoked responses [Wilcoxon rank-sum test, comparing CS+-evoked responses between 

the early (CS-US pairings 1 and 2) and late phase (CS-US pairings 3-5) of conditioning, 

significance threshold P < 0.15]. Step 3: We simulated the full, consolidated CS+ ensemble 

transformation by gradually extrapolating changes of individual neuron responses and 
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adding them to their CS+ responses before conditioning (Extended Data Fig. 10c). Step 4: 

We trained a new rescue decoder and evaluated its performance for different extrapolation 

magnitudes. Step 5: To validate the simulated transformation of ensemble coding, we 

compared the average performance of the rescue decoder to the average performance of the 

stable CS– time-lapse decoder.

Relating neural population vectors to freezing behavior

To examine how ensemble neural activity related to each mouse’s overall level of 

conditioned freezing (Fig. 5a), we first calculated for each individual CS+ (or CS–) 

presentation the PVD to the mean US population vector, and then normalized the resulting 

CS–US PVD by the value of the CS–US PVD computed for the mouse’s first CS+ (or CS–) 

presentation. We plotted these normalized CS–US PVD values as a function of the 

percentage of time during each 25-s CS presentation that the mouse spent freezing (Fig. 5a).

To examine whether BLA ensemble neural activity differed between the moments within 

individual CS+ presentations when a mouse was freezing versus not freezing (Fig. 5b), we 

divided each 25-s CS+ presentation into 1 s time bins. For each CS+ presentation we then 

found the ratio of the CS+–US PVDs, as computed for the 1-s time bins when the mouse was 

freezing versus those when the mouse was not freezing. We plotted this ratio as a function of 

the proportion of time during the 25-s CS+ that the mouse spent freezing (Fig. 5b).

Next, we examined how the change in each mouse’s CS+–US PVD during learning related 

to the change in its freezing behavior (Fig. 5c). For each mouse we computed the percentage 

change in the CS+–US PVD occurring between the last six CS+ presentations before 

learning (Days 1 and 2) and the first six CS+ presentations after learning (Day 4). We plotted 

the resulting values versus the changes in freezing behavior across the same time periods.

We performed a similar analysis to examine how the change in each mouse’s CS+–US PVD 

during extinction training related to the consolidated change in its freezing behavior (Fig. 

5d). We compared the first six CS+ presentations from the first day of extinction training 

(Day 4) to the first six CS+ presentations on the last day of extinction learning (Day 6). For 

each mouse we computed the percentage differences in CS+–US PVDs across these two 

groups of CS+ presentations, and we compared the resulting values to the ratio of the 

mouse’s freezing levels during these two sets of CS+ presentations.

Histological verification of cell identity

Four weeks after injection of the GCaMP6m viral construct or two weeks after the imaging 

experiments. we transcardially perfused mice with phosphate-buffered saline (PBS) followed 

by ice-cold 4% paraformaldehyde (PFA). Next, we extracted mouse brains and kept them for 

post-fixation in PFA for 24-48 h. We then cut 100-μm-thick coronal brain slices using a 

Vibratome (VT1000s, Leica) and stored all slices in PBS.

To validate the implant positions of the microendoscopes relative to the BLA we mounted all 

coronal brain slices on microscopy slides and acquired large field-of-view fluorescence 

images using a standard fluorescence macroscope (Z16, Leica). We then overlaid all images 

with a validated reference image47, marked the position of the endoscope tip for every 
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mouse (Extended Data Fig. 1b), and determined the ventral depth of the implant with respect 

to bregma, using the coordinate system of the reference image.

To stain inhibitory or excitatory neurons, we followed standard immunostaining procedures. 

In brief, we incubated brain slices with the primary antibodies, rabbit anti-GAD65 (1:500, 

catalogue no. AB1511, EMD Millipore) or anti-Neurogranin (1:10000, catalogue no. 

07-425, EMD Millipore) at 4° C overnight followed by a second overnight incubation at 

4 °C with secondary anti-rabbit Alexa 647 antibodies (1:1,000, both Invitrogen).

Data analyses and statistical tests

We conducted all analyses using custom routines written in MATLAB (Mathworks) and 

ImageJ (NIH) software. Throughout the paper we used two-tailed, non-parametric statistical 

tests to avoid assumptions of normal distributions and equal variance across groups. All 

signed-rank tests were Wilcoxon signed-rank tests. All rank-sum tests were Wilcoxon rank-

sum tests. For analyses of variance (ANOVA), we used the Friedman and Kruskal-Wallis 

tests, respectively, for ANOVAs with and without repeated measures. Supplementary Table 1 

summarizes the results from these ANOVA analyses. The sizes of our mice samples were 

chosen to approximately match those of previous work, as there was no pre-specified effect 

size. Investigators were not blind to an animal’s experimental cohort.

Code and Data availability

The algorithm used for image registration is available on its author’s website43. The 

algorithm used for cell sorting is available as published supplementary material44. Other 

software code and the data that support the findings of this study are available from the 

corresponding author upon reasonable request.
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Extended Data

Extended Data Fig. 1. Mouse preparation for Ca2+ imaging in excitatory BLA neurons.
(a) Coronal slice of a mouse brain showing expression in the BLA of the GCaMP6m Ca2+ 

indicator, five weeks after injection of the AAV2/5-CaMK2a-GCaMP6m virus. Scale bar: 1 

mm.

(b) Schematic of a coronal mouse brain section shown with the reconstructed positions 

(dashed red lines) of the microendoscope implants in the BLA, for the 12 mice subject to the 
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experimental protocol of Fig. 1c. The focal planes for in vivo Ca2+ imaging were 77–181 µm 

below the indicated implant positions, as determined through computational modeling of the 

microendoscope’s optical pathway done using the empirically determined value of the back 

focal length. Hence, the optical focal plane often spanned ventral parts of lateral amygdala 

(LA) and dorsal parts of the basal amygdala (BA), motivating our use the joint term basal 

and lateral amygdala (BLA) throughout the paper. AP: anterior posterior. Ctx: cortex. Scale 

bar: 1 mm. The mouse brain section in this figure has been reproduced with permission 

from47.

(c) Top, Wide-field fluorescence image of BLA tissue acquired through an implanted 

microendoscope, six weeks after injection of the AAV2/5-CaMK2a-GCaMP6m virus. The 

outer fiber tract enclosing the BLA does not express GCaMP6m and appears as a vertical 

dark stripe in the center of the field-of-view. The dashed box shows the position of the 

camera’s field-of-view, which we positioned over the BLA by using the fiber tract as a 

reference marker. Bottom, The same image as in the top panel, but with the boundaries of 

the BLA and endopiriform nucleus (Epn) marked in green and black dashed lines, 

respectively. Ctx: piriform cortex. Scale bar: 0.2 mm.

(d–f) Coronal section of a mouse brain showing, d, inhibitory neurons in the BLA immuno-

labeled with a monoclonal anti-GAD67 antibody; e, neurons expressing GCaMP6m under 

the control of the CaMK2a promoter; and f, the overlay of the images in d and e. Red arrows 

in d and e mark GAD67-positive interneurons that are not expressing GCaMP6m. Scale 

bars: 20 μm.

(g–i) Coronal brain section showing, g, excitatory neurons in the BLA immuno-labeled 

using a polyclonal anti-Neurogranin (NRGN) antibody48; h, neurons expressing 

GCaMP6m; and i, an overlay of the images in d and e, showing that the set of NRGN-

positive excitatory neurons (labeled red) strongly overlap with the set of cells expressing 

GCaMP6m (labeled green). Scale bars: 20 μm.
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Extended Data Fig. 2. Stimuli of neutral, positive, and negative valence activate sparse, largely 
distinct, spatially intermingled subsets of neurons in the BLA.
(a) A miniature fluorescence microscope enabled large-scale neural Ca2+ imaging in the 

BLA of awake behaving mice as we presented stimuli of different valences to the animals.

(b) Candidate cells identified using an automated cell sorting routine7,44 were easily 

segregated into those (left column) with sizes, morphologies and Ca2+ activity traces (gray 
traces, individual activity transients; black traces, mean waveforms) characteristic of 

individual neurons, and those that were obviously not neurons (right column). For the 4–
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10% of candidates with less common characteristics, we were conservative and accepted 

only those that were plainly cells by human visual scrutiny. We verified every cell included 

in the analyses by visual inspection.

(c) An example cell map in the BLA, as determined from a Ca2+ imaging dataset 28 min in 

duration. Colors indicate the subsets of BLA neurons that responded to rewards (light blue), 

electric foot shocks (green) or eyelid shocks (yellow), or neutral tones (red). Scale bar: 20 

μm. (Significance threshold: P ≤ 0.01, rank-sum test, comparing evoked Ca2+ signals to 

baseline levels).

(d) Ca2+ responses of six example neurons in the same mouse following the delivery of 

individual water rewards (left), eyelid shocks (middle) or foot-shocks (right). Gray traces 

show the Ca2+ responses from eight individual trials. Black traces show the mean responses.

(e) Mean ± s.e.m percentages of cells (n = 1251 neurons in total from 8 mice) with 

significant Ca2+ responses to the four different stimuli (Threshold for a significant response: 

P ≤ 0.01, comparing evoked versus baseline Ca2+ levels for n = 8 presentations of the 

stimulus; Wilcoxon rank-sum test).

(f) Cumulative probability distributions, each determined as a mean over 8 mice (1251 total 

cells), of the centroid separations between all pairs of cells in each mouse (dashed black 

curve), and between pairs of cells that both had significant responses to one of the four 

different stimuli (colored curves). Inset: The corresponding probability densities.

(g) Mean ± s.e.m. percentages of all neurons (n = 8 mice; 1251 cells in total) that had 

significant responses to each of the two stimuli in each pair listed on the vertical axis. 

Dashed orange line indicates the expected levels of overlap due to random chance. * denotes 

P < 0.05 and ** denotes P < 0.01, comparing the actual percentages versus those determined 

from datasets in which we randomly shuffled the cells’ identities (1000 random shuffles; 

Wilcoxon signed-rank test).

(h) Mean ± s.e.m. Mahalanobis population vector distances (PVD) between the ensemble 

neural representations of the two stimuli of each pair listed on the vertical axis. All PVD 

values are normalized to the PVD between the neural representations of eyelid-shock and 

foot-shock. Pairs of stimuli with smaller PVD values have ensemble neural representations 

of greater similarity than pairs with larger PVD values. Dashed orange line indicates the 

PVDs between ensembles in which we randomly shuffled the cells’ identities (1000 random 

shuffles). * denotes P < 0.05 and ** denotes P < 0.01, comparing the actual PVD values 

versus those determined for the shuffled datasets (Wilcoxon signed-rank test). Data are 

based on the same 1251 cells as in e–g.

(i) Twenty sets of fluorescence Ca2+ traces, showing evoked responses to presentations of 

the CS+ and CS– from 20 example neurons prior to fear conditioning. Light gray traces show 

the cells’ individual responses to each of five stimulus presentations; black traces are 

average responses. Traces were down-sampled to 5 Hz to aid visualization.
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Extended Data Fig. 3. Unilateral implantation of a microendoscope implantation does not alter 
conditioned freezing; bilateral implantation minimally alters conditioned freezing without 
affecting locomotion.
(a) Traces of locomotor activity across an entire (22 min) habituation session (Day 1), for 

one example mouse in each of the three different experimental groups indicated. Scale bar: 5 

cm.

(b) Mean ± s.e.m. values of the total distance traveled (left), locomotor speed (middle) and 

acceleration (right) for the three different groups of mice during the Day 1 habituation 

session. There were no significant differences between the three experimental groups [no-
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implant control (12 mice); unilateral implant (12 mice); bilateral implant (10 mice)] in any 

of the three movement-related parameters (One-way Kruskal-Wallis Test; degrees of 

freedom: dfgroup = 2, dferr = 31, dftotal = 33 for 3 groups and 34 total mice; χ2 = 10–12; P ≥ 

0.05 for all three parameters).

(c, d) Mean ± s.e.m. percentages of time mice spent freezing before conditioning (Days 1, 2) 

in response to 5 presentations of the CS–, c, and 5 presentations of the CS+, d, in control 

mice with no implant (12 mice), mice with a unilateral implant (12 mice), mice with a 

bilateral implant (10 mice), and mice that had a bilateral implant and received a muscimol 

injection into the BLA before the Day 3 conditioning session (8 mice). There were no 

significant differences in freezing time between any of the groups (One-way Kruskal-Wallis 

Test; degrees of freedom: dfgroup = 3, dferr = 42, dftotal = 45 for 4 groups and 42 total mice; 

χ2 = 10.2 and 11.8 for CS+ and CS–, P ≥ 0.05 for both CS+ and CS–).

(e, f) Mean ± s.e.m. percentages of time mice spent freezing after conditioning (Days 4–6) in 

response to 4 presentations of the CS–, e, and during 3 sets each comprising 4 presentations 

of the CS+, f, in the same 42 mice as in panels c, d. * denotes P = 0.005 (Wilcoxon signed-

rank test; bilateral muscimol group vs. control; significance threshold = 0.02 after Dunn-

Šidák correction for 3 comparisons). These data are consistent with past work showing the 

necessity of BLA for auditory fear conditioning49 and further demonstrate that the BLA we 

are imaging are functional and necessary for the behavior.

g) Mean ± s.e.m. percentages of time mice (n = 12) spent freezing during the 20–180 s inter-

stimulus intervals following either a CS+ or CS– presentation. CS+ and CS– freezing values 

are averages over the numbers of stimulus presentations shown in Fig. 1c. After fear 

conditioning, CS–-evoked freezing levels were above those during the inter-stimulus 

intervals, indicating the CS– did not serve as a learned safety signal.
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Extended Data Fig. 4. Ca2+ transient responses of individual BLA neurons to CS presentations 
closely resemble expectations based on electrical recordings of these responses.
To check whether fluorescence Ca2+ imaging in the BLA captured similar forms of neural 

activity as prior extracellular electrical recordings in this brain area, we compared individual 

neurons’ responses to CS presentations, as observed using the two recording modalities in 

two different sets of mice presented the same CS stimuli. Across the two datasets, there was 

close agreement between the shapes of the empirically determined Ca2+ transient waveforms 

and the expected waveforms based on the electrically recorded CS-evoked spiking 

responses.
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(a) We took a recording of CS-evoked spiking activity from an individual BLA cell (left), 
convolved the spike train with a decaying exponential function (700 ms time constant) to 

account for the kinetics of the GCaMP6m indicator (middle), and subtracted the baseline 

fluorescence level to yield a predicted CS-evoked Ca2+ fluorescence signal (ΔF/F) whose 

waveform shape closely matched the actual CS-evoked Ca2+ fluorescence signal of a BLA 

cell that we had monitored using the miniature microscope (right).
(b) Six additional examples of individual BLA neurons’ CS-evoked spiking responses, as 

monitored via extracellular electrical recordings (black traces). From these spike trains, we 

used the approach of panel a to predict the Ca2+ fluorescence signals that these cells would 

produce (red traces) and compared these predictions to the actual CS-evoked Ca2+ 

fluorescence signals of another six BLA cells that we had studied by Ca2+ imaging and that 

had similar responses (blue traces).
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Extended Data Fig. 5. Precise spatial registration of the Ca2+ imaging datasets from different 
behavioral sessions allows unambiguous tracking of individual cells across multiple days.
Using the spatial filters provided for each neuron by the automated cell sorting 

algorithm7,44, we made maps of all active cells detected in the BLA on each day of the 

study. We then used standard methods of image alignment43 to register these maps across 

the different days. Approximately 50% of all neurons observed across the entire experiment 

were detected as active on individual days.
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(a) Example maps of active BLA cells from three mice on the first (left), third (middle), and 

last (right) day of the six-day experimental protocol (Fig. 1c). Circles indicate cells that were 

active in only one of the three recordings (gray), on two of the three days (blue), or on all 

three days (red).

Scale bar: 30 μm. The maximum number of active cells seen in one session was 192.

(b) Thresholded spatial filters from three example cells registered across the six-day 

experimental protocol. Green asterisks indicate each cell’s centroid position on Day 1. Blue 

asterisks mark each cell’s centroid positions on subsequent days. Scale bar: 10 μm.

(c) Five examples of neighboring cells detected via their activity patterns on different days 

of the experiment. In each case, the two individual cells are clearly discernible. Scale bar: 10 

μm.

(d) Cumulative histogram of the distances between the centroids of all pairs of cells detected 

within the same imaging session, plotted with a logarithmic scale on the y-axis. Inset: A 

magnified view of the portion of the graph enclosed in the dashed box. No pairs of cells 

were separated by <6 µm.

(e) Cumulative histogram of the distances between the centroids of all pairs of active cells 

registered as being the same neuron seen in different sessions. Inset: Magnified view of the 

plot for y-axis values >97%. Because the worst-case alignment error of the image 

registration algorithm was 1.5 µm, as determined by a bootstrap analysis7, and since all pairs 

of anatomically distinct cells were separated by ≥ 6 µm (panel d), cell pairs separated by < 

4.5 µm were virtually guaranteed to be the same neuron seen on two different occasions. 

This yielded the worst-case estimate that >99.7% of all cell pairs registered as being the 

same cells were correctly assigned the same identity. This estimate is conservative in that the 

image registration errors were usually <1 µm.

(f) A plot of the mean ± s.e.m probability that an active neuron detected in one imaging 

session will also be active in a subsequent session, for all 3655 neurons in the study (black 
points) and for CS–-responsive neurons (gray points). Inset: Mean ± s.e.m. probability that a 

cell detected on any day in the study was present in each of the imaging sessions, for all 

3655 neurons in the study (black trace), the CS+-responsive neurons (red), and the CS–-

responsive neurons (blue). These probabilities were constant throughout the study and 

statistically indistinguishable between the three groups of cells examined for all days and all 

mice [49 ± 2% (s.e.m.) of all cells were active each day; Two-way Friedman Test; degrees of 

freedom: dfdays = 5, dfgroup = 2, dfinteraction = 10, dferr = 198, dftotal = 215 for 6 days, 3 

groups of cells and 12 mice; χ2 = 1.6–7.5; P > 0.05 for all three P-values].

(g) The total number of neurons detected in each mouse was stable across all days of the 

study (152 ± 14 cells per day; mean ± s.e.m.; n = 12 mice; One-way Friedman Test; degrees 

of freedom: dfdays = 5, dferr = 55, dftotal = 71 for 6 days and 12 mice; χ2 = 5.9; P = 0.31).

(h) Mean ± s.e.m. percentage of all 3655 cells in the study that were detected in one to six 

sessions.
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Extended Data Fig. 6. Conditioning induces bi-directional changes in CS-evoked responses.
Contrary to the predictions of the cellular, Hebbian model of fear learning, conditioning 

induced substantial bi-directional changes in the CS+-evoked responses of cells that 

responded to the US and of cells that did not respond to the US. Notably (panel a), a 

preponderance of cells that responded to both the CS+ and US before training had decreased 

CS+-evoked responses after training. Further (panel b), many cells with potentiated CS+-

evoked responses after training were not US-responsive. Ensemble level analyses showed 
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that cells with up- and down-regulated responses made equally important contributions to 

the learning-induced changes in ensemble neural coding (Fig. 3e).

(a) Mean ± s.e.m percentages of CS–-responsive cells that were also US-responsive (blue) 

and of CS+-responsive cells that were also US-responsive. The latter data are further divided 

into those cells that increased their CS+-evoked responses after training (maroon), those that 

underwent no significant changes in their CS+-evoked responses (pink), and those that 

decreased their CS+-evoked responses after training (red).

(b) Mean ± s.e.m percentages of CS–-responsive cells that were not US-responsive (blue) 

and of CS+-responsive cells that were not US-responsive. The latter data are further divided 

into those cells that increased their CS+-evoked responses after training (maroon), those that 

underwent no significant changes in their CS+-evoked responses (pink), and those that 

decreased their CS+-evoked responses after training (red).

All data are from the same 12 mice.
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Extended Data Fig. 7. BLA ensembles provide sufficient information to decode the CS, and the 
decoding accuracy improves with successive tone presentations in a series of tones.
(a) Left: A three-way decoder has three possible outputs (CS+, CS– and baseline) and hence 

different categories of possible errors. When a decoder makes a Type A error, it outputs the 

wrong CS (i.e. CS+ instead of CS–). When a decoder makes a Type B error, it fails to 

distinguish a CS presentation from baseline activity. Right: When we used all neurons’ 

activity traces to train the decoders, they determined the correct answer on 97 ± 1% (mean ± 

s.e.m.) of all trials from a testing set comprising equal numbers of samples of each type. The 
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success rate was 90 ± 2% when we trained the decoders using only those cells with 

statistically significant responses to at least one of the CS types.

(b) For trials that were incorrectly decoded, the pie charts show the proportions of the two 

types of errors, for decoders trained on the activity traces of all neurons (left), and for those 

trained using only neurons with statistically significant responses to at least one of the two 

CS types (right).
(c) Type A errors (mean ± s.e.m.) declined sharply during the first 5 of the 25 CS tone pulses 

(black curve), both before (left panel), and after (right panel) conditioning. After 

conditioning, as the 25 tone pulses proceeded the mice increasingly distinguished between 

the CS– (blue curve) and the CS+ (red curve), as seen by the differences in evoked freezing 

behavior.

(d) Schematic showing how we extracted the principal components (PCs) of the BLA 

ensemble responses to CS tone presentations. Dashed box encloses two PCs, used in panel e 
for illustration.

(e) Plots of the first two PCs, determined as in d for four example mice, illustrate that the 

ensemble responses to the CS+ (red points) and the CS– (blue points) were generally 

distinguishable. Black stars mark the first out of 25 tone pulses for each CS presentation and 

illustrate that the initial tones in the series were generally the hardest to categorize correctly.

Grewe et al. Page 29

Nature. Author manuscript; available in PMC 2017 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 8. Fisher linear discriminant analysis of BLA population activity.
(a) A notional schematic showing the Mahalanobis distance and the discrimination boundary 

of a Fisher linear discriminant analysis (FLDA) decoder (black dotted line), which 

discriminates the multi-dimensional, neural ensemble responses to CS presentations from 

the activity patterns during baseline conditions. For simplicity, the schematic shows a 

hypothetical case in which the ensemble consisted of only two neurons, but the basic 

principles readily apply to larger ensembles. For a given set of training data, the Fisher 

decoder provides the a posteriori probability that a representative data sample will be 

correctly categorized.

(b) Example histogram from one mouse showing BLA ensemble responses (Day 1) to CS 

presentations, normalized and projected onto the dimension of maximal discriminability. 

The dashed vertical line marks the classification boundary of the Fisher linear decoder, 
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dividing those ensemble responses classified as baseline from those classified as 

representing a CS. The separation between the two peaks in the histogram is an empirical 

estimate of the Mahalanobis distance, which is a multi-dimensional generalization of the 

discriminability index, d’, used in statistics21.

(c) Mean decoding performance as a function of the number of cells used for training the 

decoder (open circles) and corresponding parametric fits to a sigmoid function. When the 

training and testing data came from the same day (black curve), performance asymptotically 

approached near perfect decoding when more than ~100 cells were used. When the training 

and testing data came from different days (red curve), our datasets were not large enough to 

approach the asymptote. However, the sigmoidal fit suggests that the asymptotic 

performance of time-lapse decoders would be ~90% in cases with more than ~120 cells. 

Shading indicates s.e.m.

(d) Mean ± s.e.m. decoding performance of time-lapse CS– decoders, as a function of the 

elapsed time between the day on which the training dataset was acquired and the day on 

which the testing dataset was acquired (n = 12 mice). Despite cells’ declining re-occurrence 

probabilities as a function of elapsed time (Extended Data Fig. 5f), decoding performance 

remained stable for time-lapse intervals of 1–5 days.
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Extended Data Fig. 9. The Mahalanobis distance quantifies the discriminability of two sets of 
ensemble responses and takes into account the mean and covariance of each response set.
(a) Left: Schematic illustration of two sets of ensemble neural responses (blue and red 

clouds of data points). The Euclidean distance (gray line) between the means of the two 

distributions does not take into account the degree to which the ensemble neural responses 

are variable from trial to trial. Right: To characterize the differentiability of the two response 

sets in a way that takes into account neural variability, we determined the Mahalanobis 

distance (M) between the two distributions. To do this, we first used the covariance matrix of 

the ensemble neural responses (∑) to map the data points into a space in which the 
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distributions have unity variance in all directions. We determined M by calculating the 

distance between the means of the two resulting distributions.

(b) A change in the Mahalanobis PVD can be due to changes in the means of the two sets of 

ensemble responses, changes in response variability, or both. The schematic illustrates these 

two different ways in which the sets of ensemble responses can become more or less 

differentiable. The top row shows a pair of cases in which changes in the mean ensemble 

responses dominate the change in the PVD. The bottom row shows a pair of cases in which 

changes in response variability dominate the change in the PVD.

(c) We divided the total change in the CS+–US PVD (red curve) induced by learning into 

two components, a component due to changes in the mean CS+-evoked response (cyan 
curve) and a component due to changes in the variability of the CS+-evoked responses (black 
curve). After conditioning, the CS+-evoked responses became less variable (black curve) but 

also more similar to the US-evoked ensemble responses (cyan curve). The latter effect 

substantially outweighed the former, leading to a net ~32% decline (red curve) in the 

differentiability of the CS+- and US-evoked responses, as quantified by the net decrease in 

the Mahalanobis distance. Thin lines show the values from each of 12 individual mice. Thick 

lines show the mean values. Error bars are s.e.m.
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Extended Data Fig. 10. Procedure for computational rescue of the CS+ decoders.
Unlike time-lapse CS– decoders, which worked well across all six days of the experiment, 

time-lapse CS+ decoders did not work well when the training and testing datasets came from 

a pair of days that spanned across the conditioning session (Fig. 3b). This failure mode for 

the CS+ decoders arises from the learning-induced changes in the ensemble representation of 

the CS+ (Fig. 3c,d). However, we found that by extrapolating the changes in the CS+ 

representation that occur during the training session on Day 3, we could predict the much 

greater, subsequent changes in the CS+ representation that occur before the next session on 
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Day 4 and thereby rescue the failures of the time-lapse CS+ decoders. This figure 

schematizes the procedure for the computational rescue.

(a) Schematic illustration of how conditioning-induced changes in CS+-evoked ensemble 

activity (light and dark red dots) can impair the performance of a time-lapse decoder trained 

on data from before fear conditioning and tested on data from after conditioning.

(b) Through five main steps, we computationally simulated the changes in the CS+-

representation that occurred during post-training consolidation, by extrapolating by a factor, 

q, the much smaller changes in the CS+-representation that occurred during the Day 3 

training session.

(c) To determine the optimal value of q, the extrapolation factor, we simulated the post-

training changes in the CS+-representation by computationally adjusting the CS+ population 

vectors in increments of ΔA, the modest change in coding that occurred on Day 3. 

Increments of 3–5 times ΔA were optimal, in that they best rescued the capabilities of two-

way decoders trained on either of Days 1 or 2 to detect a CS+ presentation when tested on 

data from after training (Days 4–6), or vice versa. (Each datum shows the mean ± s.e.m 

decoding performance, averaged across 12 mice and the 12 possible pair-wise combinations 

per mouse of one pre- and one post-training day). The same analysis of the CS– 

representation scarcely yielded any change in decoding performance, because the effects of 

training (ΔA) for the CS– were negligible. Decoders trained on temporally shuffled data 

(1000 shuffles; gray curve) and those based only on cells with up- (green) or down-regulated 

(purple) responses to the CS+ after training performed less successfully than decoders based 

on all cells (brown).
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Fig. 1. Ca2+ imaging of BLA neural activity across a six-day fear conditioning protocol.
(a) A miniature microscope and implanted microendoscope allowed large-scale neural Ca2+ 

imaging.

(b) Traces of spontaneous Ca2+ activity from 15 BLA neurons.

(c) Upper, Conditioning protocol, with numbers of stimuli. Lower, Mean ± s.e.m. 

percentages of time 12 mice froze during CS+ and CS– presentations. Values are respectively 

averaged over 5 and 4 stimulus presentations, before and after conditioning.

(d) Activity traces of cells responsive to CS+ or CS– presentations before conditioning.

(e) Map of BLA cells in one mouse. Colored cells responded to CS+ or CS– tones.

Traces in b and d were down-sampled to 200 ms time bins.
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Fig. 2. Fear conditioning induces bi-directional changes in BLA signaling.
(a) Percentages (± s.e.m.) of cells responding to the CS+, CS–, or both stimuli.

(b) Ca2+ signals, showing changes in CS+ encoding and stable CS– encoding for two sets of 

125 cells detected throughout the study. Top, Cells responsive to the CS+ on at least one day. 

Bottom, Cells that either responded to the CS– on one or more days, or lacked responses to 

both CS types. Colors show each cell’s Ca2+ response averaged over 5 CS presentations on 

the day the cell responded maximally, for days before and after fear conditioning (FC). Cells 

are arranged by whether they responded maximally before or after conditioning.

(c) Ca2+ signals from four cells, before (left, mean over 5 CS+ presentations), during 

(middle, single trial), and after (right, mean over 5 CS+ presentations) conditioning, 

illustrating altered responses to the CS+ (top two traces) or US (bottom two traces).

(d) Percentages (± s.e.m.) of cells after conditioning with stable, increased or decreased 

responses to the CS+ (red), CS– (blue) and US (black), respectively based on 231, 362 and 

261 neurons. Cells in the former two charts responded to the CS on at least one day before 

or after conditioning. Cells in the latter chart responded significantly to the US on Day 3.

Traces in b and c were down-sampled to 200 ms time bins. a, b, d are from N=12 mice.
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Fig. 3. Learning increases the similarity of the CS+ and US representations.
(a) Accuracies of same-day, three-way decoders discriminating baseline, CS+ and CS– 

presentations. Decoders based on CS-responsive cells (green curve) nearly matched those 

using all cells (brown). Decoders based on cells un-responsive to the CS (purple) performed 

poorly, but better than decoders given temporally shuffled Ca2+ traces (gray dotted line) or 

shuffled cell identities (green dotted line). 152 ± 14 (s.e.m.) cells per day per mouse (3655 

cells total; 12 mice). Shading denotes s.e.m.

(b) Accuracies of inter-day, binary decoders distinguishing CS– (left) or CS+ (right) 
presentations from baseline conditions.

(c) Population vector distances (PVD) between US-evoked ensemble activity and that 

evoked by the CS– (blue) or CS+ (red) during conditioning (Day 3). CS+–US PVDs declined 

by an amount Δ1 as responses to the two stimuli gained similarity. Dashed vertical line 

separates early and late CS+–US pairings; to calculate Δ1 we compared these two portions of 

the session. 155 ± 11 (s.e.m.) cells per mouse on Day 3 (1860 cells total; 12 mice).

(d) CS+–US PVDs declined during and after training, indicating increased similarity of the 

two representations. Δ2 is the difference in PVD values before vs. after training (3655 cells).

(e) Upper, Composition of the changes, Δ1, in CS+–US PVDs between early and late phases 

of training, defined in c. Lower, Analogous graph for Δ2, showing how CS+–US PVDs 

changed from before (Days 1,2) to after (Days 4–6) conditioning. To decompose Δ1 and Δ2 

we examined cells with stable (white), up- (light gray) or down-regulated (dark gray) 

responses to the CS+, and cells with up- or down-regulated responses to the US (black). 

Error bars: s.e.m.

(f) Before conditioning, population vector representations of the US (blue) and CS+ (pink) 

were orthogonal [88° ± 4° (s.e.m.); 12 mice]. Afterward, the CS+ population vector (orange) 

was 210 ± 20% longer, rotated 32° ± 3° from its initial orientation, and had a 61° ± 4° angle 

to the US representation, indicating the rotation was in the plane defined by the US-

representation and that of the initial CS+. These changes differed from predictions of 

Hebbian potentiation (maroon) [angle and length changes each P < 10-4 ; rank-sum test].

(g) Mean accuracies of time-lapse decoders after computational rescue of their ability to 

distinguish CS+ presentations from baseline. For each pairing of one pre- and one post-

training day (pairs inside gray rectangles), we rescued population vectors from the testing 

day by applying the optimal transformation, determined as in Extended Data Fig. 10c.
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Fig. 4. During behavioral extinction, the CS+ representation becomes more distinguishable from 
the US representation but does not revert to its initial form.
(a) Ca2+ signals from two neurons, illustrating bi-directional plasticity of CS+-evoked 

responses in early (left), middle (center), and late (right) phases of fear extinction on Day 4. 

Gray lines: Individual CS+ presentations (4 per set). Black lines: Mean responses. Inset: 
Magnified view of responses to individual CS+ tone pulses.

(b) Population vector distances (PVDs) between CS- and US-evoked activity during 

extinction (Days 4–6), for individual mice (thin lines) and averaged across 12 mice (thick 
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lines) for 12 CS+ and 4 CS– presentations per day (2181 total cells). CS+–US PVDs (red 
lines) increased by an amount, Δ3, within the sessions after fear conditioning (FC). CS––US 

PVDs (blue lines) were stable.

(c) Composition of the change in PVD, Δ3, in b, from cells with stable (white), increased 

(light gray), or decreased (dark gray) responses to the CS+ after training. **: P < 0.001 

(signed-rank test; 12 mice).

(d) Within individual sessions, the CS+ representation changed at similar rates during 

learning and extinction (quantified by the change in mean CS+–US PVD per CS+ 

presentation; P = 0.6; signed-rank test; 12 mice).

(e) During extinction sessions (Days 4–6), there was little change (Δ4) in the mean PVDs 

(thick lines) between CS+ and CS– representations and their initial forms before 

conditioning (averaged over Days 1, 2). Thin lines: data from individual mice.

(f) Overnight consolidation induced long-term changes in the CS+ representation 24 h after 

conditioning (Day 3) but not after extinction training (Days 4, 5). Horizontal line marks 

where coding changes from training are neither amplified nor diminished in consolidation. 

Numbers above each dataset denote mean coding changes occurring overnight after each 

day, i.e. a 450% increase after Day 3, and reductions to 7% and 14% of their values after 

Ca2+ imaging on Days 4 and 5. Open diamonds: values from 12 individual mice. ***: P < 

0.001 (signed-rank test; Day 3 vs. Days 4 or 5).

All error bars are s.e.m.
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Fig. 5. The similarity of the CS+ and US representations encodes the CS+–US association 
strength.
(a) CS+–US PVDs for each CS+ presentation, normalized to the CS+–US PVD for the 

mouse’s first CS+ presentation, are predictive of the freezing level that each CS+ evoked 

before and during conditioning (left), and during extinction (middle). CS––US PVDs (right) 
lack this relationship. a and b are based on 3655 neurons in 12 mice. Black lines: linear fits.

(b) Within each 25-s CS+, the 1 s time bins with and without freezing had a near unity ratio 

between their CS+–US PVD values, irrespective of the evoked freezing level.

(c) How much each mouse (individual data points) exhibited post-training changes in the 

CS+–US PVD was predictive of its learned, CS+-evoked freezing behavior. Black line: linear 

fit (r = 0.7; P <10-3). Error bars: s.e.m. across 6 pair-wise comparisons of one day before 

(Days, 1, 2) and one day after training (Days 4–6) for each mouse.

(d) How much each mouse (data points) exhibited a changed CS+–US PVD between the first 

6 CS+ on Day 4 versus the first 6 CS+ on Day 6 was predictive of its loss of CS+-evoked 

freezing. Black line: linear fit (r = 0.9; P <10-3). Blue points denote mice with significant 

consolidated extinction (signed-rank test comparing time spent freezing between the two 

sets of CS+ presentations; P < 0.05). Error bars: s.e.m. across the 6 pair-wise comparisons of 

one CS+ from among the first six presentations on Day 4 and the corresponding CS+ from 

the first six presented on Day 6.

(e) Schematic of CS+ population vector changes during learning and extinction. During 

learning, this vector doubles in length. It also rotates directly toward and becomes less 

differentiable from the US population vector, supporting a model in which the US 

representation provides a learning supervision signal. During acute extinction, the CS+ 

population vector shrinks ~20% and rotates ~5–8° out of the plane defined by the US and 

the initial CS+.
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