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Abstract

Background: Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria
gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore,
mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on
the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome
response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of
aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the
implications of the robust transcriptional response to anaerobic growth.

Results: We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in
response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic
plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq
results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as
several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed
expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We
also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive
to iron and/or oxidative stress.

Conclusions: Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during
the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous
studies would suggest. Many new targets for future research have been uncovered, and the results derived from
this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been
overlooked.

Background
N. gonorrhoeae was long considered to be an obligate
aerobe until it was discovered that anaerobic growth
was possible when nitrite or nitric oxide (NO) was used
as a terminal electron acceptor [1,2]. Anaerobic growth
is accomplished through utilization of a truncated deni-
trification pathway, which is encoded within the gono-
coccal genome as a pair of divergently transcribed
genes, aniA, encoding a nitrite reductase, and norB,
encoding a nitric oxide reductase [3,4]. Anaerobiosis is
presumed to be a physiologically significant state during
infection, as the gonococcus is often recovered from

infected individuals in co-culture with obligate anae-
robes such as Peptococcus and Bacteroides spp. [5].
Furthermore, gonococci have been shown to induce and
repress the expression of several genes in response to
anaerobiosis, and antibody to AniA, the major anaerobi-
cally induced outer membrane protein, can be found in
sera from infected women, demonstrating that this pro-
tein is expressed in vivo [6,7].
The ability of gonococci to utilize this denitrification

pathway to reduce NO may have immunomodulary
effects during the course of infection. Some evidence
suggests that the gonococcal reduction of host-produced
NO may be responsible, at least in part, for the high
incidence of asymptomatic disease [4,8,9]. In vitro, N.
gonorrhoeae was shown to be capable of setting a NO
steady-state level in the anti-inflammatory range [8].

* Correspondence: ginny_clark@urmc.rochester.edu
Department of Microbiology and Immunology, School of Medicine and
Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester,
NY 14642, USA

Isabella and Clark BMC Genomics 2011, 12:51
http://www.biomedcentral.com/1471-2164/12/51

© 2011 Isabella and Clark; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:ginny_clark@urmc.rochester.edu
http://creativecommons.org/licenses/by/2.0


Recently, in an in vitro cervical cell model of infection, it
was shown that gonococcal activation of iNOS pro-
moted bacterial survival. In this study, it was suggested
that host-derived nitric oxide is not protective against
gonococci, rather, nitric oxide may actually be required
to sustain cervical bacterial disease [10].
Previous research has shown that the genes involved

in denitrification and/or adaptation to anaerobic growth
in Neisseria spp. are subject to transcriptional regulation
by the oxygen-sensitive regulator, FNR, the NO-sensitive
repressor, NsrR, and the nitrite-insensitive two compo-
nent system, NarQP [3,4,7,11,12]. Earlier data from a
microarray-based approach suggested that the gonococ-
cal FNR-regulon was composed of fourteen activated
and six repressed transcripts, making the gonococcal
FNR regulon much smaller than that of E. coli, where
FNR was shown to regulate more than 100 operons
[7,13]. Discovery of NsrR and NarQP-regulated genes in
Neisseria spp. has relied mainly on in silico analysis of
intergenic chromosomal regions to identify similarity to
previously defined regulator binding sites. As is the case
with FNR, the neisserial NsrR and NarQP regulons, at
least the currently defined members, are much smaller
than their E. coli counterparts [3,12,14,15].
In this study we employ a powerful whole-genome

approach, RNA-seq, to quantitatively sequence the com-
plete gonococcal transcriptome. Using this method we
were able to define global changes in gene expression in
response to anaerobiosis. We show that the gonococcal
anaerobic stimulon is not small, and that 198 chromoso-
mal open reading frames (~10% of the genome) are dif-
ferentially expressed. We present several novel findings
that, taken together, support the view that anaerobic
growth is an important facet of life for this organism,
and should be considered when studying the host/
pathogen interaction.

Results and Discussion
Sequencing the gonococcal transcriptome
Whole genome mRNA sequencing is an attractive
method of monitoring global changes in gene expression
while overcoming many of the pitfalls of traditional
DNA microarrays [16]. For the purposes of this study,
anaerobic conditions were defined as anoxia, the pre-
sence of nitrite (an electron acceptor required for anae-
robic growth) and the concomitant presence of nitric
oxide (the product of nitrite reduction). In order to
define the gonococcal anaerobic stimulon, RNA-seq was
performed on two biological replicates of aerobically or
anaerobically plate-grown gonococci using the ABI
SOLiD™ system (see methods). Unique sequence reads
from the RNA-seq data were mapped to the annotated
FA1090 genome, and gene expression was quantified as
reads per kilobase of coding sequence per million reads

(RPKM) (See additional file 1: Supplementary Table S1).
When expression data for each replicate were plotted
against each other, RPKM values were observed to be
adequately reproducible (Figure 1A), though expectedly,
the extent of reproducibility was slightly less in genes
with low expression [17]. For this reason, we required
mapped genes to have an RPKM ≥ 10 in order to be
considered as a candidate for differential expression.
However, genes that had an RPMK < 10 under one
growth condition, but were highly induced in the other

Figure 1 Reproducibility of expression level between
replicates. (A) The RPKM of all genes with non-zero expression, (B)
anaerobically induced, and (C) anaerobically repressed genes were
plotted, with the RPKM of replicate 1 plotted on the x-axis, and the
RPKM of replicate 2 plotted on the y-axis. Each spot represents a
single gene. Blue circles represent genes expressed aerobically, and
red squares represent genes expressed anaerobically. For (B) and (C)
a line of m = 1 is included in the chart area.
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condition were accepted as candidates. Genes were con-
sidered to be differentially expressed if there was a
three-fold or greater difference in RPKM between the
two growth conditions.
Analysis of RNA-seq data revealed that 198 chromoso-
mal genes met the criteria for being differentially
expressed, with 117 genes being anaerobically induced
and 81 genes being anaerobically repressed (Table 1).
Figure 1B and 1C illustrate a reasonable measure of
reproducibility in expression level between replicates in
the 198 differentially expressed genes.
As expected, anaerobic expression levels cluster at

higher RPKM values in the set of anaerobically induced
genes (Figure 1B), while the opposite is true in anaerobi-
cally repressed genes (Figure 1C).

Secondary verification of differentially expressed genes
Many of the genes found to have been differentially
expressed by RNA-seq have previously been determined
to be members of the Neisserial FNR or NsrR regulons,
validating the use of this technique to monitor tran-
scriptome changes (Table 1) [3,7,18,19]. To further cor-
roborate the RNA-seq data, several genes shown to be
differentially expressed were selected for secondary con-
firmation. Analysis of translational promoter-lacZ
fusions or RT-PCR was used to accomplish this task
(Figure 2 and 3). Analysis of translational promoter-lacZ
fusions demonstrated that the genes encoding heat
shock protein, ClpB (NGO1046), DNA repair enzyme,
RecN (NGO0318), nitropropane dioxygenase, Npd
(NGO1024), filamentous hemagglutinin, HecA
(NGO0706), glutaredoxin, Grx3 (NGO0114), bacterio-
ferritin, BfrA (NGO0794) and repressor protein LexA
(NGO1427) were significantly upregulated anaerobically
(Figure 2A-G). RT-PCR confirmed that 2-isopropylma-
late synthase, leu1 (NGO0848), and adhesin, lecA
(NGO1981), were also increased in expression anaerobi-
cally (Figure 3).
Translational promoter-lacZ fusions to the genes

encoding the iron-binding protein, FbpA (NGO0217),
and the solute binding protein, OxiA (NGO0372)
confirmed that these genes are anaerobically repressed
(Figure 2 H, I). RT-PCR confirmed that NGO0108,
L-lactate dehydrogenase, lldD (NGO0639), thioredoxin,
trx1 (NGO0652), heme oxygenase, hemO (NGO1318),
and NADH dehydrogenase component, nqrA
(NGO1413) were also anaerobically repressed (Figure 3).
Analysis of raw RNA-seq data allows for the prediction

of transcription start sites, -10, and -35 elements, as has
been described in RNA-seq projects in both Helicobacter
pylori and Listeria monocytogenes [20,21]. Compared to
E. coli, the use of alternative sigma factors in the gono-
coccus is very limited. Gonococci have no sigma-54
homolog, and only utilize sigma factors in the sigma-70

family. This class of sigma factors recognize -10 and -35
elements within bacterial promoters [22]. The predictions
of transcriptional elements for the individual genes
selected for secondary analysis are shown in Figure 2.
These predictions were generally a high match to the E.
coli consensus for transcriptional elements (-35,
5’-TTGACA, -10, 5’-TATAAT) or the a-proteobacteria
consensus for RpoH-dependent transcriptional elements
(-35, 5’-CTTG, -10, 5’-CC/TTATNTNNG) [23]. The abil-
ity to predict the location of these transcriptional ele-
ments in a large scale manner will prove very useful in
the search for potential regulatory sites, and will aid in
future work to define gonococcal transcriptional
networks.

Differentially expressed genes involved in
macromolecular biosynthesis
The genes found to be differentially expressed in
response to anaerobic growth were broadly character-
ized according to their putative function (Table 1, Fig-
ure 4). Several genes encoding proteins involved in
macromolecular synthesis displayed decreased expres-
sion under anaerobic conditions. The synthesis of ribo-
somal proteins is strongly related to growth rate, and
ribosomal protein synthesis has been documented to
decrease during times of energy deficiency [24-26]. For
facultative anaerobes, growth in an oxygen-limited
environment is more energetically-deprived than in
aerobic conditions. The reduced synthesis of ribosomal
proteins is indicative of adaptation to a slower growth
rate following recovery from a nutritional shift-down.
The reduced expression of RNA polymerase b an b’
subunits is also indicative of this (Table 1), and has
been observed in E. coli as well [27].

Genes involved in transport and binding
Many genes encoding proteins involved in transport and
binding were found to be anaerobically repressed
(Table 1, Figure 4). Most of these proteins are involved
in the transport of amino acids, sugars, or other growth
metabolites into the cell. This result comes as no sur-
prise, as a slower anaerobic growth rate would result in
decreased demand and slower utilization of such sub-
strates. Proteins of this type were also shown to be
downregulated anaerobically in E. coli, P. aeruginosa,
and S. enterica [28-30]. Three repressed genes, fbpA,
hemO, and ompU, are involved in the acquisition and/or
transport of iron into the cell. In S. enterica, expression
of the gene encoding iron acquisition protein, SitA, was
also found to be repressed anaerobically [30].
While genes involved in iron acquisition and transport

are repressed anaerobically, the genes encoding the
iron-storage bacterioferritin proteins, BfrA and BfrB are
induced (Table 1, Figure 2F). Three other proteins

Isabella and Clark BMC Genomics 2011, 12:51
http://www.biomedcentral.com/1471-2164/12/51

Page 3 of 24



Table 1 Chromosomal genes differentially expressed in response to anaerobic conditionsa

Gene ORF ID Rep
1b

Rep
2

Definitionc Regulond

Small molecule biosynthesis

hda NGO0187 4.1 4.1 Histone deacetylase-like protein/acetoin utilization protein

pdxH NGO0658 4.3 5.5 Pyridoxamine 5-phosphate oxidase MtrR

mobA NGO0754 3.5 4.6 Molybdopterin-guanine dinucleotide biosynthesis protein NsrR

leu1 NGO0848 6.6 4.5 2-isopropylmalate synthase

folA NGO1694 3.8 2.8 Dihydrofolate reductase RpoH

Transport and binding proteins

fHBP NGO0033 3.5 4.2 Factor H binding protein

hecA NGO0706 3.2 4.9 Filamentous hemagglutinin

bfrA NGO0794 14.1 9.9 Bacterioferritin A

bfrB NGO0795 9.7 10.1 Bacterioferritin B MtrR

pil NGO1177 3.5 3.5 Neisseria-specific type IV pilin-related protein

NGO1440 4.4 2.8 ABC-type amino acid transporter, periplasmic protein

lecA NGO1981 5.0 3.9 Adhesin protein Lrp

Energy metabolism/Oxidation-Reduction

cybP NGO0805 3.2 2.8 Nickel-dependent hydrogenase, b-type cytochrome subunit

npd NGO1024 9.6 7.9 2-Nitropropane dioxygenase-like MtrR

aniA NGO1276 28.4 28.0 Nitrite reductase NsrR, FNR

eftD NGO1396 5.2 5.1 Electron transfer flavoprotein-ubiquinone oxidoreductase

Macromolecular biosynthesis

rl34 NGO2182 3.0 3. 1 50S ribosomal protein L34

Regulation

farR NGO0058 4.0 3.7 MarR family transcriptional regulator Lrp, MtrR

nmlR NGO0602 7.2 7.6 Transcriptional regulator nmlR NmlR, FNR

xre NGO0797 3.2 3.4 XRE family transcriptional regulator

marR NGO1244 5.4 15.2 MarR-family transcriptional regulator RpoH, MtrR

nosRa NGO1401/
1402

9.4 9.5 Regulator of nitrous oxide reductase pseudogenes FNR

lexA NGO1427 4.2 5.3 LexA-family repressor LexA

arsR NGO1562 6.1 2.2 ArsR-family transcriptional regulator

Cell Structure

ompA NGO1559 3.7 3.4 Outer membrane protein

lpcA NGO1986 4.2 6.1 Phosphoheptose isomerase

Adaptation and stress response

grx3 NGO0114 3.3 6.6 Glutaredoxin 3 Fur

recN NGO0318 4.7 5.5 Repair protein RecN Fur, LexA

htpX NGO0399 11.8 8.6 Heat shock protein, Peptidase family M48 Lrp

dnrN NGO0653 8.9 12.3 Iron-sulfur cluster repair protein NsrR, FNR

NGO0757 2.6 4.1 Putative periplasmic Cpx-family sensor kinase involved in P pilus formation

hslR NGO0822 2.7 5.0 Heat shock protein HSP-15

NGO1022 3.8 3.4 DEDDh family exonuclease

clpB NGO1046 4.9 9.4 Endopeptidase Clp ATP-binding chain B (HSP- F84.1) RpoH, MtrR

recX NGO1053 3.6 2.8 RecX-family regulator of RecA function

tehB NGO1161 2.6 4.0 Tellurite resistance protein
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditionsa (Continued)

hsp33 NGO1189 6.1 5.2 Heat shock protein HSP-33 chaperonin MtrR

NGO1245 4.0 8.5 ABC-type multidrug transport system, ATPase/permease

hit NGO1273 2.3 5.5 Protein Kinase C Interacting protein belonging to the ubiquitous HIT family of hydrolases that
act on alpha-phosphates of ribonucleotides

nudH NGO1334 3.3 3.3 Nudix hydrolase, dinucleoside polyphosphate hydrolase

grpE NGO1422 3.6 2.7 Heat shock protein (HSP-70 cofactor; nucleotide exchange factor) RpoH, MtrR

erpA NGO1426 2.8 2.6 Putative iron-sulfur cluster insertion protein RpoH, Lrp

dnaK NGO1429 2.7 3.4 Heat shock protein, chaperone RpoH

NGO1566 3.4 3.1 Nudix hydrolase, catalyzing the hydrolysis of nucleoside diphosphates

ntrA NGO1702 3.5 20.1 Nitroreductase-like family containing uncharacterized proteins similar to nitroreductase

ccp NGO1769 5.6 12.1 Cytochrome c peroxidase

yhhF NGO1860 3.7 4.1 Probable DNA methylase

dnaJ NGO1901 2.8 5.1 Heat shock protein HSP-40 RpoH

Hypothetical or Unassigned

NGO0010 5.1 7.2 Neisseria-specific protein, uncharacterized

NGO0011 3.2 3.0 Conserved hypothetical protein

NGO0119 5.4 5.1 Neisseria-specific protein, uncharacterized; possible ribonuclease

NGO0165 3.2 5.9 Neisseria-specific protein, uncharacterized

NGO0569 3.8 2.1 Conserved hypothetical protein (possible transcriptional regulator)

NGO0570 3.5 3.4 Possible DNA-binding CreA protein RpoH

NGO0618 3.3 2.7 Neisseria-specific protein, uncharacterized

DUF331 4.1 7.8 Uncharacterized protein family DUF331; the function of this family is unknown

NGO0802 3.7 4.0 Hypothetical protein (possible Neisseria-specific protein)

NGO0854 3.6 8.4 Hypothetical protein

NGO0895 6.4 4.6 Neisseria-specific protein, uncharacterized

NGO0896 4.1 5.0 Hypothetical protein

NGO0995 3.1 3.3 Neisseria-specific protein, uncharacterized

NGO1033 4.3 6.8 Probable transglycosylase

NGO1037 4.4 5.2 Hypothetical protein

NGO1191 3.5 2.7 Neisseria-specific protein, uncharacterized

NGO1277 6.6 7.0 Conserved hypothetical protein (NirV) FGE- sulfatase super family.

NGO1428 14.3 8.4 Neisseria-specific protein, uncharacterized LexA

NGO1517 4.8 4.8 Neisseria-specific protein, uncharacterized NsrR

NGO1793 6.4 4.3 Conserved hypothetical protein (probable integral membrane protein)

NGO1987 3.1 4.4 Uncharacterized protein family UPF0102; the function of this family is unknown

NGO2023 2.4 7.3 Conserved hypothetical protein

Small RNA
fnrSc

24.9 17.8 Probable small regulatory RNA FNR

Gene ORF ID Rep
1

Rep
2

Definition Regulon

Ngo F 1 phage

NGO0463 9.2 5.9 Putative phage associated protein

NGO0464 12.3 9.0 Putative phage associated protein

NGO0465 15.4 7.3 Putative phage associated protein

NGO0467 23.6 29.8 Putative phage associated protein

NGO0472 94.6 19.7 Putative phage associated protein FNR

dnaB NGO0485 6.1 4.2 Replicative DNA helicase

NGO0488 4.2 10.0 Putative phage associated protein
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditionsa (Continued)

NGO0489 10.2 16.9 Phage Holliday junction resolvase (RusA-like) protein

NGO0491 14.2 5.1 Putative phage associated protein

NGO0492 8.7 6.6 Putative phage associated protein

NGO0494 10.0 10.9 Putative phage associated protein

NGO0495 9.6 7.6 Putative phage associated protein

NGO0496 16.1 12.9 Putative phage associated protein

NGO0497 24.1 17.0 Putative phage associated protein

NGO0498 18.0 9.5 Putative phage associated protein

NGO0499 17.4 12.9 Putative phage associated protein

NGO0500 17.6 6.6 Putative phage associated protein

NGO0501 27.4 9.1 Putative phage associated protein

NGO0502 47.2 6.8 Putative phage associated protein

NGO0503 6.0 4.8 Putative phage associated protein

NGO0504 14.4 5.2 Putative phage associated protein

NGO0506 15.9 11.3 Putative phage associated protein

NGO0507 22.3 12.1 Putative phage associated protein

NGO0508 15.6 11.1 Putative phage associated protein

NGO0509 3.5 3.6 Putative phage associated protein

NGO0510 7.1 5.6 Putative phage associated protein

NGO0512 9.4 13.2 Putative phage associated protein

NGO0513 4.9 5.2 Putative phage associated protein

NGO0514 9.8 6.2 Putative phage associated protein

NGO0522 9.4 5.6 Putative phage associated protein

Ngo F2 phage

NGO1100 4.1 5.0 Putative phage associated protein

NGO1120 75.5 16.0 Putative phage associated protein

NGO1131 19.4 16.8 Putative phage associated protein

NGO1132 11.3 16.2 Putative phage associated protein

Ngo F3 phage

NGO1614 8.2 11.0 Putative phage associated protein

NGO1615 10.3 7.2 Conserved hypothetical protein (type I restriction enzyme related) FNR

NGO1624 34.0 16.0 Putative phage associated protein

NGO1627 6.6 4.4 Conserved hypothetical protein (probable phage origin)

NGO1628 7.6 4.9 Putative phage associated protein

NGO1633 26.9 137.3 Putative phage associated protein

NGO1634 27.4 18.8 Putative phage associated protein

NGO1635 58.1 5.4 Putative phage associated protein

NGO1636 26.4 10.0 Putative phage associated protein

NGO1637 16.6 5.5 Putative phage associated protein

NGO1640 22.4 10.6 Putative phage associated protein

Ngo F5 phage

NGO0731 5.1 7.3 Putative phage associated protein

NGO0732 3.3 2.2 Putative phage associated protein

Gene ID Rep
1

Rep
2

Definition Regulon

Small molecule biosynthesis

cysK NGO0340 -2.8 -6.7 Cysteine synthase FNR

hesB NGO0632 -3.8 -4.0 Iron-sulfur cluster biosynthesis
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditionsa (Continued)

iscU NGO0633 -4.8 -5.3 Iron-sulfur cluster assembly scaffold protein

iscS NGO0636 -4.8 -5.6 Cysteine desulferase

hisD NGO1240 -3.3 -3.2 Histidinol dehydrogenase

pgsA NGO1247 -3.8 -7.1 CDP-alcohol phosphatidyltransferase

asd NGO1997 -3.3 -5.0 Aspartate-semialdehyde dehydrogenase

Transport and binding proteins

gluP NGO0142 -3.1 -4.3 Glucose/galactose transporter

nhaC NGO0143 -2.8 -3.3 Na+/H+ antiporter (NhaC)

amtB NGO0198 -3.7 -5.3 Ammonium Transporter Family

fbp NGO0217 -4.8 -5.6 ABC-type iron transporter, periplasmic binding protein Fur, Lrp

oxiA NGO0372 -6.7 -20.0 Bacterial extracellular solute-binding protein FarR

NGO0373 -3.7 -11.1 ABC-type arginine transport system, permease component FarR

glnQ NGO0374 -2.9 -11.1 ABC-type amino acid transporter, ATP-binding protein FarR, FNR

citT NGO0377 -5.6 -9.1 Di- and tri-carboxylate transporters (inorganic ion transport)

cysA NGO0445 -5.6 -9.1 ABC-type sulfate transporter, ATP-binding protein Lrp

sbp NGO0877 -4.8 -25.0 ABC-related sulfate-binding protein

NGO1290 -3.8 -3.3 Putative sodium/alanine symport protein

hemO NGO1318 -7.1 -12.5 Heme oxygenase/iron starvation protein Fur

lldP NGO1361 -9.1 -8.3 L-lactate permease (partial only)

exbD NGO1377 -3.4 -3.6 Membrane bound biopolymer transport protein ExbD/TolR

exbB NGO1378 -3.1 -5.0 Transport protein

lctP NGO1449 -4.0 -14.3 L-lactate permease

potF NGO1494 -7.7 -20.0 ABC-type spermidine/putrescine transporter, solute binding protein MtrR

putP NGO1552 -5.6 -11.1 Sodium/proline symport protein

ompU NGO1688 -2.6 -3.7 Putative iron uptake protein FNR

yaaJ NGO1787 -3.3 -4.3 Sodium/alanine symport protein

NGO1807 -2.7 -3.8 Amino-acid symport protein

gltS NGO1890 -3.1 -5.0 Sodium/glutamate symport protein MtrR

NGO1954 -3.6 -6.3 Di- and tri-peptide permease, PRT2

sstT NGO1957 -4.5 -11.1 Sodium/serine symport protein

glnM NGO2011 -6.7 -12.5 ABC-type amino acid transport system, permease component MtrR, FarR

glnP NGO2012 -10.0 -10.0 ABC-type amino acid transport system, permease component FarR

glnQ NGO2013 -6.3 -11.1 ABC-type amino acid transporter, ATP-binding protein MtrR, FarR

apaA NGO2014 -6.3 -16.7 Bacterial extracellular solute-binding proteins, family 3 MtrR, FarR

NGO2016 -3.6 -3.3 Predicted permease

NGO2096 -6.3 -12.5 SNF family sodium-dependent transporter

Energy metabolism/Oxidation-Reduction

NGO0108 -4.0 -5.9 NADPH-dependent FMN reductase Fur, Lrp

lldD NGO0639 -7.1 -11.1 L-lactate dehydrogenase

eda NGO0713 -3.0 -5.6 KHG-KDPG bifunctional aldolase

rpeC NGO0758 -4.8 -3.8 Ribulose-phosphate 3-epimerase

fdx NGO0825 -5.3 -5.3 Ferredoxin

cisY NGO0918 -3.6 -3.8 Type II citrate synthase Lrp

sdhB NGO0920 -2.9 -4.2 Succinate dehydrogenase, iron-sulfur protein Lrp

sdhA NGO0921 -3.7 -3.4 Succinate dehydrogenase, flavoprotein subunit Lrp

sdhD NGO0922 -2.9 -3.4 Succinate dehydrogenase, membrane anchor protein

sdhC NGO0923 -1.8 -4.2 Succinate dehydrogenase, cytochrome b556 chain

fumC NG01029 -2.9 -6.3 Fumarate hydratase Fur, MtrR

gpmA NGO1258 -4.0 -5.6 Phosphoglyceromutase Lrp
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditionsa (Continued)

nqrA NGO1413 -4.0 -7.7 Na(+)-translocating NADH-quinone reductase subunit A

nqrB NGO1414 -5.0 -8.3 Na(+)-translocating NADH-quinone reductase subunit B

nqrC NGO1415 -4.2 -8.3 Na(+)-translocating NADH-quinone reductase subunit C

nqrD NGO1416 -3.8 -16.7 Na(+)-translocating NADH-quinone reductase subunit D

nqrE NGO1417 -4.3 -12.5 Na(+)-translocating NADH-quinone reductase subunit E

nqrF NGO1418 -3.7 -9.1 Na(+)-translocating NADH-quinone reductase subunit F MtrR

dadA NGO1808 -3.6 -5.3 D-amino acid dehydrogenase small subunit

mqo NGO1980 -3.7 -5.0 Malate:quinone oxidoreductase

Macromolecular biosynthesis

greB NGO0262 -3.7 -5.3 Transcription elongation factor

parC NGO1259 -3.8 -2.9 DNA topoisomerase IV subunit A

NGO1261 -6.3 -7.1 S-adenosylmethionine-dependent methyltransferase

rplP NGO1831.1 -3.2 -6.3 50S ribosomal protein L16 Lrp

rpsC NGO1832 -3.2 -7.7 30S ribosomal protein S3 Lrp

rplV NGO1833 -2.9 -10.0 50S ribosomal protein L22

rpsS NGO1834 -2.8 -12.5 30S ribosomal protein S19

rplD NGO1837 -2.2 -7.1 50S ribosomal protein L4

rspJ NGO1841 -2.7 -7.1 30S ribosomal protein S10 Lrp

rpoC NGO1850 -3.3 -5.0 DNA-directed RNA polymerase subunit beta’

rpoB NGO1851 -2.1 -4.5 DNA-directed RNA polymerase subunit beta

Cell Structure

nspA NGO0233 -3.1 -3.7 Outer membrane protein (Probable Opa protein)

GNA2132 NGO1958 -5.3 -8.3 Predicted lipoprotein GNA2132

lgtG NGO2072 -7.7 -6.3 Probable lipooligosaccharide glycosyl transferase G

Adaptation and stress response

cspA NGO0410 -3.8 -3.3 Cold shock protein

trxB NGO0580 -2.6 -4.8 Thioredoxin reductase NmlR

trx1 NGO0652 -5.3 -6.3 Thioredoxin I Fur

cstA NGO1064 -3.8 -12.5 Putative carbon starvation protein

mtrF NGO1368 -7.7 -25.0 Antibiotic resistance efflux pump component MtrR, FarR

sspB NGO2131 -4.5 -3.6 Protease specificity-enhancing factor

Hypothetical or unassigned

NGO0554 -4.5 -5.0 Hypothetical protein Fur

NGO0635 -4.8 -3.6 Hypothetical protein

NGO1065 -4.8 -7.7 Hypothetical protein

NGO2097 -3.7 -3.1 Conserved hypothetical protein

Small RNA

nrrFe -4.8 -7.7 Fur-repressed small regulatory RNA Fur
a Gonococci grown in an anaerobe chamber on plates containing 5 mM nitrite.
b The fold change for each replicate was calculated by comparing RPKM values of anaerobically grown gonococci to RPKM values of aerobically grown
gonococci. A positive value represents an induction of gene expression anaerobically, and a negative value represents a repression of gene expression
anaerobically.
c Protein definitions are derived from the annotated FA1090 genome (NCBI), and/or the NCBI conserved domain database [33].
d (Fur) Genes that have been shown to be directly regulated by Fur in Sebastian et al., (2002) [95] and/or Jackson et al., (2010) [75]. (RpoH) Genes reported to be
upregulated during RpoH overexpression in Gunesekere et al., (2006) [23]. (LexA) Genes reported to be in the LexA regulon by Schook et al., (2010) [50]. (Lrp)
Genes found to be differentially expressed in a N. meningitidis Δlrp mutant (NMB0573, closest gonococcal homolog is NGO1407, NCBI) by microarray analysis in
Ren et al., (2007) [46]. (MtrR) Genes found to be differentially expressed in a gonococcal ΔmtrR mutant by microarray analysis in FolsterΔ et al., (2009) [56]. (FarR)
Genes reported to be in the FarR regulon by Friedrich et al., (2007) [54]. (NmlR) Genes reported to be in the NmlR regulon by Kidd et al., (2005) [47]. (FNR) Genes
found to be differentially expressed microaerobically in a Δfnr mutant with and without nitrite by microarray analysis in Whitehead et al., (2007) [7]. (NsrR) Genes
reported to be in the NsrR regulon by Isabella et al., (2007) [3] and Isabella, (2010) [19].
e Fur-repressed small regulatory RNA described by Ducey et al., (2009) [96].
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Figure 2 Secondary verification of RNA-seq results by translational promoter-lacZ fusion. On the right-hand side of each panel,
translational lacZ fusions confirm that expression of (A) clpB, (B) recN, (C) npd, (D) hecA, (E) grx3, (F) brfA, and (G) lexA is anaerobically induced,
and that expression of (H) fbpA and (I) oxiA is anaerobically repressed. For each panel, a prediction of -10 and -35 elements is given above the
gene schematic. The predicted transcriptional start site, in parenthesis under the +1, is reported as the chromosomal location according to the
annotated FA1090 genome (NCBI). Genes colored in grey are encoded on the positive strand, while genes colored in black are encoded on the
negative strand. Above each gene schematic, raw RNA-seq data from .wig files are plotted. The base count is representative of the number of
times each base was mapped by a 50 bp RNA sequence read from Replicate 1 (normalized to take into account slight differences in total
mapped reads between the two samples). Blue bars represent aerobic base reads and b-galactosidase activity, while red bars represent
anaerobic base reads and b-galactosidase activity. Genes are not drawn to the same scale. Results for b-galactosidase activity are presented as
the mean + SD of 16 determinations. (*) indicates a p-value less than 0.001.

Isabella and Clark BMC Genomics 2011, 12:51
http://www.biomedcentral.com/1471-2164/12/51

Page 9 of 24



implicated in binding that were shown to be anaerobi-
cally induced, LecA (Figure 3), HecA (Figure 2D), and
fHBP, may be involved directly in the host-pathogen
interaction. The role of LecA in gonococci is unclear,
but a LecA homolog in another member of the Neisser-
iaceae family, Eikenella corrodens, has been shown to be
a part of an adhesin complex important in adherence to
a variety of host tissues [31]. The gonococcal HecA pro-
tein contains a hemagglutination domain that, in other

bacteria, has been shown to promote bacterial aggrega-
tion or host attachment [32,33]. The role of Factor H
binding protein (fHBP) as it relates to gonococcal patho-
genesis has not been examined, however, in N. meningi-
tidis, fHBP expression on the cell surface was shown to
be a means of immune evasion that rendered meningo-
cocci resistant to complement-mediated killing [34].

Genes involved in energy production/oxidation-reduction
Unsurprisingly, numerous genes encoding proteins
involved in energy metabolism were found to be anaero-
bically repressed (Table 1). Gonococci use a combina-
tion of the Entner-Douderoff and pentose phosphate
pathways in the utilization of glucose [35]. Key enzymes
involved in these pathways were found to be anaerobi-
cally repressed, as well as several enzymatic components
of the Krebs cycle. Anaerobic repression of genes
involved in central intermediary metabolism has also
been observed in other bacteria, including E. coli, P. aer-
uginosa, and B. subtilus [28,29,36].
Interestingly, gonococci contain two major NADH

dehydrogenases capable of coupling the oxidation of
NADH to the reduction of ubiquinone. One of these
dehydrogenases is the prototypical H+-translocating 14-
subunit complex encoded by the nuo operon
(NGO1737-NGO1751). The second is a seven-subunit
Na+-translocating complex encoded by the nqr operon
(NGO1413-NGO1418, NCBI). Though genes in the nuo
operon did not meet the criteria used in this study to
define differential expression, there was an approximate
two-fold level of anaerobic repression across its entire
length (See additional file 1: Supplementary Figure S1).
The nqr operon, however, demonstrated a significant
decrease in anaerobic expression (Table 1, Figure 3).
Na+-translocating NADH dehydrogenases were origin-

ally discovered and characterized in marine bacteria,
though it has now been revealed that several pathogenic
species encode such complexes [37]. Transport of
sodium ions into the periplasmic space through the Nqr
complex generates an electrochemical membrane poten-
tial that plays a role in solute import, ATP synthesis,
and, for organisms that are motile, flagellar rotation
[37,38]. The flow of electrons through the active por-
tions of the electron transport chain would be expected
to decrease anaerobically when: [1] oxygen is unavail-
able, rendering the terminal cytochrome oxidase (com-
plex IV) inactive, [2] enzymatic components of the
Krebs cycle are repressed, resulting in decreased produc-
tion of reducing equivalents, and [3] growth is depen-
dent on high potential alternative electron acceptors
such as NO2

- and NO. Furthermore, neither the nitrite
or nitric oxide reductases are thought to be capable of
pumping protons across the membrane [39]. Downregu-
lation of nqr would decrease the electrochemical

lldD
(NGO0639)

hemO
(NGO1318)

nqrA
(NGO1413)

trx1 
(NGO0652)

(NGO0108)

murA
(NGO1918)

leu1 
(NGO0848)

lecA
(NGO1981)

murA (-RT)

lexA/erpA
(NGO1427/NGO1426)

NG1428/dnaK
(NGO1428/NGO1429)

Figure 3 Secondary verification of RNA-seq results by RT-PCR.
RT-PCR verifies that lecA and leu1 are anaerobically induced, and
that NGO0108, lldD, trx1, hemO, and nqrA are anaerobically
repressed. RT-PCR of the murA transcript (NGO1981), which was
shown to have an equal expression level aerobically and
anaerobically (See additional file 1: Supplementary Table S1), was
used as a loading control. (-RT) signifies that reverse transcriptase
was not included in the reaction. For the anaerobically induced
genes lexA/erpA and NG1428/dnaK, primers were used that
amplified across the 3’end of the lexA coding region into the 5’ end
of the erpA coding region, and from the 3’ end of the NG1428
coding region into 5’end of the dnaK coding region, respectively.
Amplification across these intergenic regions suggests that these
genes are cotranscribed.
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potential across the membrane (ΔΨ), thus decreasing
the proton motive force [40]. Because expression of the
nuo operon is not affected to the same degree anaerobi-
cally, this would now result in a greater proportion of
NADH oxidation being coupled to ATP production
through H+ translocation. Also, many proteins involved
in the transport of metabolites into the cell are
repressed anaerobically. Downregulation of the Nqr
complex may add another level of regulation to cellular
transport. It stands to reason that the activity of solute
transporters that rely on the sodium motive force would
decrease when fewer Na+ ions are pumped across the
membrane [38].
The function and regulation of the most highly

induced gene involved in anaerobic growth, the nitrite
reductase aniA, has been thoroughly characterized, and
has been shown to be required for anaerobic growth on
nitrite [4]. Interestingly, gonococci contain a gene
encoding a 2-nitropropane dioxygenase-like protein that
was found to be induced anaerobically (NGO1024,
Table 1, Figure 2C). This would seem unusual, as gono-
cocci would not be expected to encounter the toxic
nitroalkanes utilized by Npd proteins. Furthermore,
molecular oxygen is consumed in the Npd reaction
mechanism [41]. Further work should determine if this
protein plays a novel role in gonococci, possibly micro-
aerobically when oxygen would be present.
Gonococci also showed increased anaerobic expression

of a gene encoding electron transfer flavoprotein-ubiqui-
none oxidoreductase, EftD (NGO1396), a protein con-
taining 57% identity (74% similarity) to human EftD.
The presence of eftD in bacteria is rare, and its role has
only been studied in plants and mammals. In Arabidop-
sis thaliana, EftD was shown to be upregulated in times
of carbon starvation, when genes involved in glycolysis
and the Krebs cycle were reduced in expression, as is
observed when gonococci are grown anaerobically [42].

In A. thaliana, it was reported that EftD can act as an
electron acceptor from various dehydrogenases involved
in amino acid catabolism and fatty acid degradation.
The reduction of ubiquinone by EtfD was proposed to
be a mechanism of utilizing alternative respiratory sub-
strates to feed into the electron transport chain [42].
EftD upregulation in N. gonorrhoeae could indicate a
shift to the use of alternative growth substrates under
anaerobic conditions.

Genes involved in small molecule biosynthesis
Anaerobically, several genes involved in the synthesis of
amino acids were found to be repressed (Table 1),
which has also been observed in other bacteria [28,29].
Genes involved in the synthesis of iron-sulfur clusters
were also repressed. This result is not entirely unex-
pected, as many iron-sulfur cluster containing proteins
involved in respiration were shown to be downregulated
anaerobically. The demand for iron-sulfur clusters may
therefore be reduced under anaerobic conditions. Also,
because it is common for the Fe-S clusters in Fe-S clus-
ter-containing proteins to be oxygen-sensitive, a lower
rate of oxygen-induced Fe-S cluster turnover would be
expected under anaerobic conditions [43].
Unlike other amino acid biosynthetic genes, the gene

encoding Leu1, the first committed step in leucine bio-
synthesis, was found to be induced anaerobically
(Table 1, Figure 3). This could be indicative of a
decrease in intracellular leucine concentration, as leu1
(leuA) is repressed by leucine in E. coli and other organ-
isms [44]. In E. coli, the anaerobic stimulon is intimately
associated with global regulation through the leucine
responsive regulatory protein, Lrp. [28,45]. In N. menin-
gitidis, the reported Lrp regulon demonstrated striking
overlap to many of the genes in the gonococcal anaero-
bic stimulon (Table 1), particularly in regards to pro-
teins involved in glucose utilization, the Krebs cycle, and

0 5 10 15 20 25

Number of anaerobically induced ORFs
05101520253035

Number of anaerobically repressed ORFs

Transport and Binding

Energy metabolism / Oxidation-reduction

Adapation and Stress Response

Cell Structure

Regulation

Hypothetical

Small Molecule Biosynthesis

Macromolecular Biosynthesis

Figure 4 Functional categories of anaerobically repressed and anaerobically induced genes. The genes from Table 1 were broadly
categorized according to their biological function. Each bar represents the actual number of genes. Blue bars indicate anaerobically repressed
genes, and red bars represent anaerobically induced genes.
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ribosomal assembly [46]. Future work will examine
whether gonococcal Lrp plays a role in control of the
anaerobic stimulon.

Genes involved in transcriptional regulation
The expression of several regulatory proteins was found
to be induced under anaerobic conditions, though no
regulatory proteins appeared to be repressed (Table 1,
Figure 4). The gene encoding ArsR (NGO1562), a regu-
lator involved in norB repression in response to iron,
was shown to be moderately upregulated [3]. It is
unclear if ArsR regulates any other target genes. The
FNR-regulated NmlR protein has been shown to act as
both an activator and repressor of gene expression, and
genes in the NmlR regulon are purported to be involved
in resistance to nitrosative stress [47,48]. Though there
was an anaerobic increase in nmlR expression, none of
the genes in the NmlR regulon, except for nmlR itself,
were found to be upregulated. One member of the regu-
lon, the thioredoxin reductase trxB (NGO580), was
shown to be significantly downregulated (Table 1). Sur-
prisingly, in a recent study, gonococcal trxB mutants
were found to be susceptible to killing by NO, though
this property was correlated with low expression of
aniA and norB [49]. It stands to reason, therefore, that
genes in the NmlR regulon may be important in adapta-
tion to anaerobic conditions or in certain environments
where reactive oxygen or nitrogen species are present,
but they are possibly not as important once the anaero-
bic respiratory chain becomes highly induced. In this
circumstance, NorB is likely able to reduce NO levels
below a threshold needed to induce the activation func-
tion of NmlR (NO itself may not be a direct activating
signal for NmlR) [47]. Under anaerobic conditions, and
in the absence of oxygen or reactive oxygen species
(ROS), NO may not need to be detoxified, as toxic NO-
derived reactive nitrogen compounds will not be pro-
duced. In this instance NO would preferentially be used
as an energy source.
The gene encoding LexA was found to be upregulated

anaerobically (Figure 2G). This transcriptional regulator
was proposed to be important in regulating genes
involved in defense against ROS [50]. LexA controls a
small regulon in gonococci that includes itself, DNA
repair protein, recN, and a gene of unknown function,
NGO1428. LexA has been demonstrated to sense hydro-
gen peroxide through thiol modification of a single
cysteine residue [50], though the anaerobic induction of
the LexA regulon observed here suggests that LexA may
also sense NO. Interestingly, analysis of the raw RNA-
seq data and RT-PCR showed that under conditions
where the LexA regulon was induced, significant tran-
scriptional read-through occurred beyond lexA into the
adjacent erpA gene (NGO1426), as well as past the

divergently transcribed NGO1428 gene into the adjacent
dnaK gene (NGO1429, Figure 3). Both erpA and dnaK
are members of the RpoH regulon [23], suggesting that
there may be crosstalk between the RpoH and LexA
regulons.
Though transcriptional read-through may account for

part of the anaerobic induction of erpA and dnaK, our
data suggest that RpoH activity itself was likely modu-
lated anaerobically. Although there was no significant
increase in the quantity of RpoH transcripts at the 24 hr
time point at which the cells were harvested, control of
rpoH at the transcriptional level plays a relatively minor
role in maintaining RpoH levels in the cell [51]. A
majority of RpoH regulation is posttranscriptional.
Translation of RpoH is inhibited by secondary structure
in the rpoH mRNA, and activity of RpoH can be further
modulated by the chaperone DnaK [23]. Including erpA
and dnaK, eight out of the twelve genes previously
demonstrated to encompass the gonococcal RpoH regu-
lon were found to be significantly upregulated anaerobi-
cally, including genes encoding a transcriptional
regulator of unknown function, MarR (NGO1244), dihy-
drofolate reductase, FolA (NGO1694), putative DNA-
binding protein, CreA (NGO0570), and chaperone pro-
teins ClpB (NGO1046), GrpE (NGO1422), and DnaJ
(NGO1901, Table 1, Figure 2A) [23]. The anaerobic
induction of genes in the RpoH regulon may be of sig-
nificance in vivo, as these genes have been shown to
contribute to epithelial cell invasion [52].
The gene encoding FarR (NGO0058) was found to be

anaerobically induced (Table 1). FarR was originally
described for its role in repression of the farAB operon,
which is involved in fatty acid resistance [53]. Analysis
of the RNA-seq data demonstrated that farAB expres-
sion was not altered anaerobically, suggesting that this
operon may already be fully repressed under standard
laboratory conditions. A recent study established that
FarR, possibly indirectly, was also responsible for the
repression of two ABC transporter cassettes (NGO372-
NGO0374 and NGO2011-NGO2014) as well as the
gene encoding the multiple transferable resistance pro-
tein, MtrF (NGO1368) [54]. All of these genes were
found to be anaerobically repressed by RNA-seq analysis
(Table 1, Figure 2I), suggesting that FarR is yet another
player in the anaerobic lifestyle of N. gonorrhoeae. Inter-
estingly, expression of FarR itself was determined to be
controlled by repression through MtrR, a regulator of
the MtrCDE efflux pump involved in resistance to anti-
microbial agents [55]. MtrR was recently shown to act
in a global fashion, regulating many genes, including
RpoH [56]. Many of the genes in the reported MtrR reg-
ulon also appear to be part of the anaerobic stimulon in
gonococci, suggesting a potential role for this regulator
in anaerobic growth as well [56] (Table 1).
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Genes involved in adaptation and stress response
In addition to the RpoH regulon, many genes involved
in response and adaptation to stress were found to be
anaerobically induced. Several genes encoding proteins
involved in DNA repair were found to be upregulated
anaerobically (Table 1). RecN is involved in recombina-
tional repair of DNA damage, and has been shown to
protect gonococci from both oxidative and nonoxidative
mechanisms of killing [57,58]. RecX (NGO1053) has
been demonstrated to be involved in enhancement of
RecA-mediated processes, including repair of DNA
damage [59]. A gene of unknown function, NGO1022,
was also upregulated anaerobically, and encodes a
DEDDh-family protein with a high level of homology to
DnaQ (NGO0973), the epsilon subunit of DNA poly-
merase III [33]. As the epsilon subunit of DNA poly-
merase III contains 3’ ® 5’ exonuclease activity and is
involved in DNA mismatch repair, this DnaQ-like pro-
tein may also function in the repair of DNA damage
[60].
Several genes typically involved in resistance to oxida-

tive stress were found to be induced anaerobically,
including those encoding glutaredoxin, Grx3, cyto-
chrome C peroxidase, CCP (NGO1769), tellurite resis-
tance protein, TehB (NGO1161), and nitroreductase-like
protein, NtrA (NGO1702, Table 1, Figure 2E). CCP was
shown to protect gonococci from hydrogen peroxide
mediated damage, but not to be involved in protection
from reactive nitrogen species [61,62]. Activation of
CCP by FNR suggests that gonococci may typically be
exposed to ROS under anaerobic or microaerobic condi-
tions in vivo. Proteins similar to TehB were originally
described for their role in resistance to tellurite, how-
ever, gonococci do not inhabit an environment where
tellurite would be encountered. In Haemophilus influen-
zae, it was recently shown that a deletion of tehB
resulted in increased sensitivity to oxidizing agents
including hydrogen peroxide, suggesting a dual role for
this protein [63]. The protein encoded by NGO1702
was shown to contain a nitroreductase-like domain [33],
and to contain 54% identity (66% similarity) to a novel
nitroreductase in Staphylococcus aureus, NtrA. In S.
aureus, NtrA was shown to contribute to nitrosative
stress resistance through its S-nitrosoglutathione
(GSNO) reductase activity [64]. Two other proteins,
DnrN and ErpA, were also demonstrated to be upregu-
lated anaerobically. DnrN has been implicated in the
repair of iron sulfur clusters damaged by oxidative or
nitrosative stress [65], and ErpA may be important in
maintaining the iron-sulfur cluster status of specific pro-
teins in cells growing under stressful conditions [66].
Interestingly, genes encoding two Nudix-family hydro-

lases, NudH (NGO1334) and NGO1566, as well as a his-
tidine triad family protein, Hit (NGO1273), were all

found to be upregulated anaerobically (Table 1). Analy-
sis of the conserved domains of these open reading
frames reveals the greatest level of homology to proteins
involved in metabolism/hydrolysis of diadenosine tetra-
phosphate (Ap4A) [33]. Ap4A is an important and ubi-
quitous signaling molecule in nature, and has been
implicated in the maintenance and regulation of vital
cellular functions [67,68]. As a bacterial second messen-
ger, Ap4A has been shown to be involved in modulating
chaperone and heat shock protein activity, coupling
DNA replication to cell division, and altering the ability
of cells to use alternate carbohydrate sources, though
these may be just a few of its functions [68,69]. If
allowed to accumulate unchecked, high Ap4A concen-
tration can interfere with a number of ATP-dependent
reactions [70]. In E. coli, Salmonella typhimurium, and
Bartonella bacilliformis, deletion of the nudH gene
resulted in gross deficiencies in the ability of these
organisms to invade mammalian cells [68,69]. The role
of Ap4A as a second messenger in gonococci has yet to
be evaluated thus far, though it appears that the meta-
bolism of this molecule may be modulated anaerobically,
making it an interesting target for future study.

Hypothetical proteins regulated anaerobically
Many genes encoding hypothetical proteins were found
to be induced anaerobically (Table 1, Figure 4). One
gene, listed as DUF331 in Table 1, was not found in the
FA1090 genome annotation, rather it was discovered in
proximity to the iron sulfur cluster assembly operon
(isc) using raw RNA-seq data. Using this data, it was
discovered that the isc operon spanned the iscR gene
(NGO0637) through hesB (NGO0632), making it longer
than the current annotation would suggest. NGO0634
probably does not encode a protein, and no reads were
mapped on the positive strand at this location (See addi-
tional file 1: Supplementary Table S1). A high level of
transcription was found at an unannotated putative
open reading frame with an ATG start codon on the
positive strand at chromosomal coordinate 621,869
(NCBI). There was a high match to consensus -35, -10,
and RBS sequences upstream of this open reading
frame, and transcription of this gene partially overlapped
the 3’ end of the isc operon. This anaerobically induced
gene encodes a protein with a conserved domain of
unknown function (DUF331). This is just an example of
how RNA-seq data can be used to locate and correct
annotation errors in the gonococcal genome. The large
quantity of hypothetical proteins that are differentially
expressed in response to anaerobiosis may make appeal-
ing targets for future study. Many of these annotated
proteins are small and Neisseria-specific. Future work
should determine if these are akin to small proteins in
E. coli that have been shown to accumulate in response
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to stress [71]. Alternatively, these small open reading
frames could be mis-annotations, and may be involved
in transcription of regulatory RNA. Current work
involves integrating raw RNA-seq data in a genome-
wide search for regulatory RNA.

N. gonorrhoeae encodes an anaerobically induced sRNA
In E. coli and several other Enterobacterial species,
recent studies have described the anaerobic induction
and function of a small regulatory RNA termed fnrS
[72,73]. In E. coli, the regulation of this sRNA was
determined to be relatively complex. Maximal fnrS
expression occurred anaerobically, however, the available
carbon source and terminal electron acceptor present
also impacted levels to a lesser extent. Anaerobic induc-
tion of fnrS was shown to be FNR-dependent and
mediated by FNR binding to a class-II activation site
centered at -41.5 with respect to the transcription start
site [72]. No fnrS homolog has been observed in bacteria
outside of the Enterobacteriaceae family, however, pre-
vious microarray analysis of the gonococcal FNR regu-
lon identified a small FNR-activated transcript of
unknown function. Coincidently, this transcript was also
determined to be the most highly induced by FNR [7].
This small FNR-induced transcript is located within

the coding region and on the opposite strand of
NGO0796, flanked on the 5’ end by the bacterioferritin
genes, brfA and bfrB, and on the 3’ end by an Xre-family
repressor (NGO0797) end by an (Figure 5A). Though
not included the FA1090 genome annotation, analysis of
the raw RNA-seq data confirms that this transcript is
highly induced anaerobically (Table 1, Figure 5A). The
region upstream of this transcript also contains a perfect
match to the E. coli FNR consensus sequence (5’-
TTGATnnnnATCAA) located at -41.5 with respect to
the transcription start site. Secondary structure predic-
tion of this 108 nt transcript was performed by the
Mfold program http://mfold.rna.albany.edu/, and the
most stable predicted structure is shown in Figure 5B.
This predicted structure is typical of a small regulatory
RNA, with a 5’ stem loop followed by an unstructured
region and a 3’ Rho-independent terminator (Termina-
tor prediction performed at: http://transterm.cbcb.umd.
edu).
To confirm that this small RNA is expressed and

induced anaerobically, a transcriptional fusion to lacZ
was constructed. In this construct, the promoter region
from the induced transcript (from -120 to -1) was
cloned in front of the leader region of lacZ, which pro-
vided spacing and an RBS for efficient translation. Aero-
bic b-galactosidase activity from this transcriptional
fusion was low, but was induced 260-fold anaerobically
(Figure 5C), validating the RNA-seq data and the work
of Whitehead, et al. (2007) [19]. To show that

transcription was halted at the predicted Rho-indepen-
dent terminator, a transcriptional fusion was generated
in which the entire small RNA, including the promoter
region (from -120 to +111), was fused to the leader
region of lacZ. No b-galactosidase activity was observed
from this fusion gene aerobically or anaerobically, con-
firming the terminator prediction and the raw RNA-seq
data (data not shown, Figure 5). The first three nucleo-
tides of this small transcript are AUG. To ensure that
this transcript is indeed a small RNA and not a leader-
less protein-coding message, a translational fusion was
constructed. A leaderless lacZ gene was fused in-frame
past nucleotide +9 in the transcript. No b-galactosidase
activity was observed in this translational fusion under
aerobic or anaerobic conditions (data not shown). For
these reasons, we feel that this small anaerobically
induced transcript should be termed fnrS. Much work
needs to be completed to define the role, if any, of this
gonococcal FnrS transcript in gene regulation, however,
homologs of genes in the E. coli FnrS regulon that were
found to be anaerobically repressed in gonococci,
including gpmA (phosphoglycerol mutase) and mqo
(malate:quinone oxidoreductase), will make interesting
candidates to study for potential interactions [72].
Future work will employ a similar RNA-seq approach to
define the prospective FnrS regulon in gonococci.

Overlap of the anaerobic, iron, and hydrogen peroxide
stimulons
In vivo, N. gonorrhoeae will be faced with a multitude of
environmental stresses, including oxygen and iron lim-
itation, as well as exposure to reactive oxygen species.
Previous studies have employed genome-wide
approaches to define the gonococcal iron and hydrogen
peroxide responsive stimulons [74,75]. Genes differen-
tially expressed in response to these stimuli were com-
pared to the anaerobic stimulon to search for
similarities in gene expression between these environ-
mental signals (Figure 6, Table 2).
It should be noted that there are caveats in directly

comparing these data sets due to the differences in
experimental design that exist between each study. The
use of microarrays in the iron and hydrogen peroxide
studies may be less sensitive than the use of transcrip-
tome sequencing, and therefore it is possible that some
additional iron- or hydrogen peroxide-regulated genes
may have been missed [16]. Differences in the cutoff
level used to define differential expression, the growth
medium utilized, and the growth phase of the cells used
for RNA isolation between these studies may also
impact the results. Though the iron and hydrogen per-
oxide studies utilized RNA from broth-grown cells in
mid-log phase, the growth phase of anaerobically grown
gonococcal cells is difficult to determine due to the

Isabella and Clark BMC Genomics 2011, 12:51
http://www.biomedcentral.com/1471-2164/12/51

Page 14 of 24

http://mfold.rna.albany.edu/
http://transterm.cbcb.umd.edu
http://transterm.cbcb.umd.edu


Figure 5 N. gonorrhoeae encodes an anaerobically induced small RNA. (A) A schematic representation of the location of the fnrS coding
region is given, with genes colored in grey encoded on the positive strand, and genes colored in black encoded on the negative strand
(according to the NCBI annotation). Above the fnrS gene schematic, raw RNA-seq data from .wig files are plotted. The base count is
representative of the number of times each base in the transcript was mapped by a 50 bp RNA sequence read from Replicate 1 (normalized to
take into account slight differences in total mapped reads between the two samples). Blue bars represent aerobic base reads and red bars
represent anaerobic base reads. A prediction of the -10 element and class-II FNR binding site is given to the left of the fnrS gene. The
chromosomal location of the predicted transcriptional start site, in parenthesis under the +1, is reported. (B) The lowest energy structure of the
fnrS transcript as predicted by the Mfold program http://mfold.rna.albany.edu/ is displayed. (C) The b-galactosidase activity of an fnrS::lacZ
transcriptional fusion is presented as the mean + SD of 16 determinations (p < 0.001).
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requirement for growth on solid media, and conse-
quently, this may also affect the comparison of these
results with other studies [74,75]. With these factors in
mind, a significant overlap does exist between the mem-
bers of these stimulons, and it should be noted that of
the common members, the response is not always pre-
dictable. That is, genes regulated in response to these
stimuli do not follow a common expression pattern
between gene sets, underscoring the complexity of
gonococcal gene regulation (Table 2). For example, the
nqr operon and bfrA are both members of the iron sti-
mulon and are both repressed under iron-depleted con-
ditions, however, nqr and bfrA are repressed and
induced, respectively, during anaerobic growth. From
this comparison we hope to discover Neisserial genes
that may play an important role in survival under a
broad range of environmental stress. Analysis of this
gene set may also help future work to define transcrip-
tional networks at the regulator level.

Gonococcal prophage genes are highly induced
anaerobically
Somewhat unexpectedly, the RNA-seq data showed that
a large subset of the anaerobically induced genes were
bacteriophage in origin (47 genes, Table 1). The dsDNA
filamentous prophage, NgoF1, is believed to contain all

of the coding regions necessary to produce functionally
active phage particles. In a previous study, phage DNA
from NgoF1, as well as phage particles that were likely
NgoF1 -derived, were observed in gonococci, though
plaques were not observed [76]. In this study, RNA-seq
data showed dramatic anaerobic induction of the
NgoF1 coding region.
Though no plaques have been observed in anaerobi-

cally grown gonococci, this is not the first report of
anaerobic prophage induction. In anaerobically grown
Pseudomonas aeruginosa, prophage genes were shown
to be among the most highly induced, and it was sug-
gested that, more specifically, nitric oxide was likely
involved in this apparent induction [29]. Evidence has
also been provided to show that these anaerobically
induced phage are involved in biofilm development and
differentiation in P. aeruginosa [77]. Current work pro-
poses that gonococcal biofilms are important in patho-
genesis. It was recently shown that anaerobic
metabolism occurs in the substratum of gonococcal bio-
films, and that NO plays an important role in biofilm
maintenance [78]. It is interesting to speculate that in
the gonococcus, NgoF1 may play a role similar to that
of anaerobically induced phage in P. aeruginosa.
NgoF3, NgoF4, and NgoF5 encode incomplete

phage genomes and are probably derived from NgoF1

Iron Responsive
H2O2 Responsive

Anaerobically
Responsive

538 ORFs
155 ORFs

198 ORFs

58

14 13

46

Figure 6 Overlap of the anaerobic, iron, and hydrogen peroxide responsive stimulons in N. gonorrhoeae. Genes found to be
differentially expressed in response to anaerobiosis, iron, and hydrogen peroxide were compared in order to discover anaerobically regulated
genes that were responsive to additional environmental signals. A Venn diagram was constructed to display the extent of overlap between
these stimulons. Data for the iron responsive stimulon was derived from Jackson, et al., (2010) [75]. Data for the hydrogen peroxide responsive
stimulon was derived from Stohl, et al., (2005) [74].
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Table 2 Comparison of the anaerobic stimulon with the iron and hydrogen peroxide responsive stimulon

Gene ORF designation Definition

Common elements of the anaerobic and iron responsive stimulon

-O2/+O2a -Fe/+Feb

farR NGO0058 3.9 -2.0 MarR family transcriptional regulator

gluP NGO0142 -3.7 2.9 Glucose/galactose transporter

nhaC NGO0143 -3.1 -2.3 Na+/H+ antiporter (NhaC)

amtB NGO0198 -4.3 -14.2 Ammonium transporter AmtB

nspA NGO0233 -3.4 2.6 Outer membrane protein

greB NGO0262 -4.5 -1.8 Transcription elongation factor

NGO0373 -7.4 -2.5 Amino acid ABC transporter, permease protein

NGO0377 -7.4 -150.4 Probable transmembrane transport protein

cspA NGO0410 -3.6 3.2 Cold shock protein A

NGO0492 7.7 1.8 Putative phage associated protein

NGO0506 13.6 -3.2 Putative phage associated protein

NGO0635 -4.2 4.2 Hypothetical protein

lldD NGO0639 -9.1 3.9 L-lactate dehydrogenase

pdxH NGO0658 4.9 1.8 Pyridoxamine 5-phosphate oxidase

eda NGO0713 -4.3 6.9 KHG-KDPG bifunctional aldolase

NGO0732 2.8 2.7 Neisseria-specific protein

mobA NGO0754 4.1 3.2 Molybdopterin-guanine dinucleotide biosynthesis protein

NGO0757 3.4 2.2 Putative periplasmic Cpx-family sensor kinase

bfrA NGO0794 12.0 -2.8 Bacterioferritin A

bfrB NGO0795 9.9 -1.9 Bacterioferritin B

hslR NGO0822 3.9 2.4 Heat shock protein (Hsp15)

NGO0895 5.5 1.8 Neisseria-specific protein, uncharacterized

sdhA NGO0921 -3.6 -2.3 Succinate dehydrogenase flavoprotein subunit

sdhC NGO0923 -3.0 -2.3 Succinate dehydrogenase, cytochrome b556 chain

NGO0995 3.2 1.9 Neisseria-specific protein, uncharacterized

hsp33 NGO1189 5.7 -2.9 Heat shock protein Hsp33 chaperonin

NGO1261 -6.7 3.4 S-adenosylmethionine-dependent methyltransferase

lldP NGO1361 -8.7 -3.2 L-lactate permease

nqrB NGO1414 -6.7 -2.7 Sodium-translocating NADH-ubiquinone reductase subunit B

nqrC NGO1415 -6.3 -2.1 Sodium-translocating NADH-ubiquinone reductase subunit C

nqrE NGO1417 -8.4 -5.5 Sodium-translocating NADH-ubiquinone reductase subunit E

nqrF NGO1418 -6.4 -3.1 Sodium-translocating NADH-ubiquinone reductase subunit F

putP NGO1552 -8.3 -5.3 Sodium/proline symporter PutP

ompA NGO1559 3.6 2.5 Probable outer membrane protein

arsR NGO1562 4.2 -2.3 ArsR family transcriptional regulator

NGO1628 6.3 2.1 Conserved hypothetical protein

NGO1633 82.1 2.1 Putative phage associated protein

NGO1688 -3.1 3.7 Conserved hypothetical protein

folA NGO1694 3.3 -2.0 Dihydrofolate reductase (FolA)

NGO1807 -3.3 -3.0 Amino-acid transporter

dadA NGO1808 -4.4 -2.9 D-amino acid dehydrogenase small subunit (DadA)

yhhF NGO1860 3.9 2.2 Probable DNA methylase Symport protein (possible sodium/dicarboxylate

NGO1957 -7.8 -2.0 symporter)

NGO2023 4.9 1.9 Conserved hypothetical protein

sspB NGO2131 -4.1 3.3 Stringent starvation protein B

nrrF -6.2 170† Fur regulated small regulatory RNA
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or NgoF2 [76]. NgoF3, NgoF4, and NgoF5 were all
shown to contain coding regions that were upregulated
anaerobically (Table 1). The functions of these genes
are unknown, but the presence of prophage sequences
in bacterial genomes could have a profound effect on
host cell fitness or pathogenicity. A diverse group of
bacterial virulence factors, including toxins, have been
found to be encoded by genes of phage origin. Some
prophage can also contain regulatory proteins that
affect expression of genes not encoded by phage
[Reviewed in, [79]]. It is certainly possible that none of

the anaerobically upregulated gonococcal prophage
genes are involved in making active phage particles;
alternatively, these genes may have acquired a novel
function. Regardless, further research will be required
to determine the role of these genes as they relate to
anaerobiosis.

Expression from the cryptic plasmid is induced
anaerobically
The gonococcal cryptic plasmid, pJD1, is 4,207 bp long
and is found in approximately 96% of gonococcal

Table 2 Comparison of the anaerobic stimulon with the iron and hydrogen peroxide responsive stimulon (Continued)

Common elements of the anaerobic and hydrogen peroxide responsive stimulon

-O2/+O2 +HP/-HPc

recN NGO0318 5.1 3.0 DNA repair protein RecN (recombination protein N)

dnaB NGO0485 5.2 6.5 Replicative DNA helicase

nmlR NGO0602 7.4 -4.8 Transcriptional regulator MerR-family

nifU NGO0633 -5.0 4.6 Fe-S scaffold protein

iscS NGO0636 -5.2 4.1 Cysteine desulferase

leu1 NGO0848 5.6 3.3 2-isopropylmalate synthase

aniA NGO1276 28.2 -3.6 Copper-containing dissimilatory nitrite reductase

grpE NGO1422 3.2 5.8 Heat shock protein (HSP-70 cofactor)

lexA NGO1427 4.8 6.3 Transcriptional regulator, repressor

NGO1428 11.4 3.9 Neisseria-specific protein, uncharacterized

dnaK NGO1429 3.1 10.8 Heat shock protein (HSP-70 chaperone)

ccp NGO1769 8.9 2.7 Probable cytochrome c peroxidase

dnaJ NGO1901 4.0 3.0 Heat shock protein HSP-40/chaperone DnaJ

Common elements of the anaerobic, iron, and hydrogen peroxide responsive stimulon

-O2/+O2 -Fe/+Fe +HP/-HP

NGO0108 -4.9 4.7 6.8 Conserved hypothetical protein (possible oxidoreductase)

glr3 NGO0114 5.0 4.7 4.8 Glutaredoxin 3

fbpA NGO0217 -5.2 8.7 5.5 Periplasmic iron-binding protein

NGO0554 -4.8 24.5 70.6 Hypothetical protein

trx1 NGO0652 -5.8 3.2 13.5 Thioredoxin I

fumC NGO1029 -4.6 6.4 8.4 Fumarate hydratase (fumarase C)

clpB NGO1046 7.2 4.3 23.8 Endopeptidase ClpB (heat shock protein)

pgm NGO1258 -4.8 2.0 2.8 Phosphoglycerate mutase

hemO NGO1318 -9.8 8.4 9.8 Heme oxygenase/iron starvation protein

exbD NGO1377 -3.5 3.9 4.4 Transport protein (ExbD)

exbB NGO1378 -4.1 6.5 4.7 Transport protein (ExbB) Sodium-translocating NADH-ubiquinone reductase

nqrA NGO1413 -5.8 -2.3 -2.6 subunit A

Sodium-translocating NADH-ubiquinone reductase

nqrD NGO1416 -10.3 -4.0 -2.8 subunit D

lecA NGO1981 4.5 2.5 2.5 Adhesin protein
a average of RPKM ratios from replicates in Table 1.
b Data from Jackson et al., (2010) [75], taken from time point where iron depletion had the biggest effect on gene expression. A positive value represents an
induction of gene expression under iron depleted conditions, and a negative value represents a repression of gene expression under iron depleted conditions.
c Hydrogen peroxide (HP); Data from Stohl et al., (2005) [74]. A positive value represents induction of gene expression in the presence of hydrogen peroxide, and
a negative value represents a repression in gene expression in the presence of hydrogen peroxide.

† Data from Ducey, et al., (2009) [96].

Isabella and Clark BMC Genomics 2011, 12:51
http://www.biomedcentral.com/1471-2164/12/51

Page 18 of 24



strains. Despite its predominance, the function and
replication mechanism of this plasmid remains largely
unknown [80,81]. This plasmid consists of two divergent
transcripts, each consisting of five open reading frames
(Table 3, Figure 7). Surprisingly, pJD1 transcripts were
greatly increased in prevalence anaerobically (Table 3,
Figure 7). It appears as though the increase in transcript
quantity was not due to an increase in anaerobic copy
number, as there was no significant difference in the
quantity of plasmid recovered from equal numbers of
aerobically or anaerobically grown cells (data not
shown). This result implies that the two divergent cryp-
tic plasmid promoters are subject to transcriptional
regulation.
In other plasmids, the essential RepA protein has been

shown to be involved in regulating gene expression as
well as the initiation of plasmid replication (RepA
encoded by ORF1 in pJD1, Table 3) [82,83]. In several
organisms, DnaK has been shown to facilitate the disso-
ciation of RepA dimers into monomers, resulting in
derepression [84,85]. Therefore it is possible that the
anaerobic increase in DnaK concentration could result
in a decrease in RepA-mediated autorepression (Table
1). Unfortunately, little is known about the replication
cycle of pJD1 or the mechanism of RepA binding in
gonococci, so this potential regulatory mechanism
remains only speculative. An alternate possibility is that
an as-of-yet unidentified chromosomally expressed tran-
scription factor or factors acts at the divergent plasmid
promoters to regulate their expression.
The effect of increased cryptic plasmid expression on

gonococcal physiology is unknown. Previous studies
involving pJD1 have provided evidence that ORF1,
ORF2, ORF4, ORF5, cppC, cppB, and cppA are capable

of forming protein products, and several of these protein
products have no homology to any other proteins in the
NCBI conserved domain database (Table 3) [33,80,81].
It is uncertain if ORF3, ORF6, or ORF7 are translated.
The high frequency and sequence conservation of this
plasmid among gonococcal isolates suggests that the
plasmid may be important in pathogenesis. The fact that
transcription from this plasmid is induced anaerobically
is perhaps suggestive that the gene products of this plas-
mid are important in an anaerobic niche.
In transcript-1, ORF4 and ORF5 encode a putative toxin/

antitoxin system analogous to the VapDX systems of Hae-
mophilus influenzae and several species of Actinobacillus
[86,87]. It is assumed that the VapDX system is involved in
stable maintenance of pJD1 [88]. Interestingly, in H. influen-
zae, the VapDX locus is located on the chromosome, and
VapD has been characterized as a virulence factor. It has
been proposed that the ability of VapD to cause an arrest of
bacterial translation was responsible for an observed
enhancement of bacterial survival within human cells com-
pared to survival in a ΔvapD mutant [86]. VapD was postu-
lated to facilitate persistent or chronic mucosal infections
under stressful conditions. The role of VapD as it pertains
to gonococcal virulence, if any, is unknown, though it may
make an attractive target for future study.

Conclusions
The goal of this study was to define the gonococcal tran-
scriptome in response to anaerobiosis. Unlike previous
studies that have looked only at the contributions of indi-
vidual transcriptional regulators, we used a powerful and
sensitive methodology, RNA-seq [16], to look at the
environmental condition of anaerobiosis as a whole. By
using this method, we were able to show that the

Table 3 Genes of the cryptic plasmid found to be differentially expressed in response to anaerobiosis

Gene Replicate 1b Replicate 2 Definitiona

Transcript 1

ORF1 12.8 9.7 Putative plasmid replicase, RepA

ORF2 4.5 3.1 Hypothetical protein

ORF3 4.5 3.4 Hypothetical protein

ORF4 4.5 2.6 Putative plasmid antitoxin, VapX

ORF5 5.1 5.5 Putative plasmid toxin, VapD

Transcript 2

ORF6 18.2 6.0 Hypothetical protein

ORF7 13.3 34.4 Hypothetical protein

cppC 19.9 41.6 Putative plasmid mobilization protein, MobA

cppB 6.2 7.9 Putative plasmid mobilization protein, MobB, partial only

cppA 7.6 8.2 Cryptic plasmid protein A
a Protein definitions are derived from Korch et al., (1985) [80] or the NCBI conserved domain database [33].
b The fold change for each replicate was calculated by comparing total number of reads for each gene in anaerobically grown gonococci to number of reads for
each gene in aerobically grown gonococci. Values were normalized to total number of chromosomal reads. A positive value represents an induction of gene
expression anaerobically, and a negative value represents a repression of gene expression anaerobically.
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anaerobic stimulon in N. gonorrhoeae was larger than the
FNR and NsrR regulons indentified in previous studies
[7,19]. The induction of prophage and cryptic plasmid
genes was previously unknown to occur during anaero-
biosis. Many new targets for future study have been
uncovered, and we hope that other investigators will take
an interest in working on these potential projects.
Because anaerobic growth is assumed to be a physiologi-
cally significant state in vivo [4], the results of this study
may help to elucidate factors or mechanisms of virulence
that have previously been overlooked.

Methods
Growth of gonococcal strains
All gonococcal strains were derived from strain F62 (See
additional file 2: Supplementary Table S2) and were
grown on Difco™GC medium base (Becton, Dickinson

and Co., Sparks, MD) plates with 1% Kellogg’s supple-
ment (GCK) [89]. A 5 mM concentration of nitrite was
added to plates to be used for anaerobic cultures. For
RNA isolation and b-galactosidase assays, overnight
plate-grown cell cultures were suspended in GCP broth
(proteose peptone #3 (15 g), soluble starch (1 g),
KH2PO4 (4 g), K2HPO4 (1 g), NaCl (5 g)/L dH2O) to an
OD600 of 1.0 and serially diluted tenfold to 10-4. A 100
μL volume of the 10-4 dilution was plated onto GCK
plates with or without nitrite. Aerobic plate cultures
were grown for 14-16 h in a 37°C incubator supplying
5% CO2. Anaerobic cultures were incubated in a Coy
anaerobic chamber (Coy Laboratory Products, Grass
Lake, MI) at 37°C for 20-24 h in an atmosphere of 85%
N2, 5% H2, and 5% CO2. Cells were harvested from
aerobically and anaerobically incubated plates when
colonies were approximately the same size.

Figure 7 Expression from the gonococcal cryptic plasmid is induced anaerobically. Schematic representations of (A) transcript-1 and (B)
transcript-2 of the cryptic plasmid are displayed. Genes colored in grey are encoded on the positive strand, while genes colored in black are
encoded on the negative strand. The predicted transcriptional start site, in parenthesis under the +1 for each transcript, is reported as the
location on the plasmid according to the annotation of Korch et al., (1985) [80]. Above each gene schematic, raw RNA-seq data from .wig files
are plotted. The base count is representative of the number of times each base was mapped by a 50 bp RNA sequence read from Replicate 1
(normalized to take into account slight differences in total mapped reads between the two samples). Blue bars represent aerobic base reads and
red bars represent anaerobic base reads. A prediction of -10 and -35 elements is given to the left of each schematic. RT-PCR confirms that
transcript-1 is induced anaerobically.
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RNA isolation and RT-PCR
Plate-harvested cells were incubated shaking in tubes
with 0.1 mm diameter silica beads in RNApro™solution,
and RNA was extracted according to manufacturer’s
instructions (MP Biomedicals, CA). RNA was treated
with DNase I (Invitrogen, instructions CA), and integrity
was confirmed with a Bioanalyzer (Agilent). RT-PCR was
performed with SuperScript® III One-step RT-PCR
reagents (Invitrogen, CA). A 125 ng quantity of total
RNA was used in each RT reaction, and primers were
added at a concentration of 10 μM. Reactions were run
as described: 20 min incubation at 45°C to complete the
RT reaction, followed by 2 min incubation at 94°C, 23 to
26 subsequent cycles of 15 s at 94°C, 30 s at 55°C, and 30
s at 68°C, and a final incubation at 68°C for 5 min. Sam-
ples were electrophoresed on 1% agarose gels for visuali-
zation. All RT-PCR experiments were repeated a
minimum of two times. Primers available upon request.

RNA preparation and SOLiD™ RNA-seq
For RNA to be used in RNA-seq, two rounds of mRNA
enrichment were performed on total bacterial RNA
using MICROBExpress Oligo MagBeads (Ambion, TX).
The University of Rochester core facility performed the
SOLiD sequencing. The SOLiD™ 3 Plus system was
used to read short (50 nt) RNA sequences, and all RNA
processing procedures were performed using a SOLiD™
Total RNA-seq Kit as recommended by Applied Biosys-
tems (SOLiD™ Total RNA-seq Kit Protocol, Applied
Biosystems, CA). Briefly, RNA was fragmented with
RNase III, directionally hybridized and ligated with
flanking adapters containing sequences for priming PCR
amplification and sequencing reactions. After reverse
transcription of the ligated RNA, the cDNA molecules
were size selected by PAGE, amplified by PCR (limiting
the number of cycles to minimize PCR bias), quantified
by real-time PCR, and diluted to a concentration opti-
mal for monoclonal amplification by emulsion PCR,
during which copies of template molecules were
attached to beads. Beads were deposited on slides upon
which the sequential reactions and washing steps were
done automatically by the SOLiD™ 3 instrument. DNA
attached to beads was sequenced with 50 rounds of oli-
gonucleotide annealing and ligation (five different pri-
mers, 10 sequential ligations per primer). During each
round, an oligonucleotide labeled with a fluorescent dye
was annealed and ligated to the 3’ end of the primer or
the oligo ligated in the previous round. The next two
unoccupied nucleotides of the strand attached to the
bead determined which oligo ("color”) was ligated. Use
of staggered primers permitted determination of the
unique base sequences. BioScope (version 1.2, Applied
Biosystems, CA) was used to map the color sequences
of each bead to the annotated FA1090 reference genome

obtained from the National Center for Biotechnology
Information (NCBI). Sequences were counted if they
matched a 25-color end of a reference sequence with no
more than 2 mismatches (permitting some mismatches
is necessary because of sequencing errors and actual
variations from the reference sequence). The length of
the match was then determined by extending the align-
ment through the full 50-color sequence, allowing for
more mismatches with increasing length. If a sequence
read aligned to more than one genomic locus, the best
alignment was selected. If a sequence read aligned
equally well to more than one genomic locus, it was dis-
carded. Stringency was set so that any base in the gono-
coccal genome had to be counted at least 10 times in
order to be considered mapped. After mapping, colors
were converted to bases. Sequencing data can be
accessed by Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/projects/geo/) with the accession
number GSE26444.

Analysis of raw data
The Integrative Genomics Viewer (IGV) was utilized
http://www.broadinstitute.com/igv to visualize raw
sequencing data. The .wig files generated from RNA
sequencing were loaded and compared against the gono-
coccal genome, allowing visualization of sequencing
reads mapped outside of the annotated genome. This
allowed for scanning of intergenic regions for detection
of small RNAs and transcription start sites of genes.

PCR
Genomic DNA from gonococcal strain F62 was isolated
for use as a PCR template. Promoter sequences for lacZ
fusions were amplified with iProof™ High Fidelity Poly-
merase (Bio-Rad, Hercules, CA). Clones were screened
by PCR for presence and orientation of the insert using
Amplitaq® (Applied Biosystems, Foster City, CA). Pri-
mers available upon request

Construction of lacZ fusions
Translational and transcriptional lacZ fusions were
constructed in pLES94 [90]. Genomic DNA from
gonococcal strain F62 was used as template. PCR frag-
ments and pLES94 were cut with BamHI. Digested
insert and plasmid were ligated and cloned into E. coli
DH10B. Transformants were selected on LB medium
plates containing chloramphenicol at 25 μg ml-1 and
5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside (X-
gal, Invitrogen) at 40 μg ml-1. Plasmids were checked
for the presence and orientation of the insert by PCR,
and those plasmids that contained an insert in the cor-
rect orientation were used to transform F62. Colony
PCR was performed on chloramphenicol resistant colo-
nies to confirm the presence of the reporter construct.

Isabella and Clark BMC Genomics 2011, 12:51
http://www.biomedcentral.com/1471-2164/12/51

Page 21 of 24

http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.broadinstitute.com/igv


The PCR product was also sequenced to ensure the
appropriate fusion was made.

Gonococcal transformation
Gonococci were transformed naturally. A light suspen-
sion of piliated cells was prepared in 1 ml of GCK broth
containing 0.042% NaHCO3 and 10 mM MgCl2 [89].
Purified plasmid DNA was added and 100 μl of the sus-
pension was plated on two GCK plates and incubated
6-9 hours at 37°C. Cells were then harvested from the
plates and streaked on GCK plates containing chloram-
phenicol for selection of clones. Clones typically took
2 days to become visible on antibiotic plates.

ß-Galactosidase assays
Gene reporter activity was determined by ß-galactosi-
dase assays from cultures grown aerobically or anaerobi-
cally with nitrite [91]. For gonococcal cultures, sterile
swabs were used to harvest cells from overnight plate
cultures and cells were resuspended in Z-buffer [91].
Cells were lysed with chloroform and 0.1% SDS and
assayed as described [91]. Activity is reported in Miller
units and the reported results are the average of at least
three assays performed in duplicate from each day the
cultures were grown.

Oligonucleotide and DNA sequencing
All synthesized oligonucleotides were obtained from
Invitrogen, and confirmatory DNA sequencing was per-
formed at ACGT Inc. (Wheeling, IL).

Molecular biology techniques
Cloning and PCR techniques were performed in accor-
dance to standard protocols [92-94]. Plasmid prepara-
tions were obtained with a QIAprep miniprep kit, and
DNA fragments were purified with QIAquick PCR Puri-
fication or QIAquick Gel Extraction kits (QIAGEN, CA).

Additional material

Additional file 1: Supplementary Table S1 (.xls): 50 bp SOLiD RNA
sequence reads mapped to the annotated FA1090 genome. This
table contains all of SOLiD sequence reads that were mapped to the
gonococcal FA0190 genome in our 2 biological replicates, and also
contains values normalized to RPKM.

Additional file 2: Supplementary Table S2 (.pdf): Strain Table. This
file contains a list of the gonococcal strains used in this study.
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