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Abstract. Ewing sarcoma (ES) is an aggressive primary 
malignant bone tumor that predominantly affects children 
and young adults. Multimodal treatment approaches have 
markedly improved the survival of patients with localized ES. 
However, local recurrence and distant metastasis following 
curative therapies remain a main concern for patients with ES. 
Recent studies have suggested that slow‑cycling cells (SCCs) 
are associated with tumor progression, local recurrence and 
distant metastasis in various types of cancers. According to 
the results of these studies, it was hypothesized that SCCs may 
play a critical role in tumor progression, chemoresistance and 
local/distal recurrence in patients with ES. The present study 
applied a label‑retaining system using carboxyfluorescein 
diacetate succinimidyl ester (CFSE) to identify and isolate 
SCCs in ES cell lines. In addition, the properties of SCCs, 
including sphere formation ability, cell cycle distribution and 
chemoresistance, in comparison with non‑SCCs were inves‑
tigated. RNA sequencing also revealed several upregulated 
genes in SCCs as compared with non‑SCCs; the identified 
genes not only inhibited cell cycle progression, but also 
promoted the malignant properties of SCCs. On the whole, the 
present study successfully identified SCCs in ES cells through 
a label‑retaining system using CFSE. Moreover, to the best of 

our knowledge, the present study is the first to describe the 
characteristic properties of SCCs in ES. The findings of this 
study, if confirmed, may prove to be useful in elucidating the 
underlying molecular mechanisms and identifying effective 
therapeutic targets for ES.

Introduction

Ewing sarcoma (ES), the second most common malignant 
bone tumor, is an aggressive cancer that primarily affects 
children and young adults (1). ES arises predominantly in the 
pelvis, long bones and ribs (2,3). Recently, a multimodal treat‑
ment approach consisting of surgery and/or radiotherapy with 
intensive chemotherapy has markedly improved the survival 
of patients with localized ES. Thus, the current 5‑year overall 
survival rate of patients with localized ES ranges from 65 to 
75% (4,5). However, the rates of local recurrence and distant 
metastasis have been reported to be 6.2 to 7% and 12.9 to 
31%, respectively (6,7), and the 5‑year overall survival rate for 
patients with local recurrence and/or distant metastasis has 
been reported to be <25% (8‑10). Hence, obtaining a better 
understanding of the mechanisms underlying local recur‑
rence and distant metastasis following curative therapies is a 
time‑sensitive matter of critical importance for patients with 
ES.

Human malignancies display intratumoral heterogeneity 
in phenotypic features, as regards cellular morphology, gene 
expression, metabolism, motility and angiogenic, proliferative, 
immunogenic, and metastatic potential (11). This phenotypic 
heterogeneity is considered to be one of the major causes of 
treatment failure when implementing state‑of‑the‑art cancer 
therapies (12).

As one example, in heterogeneous tumor cell populations, 
there is generally a small subpopulation of slow‑cycling 
cells (SCCs), defined as non‑proliferating quiescent/dormant 
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cells (13,14). Previous research has demonstrated the existence 
of SCCs, and has described their properties in various human 
cancer cell cultures and xenograft models. For example, a small 
subpopulation of SCCs was identified in a study evaluating 
melanoma cells, and these cells demonstrated chemoresis‑
tance (15). The high invasive ability of SCCs in melanoma has 
also been reported in prior research (16). Similarly, chemo‑
resistance and the tumorigenic potential of SCCs have been 
observed in colon cancer and breast cancer cell lines (17), and 
SCCs in glioblastoma have demonstrated resistance to both 
chemotherapy and radiotherapy (18). However, to the best of 
our knowledge, SCCs have not been previously studied in ES, 
and their characteristics are unknown. Therefore, investigating 
the characteristics of SCCs in ES is a highly understudied 
topic of substantial clinical importance and has the potential 
to provide meaningful information for improving existing ES 
treatment regimens.

Several label‑retaining systems have been reported to 
effectively identify SCCs/quiescent cells in both normal 
and cancer cell lines (13,16‑21). Using these label‑retaining 
systems, SCCs or quiescent cells can be distinguished from 
other cell populations by the slowed cell division of SCCs as 
compared to other cells. Moreover, among these systems, the 
use of carboxyfluorescein diacetate succinimidyl ester (CFSE) 
green fluorescent dye is a well‑established method (13), and 
has been applied in studies investigating SCCs in several types 
of cancer (17,19‑21).

More specifically, in the CFSE labeling system, once the 
cells are labeled with CFSE, the fluorescence in the cells is 
equally distributed between the daughter cells upon division. 
Since the fluorescence in the cells is gradually diluted by cell 
proliferation and only non‑dividing cells or SCCs can retain 
strong fluorescent staining via CFSE for a long period of time, 
researchers can effectively distinguish SCCs (with strong fluo‑
rescence) from non‑slow‑cycling cells (non‑SCCs) (with weak 
fluorescence).

According to previous studies (17,19‑21), the present study 
hypothesized the existence of SCCs in ES. The present study 
therefore applied a label‑retaining system based on CFSE to 
ES cell lines, and succeeded in identifying and isolating SCCs, 
in the first study of its kind conducted to date, to the best of 
our knowledge. Moreover, the distinctive properties of SCCs 
in ES were comprehensively described by evaluating their 
sphere formation ability, cell cycle distribution and chemore‑
sistance. In addition, RNA sequencing revealed differentially 
expressed genes in SCCs as compared with non‑SCCs, that 
not only inhibited cell cycle progression, but also supported 
malignant properties, including invasive capacity and meta‑
static potential.

Materials and methods

Cells and cell culture. In total, three ES cell lines were 
used in the present study. The SK‑ES‑1 (HTB‑86) and A673 
(CRL‑1598) cells were purchased from the American Type 
Culture Collection (ATCC), and the TC71 (ACC 516) cells 
were obtained from the Leibniz Institute dSMZ‑German 
Collection of Microorganisms and Cell Cultures GmbH. 
The SK‑ES‑1 cells were cultured in McCoy's 5A medium 
(MilliporeSigma) supplemented with 15% fetal bovine serum 

(FBS; MilliporeSigma). The A673 cells were cultured in 
Dulbecco's modified Eagle's medium (MilliporeSigma) supple‑
mented with 15% FBS. The TC71 cells were cultured in Iscove's 
modified Dulbecco's medium (Thermo Fisher Scientific, Inc.) 
supplemented with 10% FBS. All cell culture media were 
supplemented with 100 U/ml penicillin (MilliporeSigma) and 
100 µg/ml streptomycin (MilliporeSigma). The cells were 
maintained in a humidified atmosphere with 5% CO2 at 37˚C.

Labeling of ES cells with CFSE. The CellTrace CFSE Cell 
Proliferation kit (cat. no. C34554; Thermo Fisher Scientific, 
Inc.) was used to label the ES cells. Briefly, both a cell 
suspension (1x106 cells/ml) and a solution of 4 µM CFSE was 
prepared in phosphate‑buffered saline (PBS) supplemented 
with 1% FBS. Equal amounts of the cell suspension and CFSE 
solution were mixed, and the cells were incubated at a final 
concentration of 2 µM by incubation at 37˚C for 10 min under 
dark conditions. The cells were quenched three times with 
cold PBS supplemented with 10% FBS. These cells were then 
used as CFSE‑labeled cells for the experiments described 
below. CFSE fluorescence was confirmed using an all‑in‑one 
fluorescence microscope (BZ‑X700; Keyence Corporation).

Definition of SCCs and the sorting of cells into SCCs and 
non‑SCCs. CFSE fluorescence in ES cells was preliminarily 
evaluated in both sphere and adherent cultures, and it was 
confirmed that the CFSE fluorescence intensity was more 
heterogeneous in the sphere cultures (Fig. S1). These findings 
indicated that cell division was more variable in spheres than 
in adherent cultures; therefore, sphere cultures were used in all 
the experiments in the present study. Since the cells retaining 
a strong CFSE fluorescence decreased in a culture period of 
>5 days in the preliminary study (data not shown), the cells 
were collected at day 5 after seeding for the experiments.

CFSE‑labeled cells (5x103 cells/well) were seeded 
into Nunclon Sphera 96‑well, Nunclon Sphera‑treated, 
U‑shaped‑bottom Microplates (cat. no. 174929; Thermo 
Fisher Scientific, Inc.). The plates were centrifuged at 228 x g 
for 3 min at room temperature. Following 5 days of culture, 
the CFSE‑labeled cells formed a single sphere in each well 
(Fig. 1A). The spheres were confirmed under a fluorescence 
microscope (BZ‑X700; Keyence Corporation).

For the flow cytometric analysis, each sphere was collected 
and dissociated using Accumax (cat. no. AM105; Nacalai 
Tesque, Inc.) to prepare single‑cell suspensions, and the CFSE 
fluorescence of each cell was evaluated using a BD LSRFortessa 
cell analyzer (Bd Biosciences). In the present study, cells 
retaining a strong CFSE fluorescence (i.e., in the top 10%) were 
defined as SCCs and other cells as non‑SCCs on day 5 after 
seeding. For sorting, single cells obtained from each sphere 
were resuspended in Hank's Balanced Salt Solution (HBSS; 
cat. no. 14175079; Thermo Fisher Scientific, Inc.) containing 
1 mM UltraPure 0.5 M ethylenediaminetetraacetic acid 
(EDTA; pH 8.0; cat. no. 15575020; Thermo Fisher Scientific, 
Inc.), and 25 mM 4‑[2‑hydroxyethyl]‑1‑piperazineethanesul‑
fonic acid (HEPES; cat. no. H3375; MillporeSigma), 2% FBS, 
100 U/ml penicillin and 100 µg/ml streptomycin. The sorting 
of cells into SCCs and non‑SCCs was conducted using a Bd 
FACS Aria III cell sorter (Bd Biosciences) with the exclusion 
of doublets and dead cells.
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Sphere formation assay. The sorted SCCs (1x105 cells/well) 
and non‑SCCs (1x105 cells/well) from the SK‑ES‑1 cells 
were seeded into Costar 24‑well Clear Flat Bottom Ultra‑low 
Attachment Multiple Well Plates (Corning, Inc.) in serum‑free 
McCoy's 5A medium containing 10 ng/ml basic fibroblast 
growth factor (cat. no. 062‑06661; FUJIFILM Wako Pure 
Chemical Corporation), 10 µg/ml human insulin (cat. no. 0105; 
Cell Science & Technology Institute, Inc.), 100 µg/ml human 
transferrin (cat. no. 10652202; MillporeSigma) and 100 µg/ml 
bovine serum albumin (cat. no. 019‑21272; Nacalai Tesque, 
Inc.) and were incubated at 37˚C for 6 days in order to form 

spheres, as previously described (22). Formed spheres ≥50 µm 
in size in each well were manually counted under a fluores‑
cence microscope (BZ‑X700; Keyence Corporation) by two 
examiners blinded to the sorting conditions.

Cell cycle analysis. Single cells (1x106 cells) obtained from 
spheres were fixed with cold 70% ethanol for 30 min on ice 
under dark conditions and washed twice with PBS. The cells 
were then centrifuged at 130 x g for 5 min at room temperature 
and resuspended in 0.5 ml propidium iodide (PI, in PI/RNase 
Staining Buffer; cat. no. 550825; Bd Biosciences). Following 

Figure 1. Identification of SCCs by a label‑retaining system using CFSE. (A) Schematic diagram using a CFSE label‑retaining system. (B) Phase‑contrast, 
fluorescence and merge images of single spheres derived from the SK‑ES‑1 cell line at 1 and 5 days after CFSE labeling. Scale bars, 100 µm. (C) Flow cyto‑
metric analyses of CFSE fluorescence in spheres derived from the SK‑ES‑1 cell line at 1 and 5 days after CFSE labeling. CFSE, carboxyfluorescein diacetate 
succinimidyl ester; SCCs, slow‑cycling cells. 



YAHIRO et al:  SLOW‑CYCLING CELLS IN EWING SARCOMA4

incubation for 15 min on ice under dark conditions, the dNA 
content of the samples was analyzed using PI and flow cytom‑
etry (Bd LSRFortessa cell analyzer; Bd Biosciences). data 
were analyzed using FlowJo analysis software (version 10.7.2; 
Bd Biosciences), and the cell cycle distribution was deter‑
mined by applying the dean‑Jett‑Fox cell‑cycle modeling 
algorithm to the PI fluorescence intensity profile of the cells.

Drug treatment of CFSE‑labeled ES cells. drug treat‑
ment assays were performed in the sphere culture of 
CFSE‑labeled SK‑ES‑1 cells, not using sorted SCCs and 
non‑SCCs. The assays were performed in a similar environ‑
ment as the in vivo conditions, and using a sphere culture 
known to be possible to create the in vivo conditions (23). 
In addition, the process of the cell sorting may affect the 
condition of the cells during the drug treatment assays, and 
the affect should be avoided. CFSE‑labeled SK‑ES‑1 cells 
(5x103 cells/well) were seeded in each well of Nunclon 
Sphera‑Treated 96‑Well Plates (Thermo Fisher Scientific, 
Inc.) and cultured for 3 days in order to form single spheres. 
The medium was then replaced with medium containing no 
drug (i.e., the control medium), 30 nM doxorubicin (dox; 
cat. no. d1515; MilliporeSigma), or 5 nM vincristine (Vin; 
cat. no. V8879; MilliporeSigma) followed by incubation for 
2 days at 37˚C. To evaluate the CFSE fluorescence intensity 
following drug treatment, Z‑stack images of the spheres 
were captured under a fluorescence microscope (BZ‑X700; 
Keyence Corporation). The area with CFSE fluorescence 
(%) in each sphere was quantitatively calculated using a 
hybrid cell count application available in the BZ‑X Analyzer 
software (BZ‑H4A; Keyence Corporation).

The apoptotic analysis of drug‑treated cells was performed 
using flow cytometry with dual staining with APC Annexin V 
(Annexin V; cat. no. 550475; Bd Biosciences) and PI (cat. 
no. 556463; BD Biosciences). Briefly, single cells obtained 
from each sphere after 2 days of drug treatment were washed 
twice with cold PBS and resuspended in 1X Annexin V binding 
buffer (cat. no. 556454; Bd Biosciences) at a concentration of 
2x106 cells/ml. The cell solution (2x105 cells in 100 µl) was then 
transferred into a 1.5‑ml tube, and 5 µl Annexin V and 2 µl PI 
were added. The tubes were vortexed gently and incubated for 
15 min at room temperature under dark conditions. Following 
this, 400 µl 1X Annexin V binding buffer was added to each 
tube, and the samples were analyzed using a flow cytometer 
(Bd LSRFortessa cell analyzer; Bd Biosciences). data were 
analyzed using FlowJo analysis software (version 10.7.2; Bd 
Biosciences).

RNA sequencing. For RNA sequencing, total RNA was 
extracted from the cells using TRIzol® reagent according to 
the manufacturer's instructions (cat. no. 15596026; Thermo 
Fisher Scientific, Inc.). After sorting the SK‑ES‑1 cells 
into SCCs and non‑SCCs, 2x105 cells from each cell frac‑
tion were lysed and homogenized in 1 ml TRIzol® reagent 
in a tube. The samples were incubated for 5 min at room 
temperature to permit the complete dissociation of the 
nucleoprotein complexes. Following this, 200 µl chloro‑
form (cat. no. 038‑02606; FUJIFILM Wako Pure Chemical 
Corporation) were added, and the tubes were shaken vigor‑
ously for 15 sec. This was followed by incubation at room 

temperature for 3 min. The samples were transferred to phase‑
maker tubes (Thermo Fisher Scientific, Inc.) and centrifuged 
at 12,000 x g for 15 min at 4˚C. The aqueous phase in the 
phasemaker tube was transferred to a fresh tube and mixed 
with 500 µl isopropyl alcohol. Following 10 min of incuba‑
tion at room temperature, the mixture was washed once with 
75% ethanol and centrifuged at 7,500 x g for 5 min at 4˚C. 
The supernatant liquid was discarded, and the RNA pellets 
were air‑dried and dissolved in distilled water. For RNA 
quality control, the concentration and purity were examined 
using a Nanodrop 1000 Spectrophotometer (Thermo Fisher 
Scientific, Inc.). Total RNA samples from SCCs and non‑SCCs 
were submitted to Macrogen for library preparation using 
the TruSeq Stranded mRNA LT Sample Prep kit (Illumina, 
Inc.). Paired‑end RNA sequencing was performed using the 
Illumina NovaSeq6000 System (Illumina, Inc.). Reads were 
aligned to human transcriptome (hg38) reference sequences 
using the Strand NGS software program (Strand Life 
Sciences). The aligned reads were normalized to transcripts 
per million (TPM) and the normalized counts were set to 1. 
TPM values (log2) were used to compare gene expression 
levels between SCCs and non‑SCCs. Gene expression data 
were visualized using scatter plots, and pathway analyses 
were conducted using WikiPathways (https://wikipathways.
org/) within the Strand NGS software program (https://www.
strand‑ngs.com/).

Statistical analysis. Statistical analyses were conducted using 
EZR statistical software (Saitama Medical Centre, Jichi Medical 
University; http://www.jichi.ac.jp/saitama‑sct/SaitamaHP.
files/statmedEN.html; Kanda, 2012). All values are presented 
as the mean ± standard error of the mean. Comparisons 
between two groups were performed using unpaired t‑tests. 
Comparisons between multiple groups were determined using 
one‑way analysis of variance (ANOVA) followed by post‑hoc 
testing using the Tukey procedure (i.e., Tukey's honest signifi‑
cant difference test). A two‑sided P‑value <0.05 was considered 
to indicate a statistically significant difference.

Results

Identification of SCCs in ES. The formation of a single sphere 
with CFSE fluorescence in each well was confirmed under a fluo‑
rescence microscope at 1 day after seeding (Fig. 1B). Microscopic 
evaluation and flow cytometric analyses performed on day 5 
revealed that the detected CFSE fluorescence gradually weak‑
ened in the majority of the cells, and that only a small number of 
cells retained strong CFSE fluorescence (Fig. 1B and C). Cells 
that retained a strong fluorescence (top 10%) as of day 5 were 
defined as SCCs, and other cells were categorized as non‑SCCs.

Sphere formation ability of SCCs as compared to non‑SCCs. 
Previous research has reported that sphere formation ability 
is one of the characteristics of SCCs in cancer cell lines (18), 
and that this ability is also associated with tumorigenicity in 
ES (24). Therefore, the present study examined the sphere 
formation ability of SCCs within ES cells in comparison with 
that of non‑SCCs. Sphere formation assays demonstrated that 
the number of spheres was significantly higher in SCCs than 
in non‑SCCs (P<0.05; Fig. 2A and B). These results indicated 
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that the sphere formation ability was enhanced in SCCs 
within ES.

Proportion of cells in the G0/G1 phase in SCCs vs. non‑SCCs. 
Cell cycle analyses were performed using flow cytometry, and 
the phase distribution of the cell cycle was compared among total 
cells, non‑SCCs and SCCs in the SK‑ES‑1 cell line. Notably, the 
proportion of cells in the G0/G1 phase was significantly higher 
in the SCCs than in both total cells and non‑SCCs (P<0.05; 
Fig. 3A and B). In addition, the number of cells in the G2/M 
phase in SCCs was significantly lower than that in both total 
cells and non‑SCCs (P<0.05). Analyses were also performed 
using the A673 and TC71 ES cell lines; similarly, an increased 
number of cells in the G0/G1 phase and a decreased number 
of cells in the G2/M phase were observed in both cell lines for 
SCCs as compared with non‑SCCs (Fig. S2A and B).

Resistance to doxorubicin and vincristine in SCCs vs. 
non‑SCCs. As previously reported, SCCs exhibit chemore‑
sistance within several types of cancer (17,18). The present 
study thus assessed the chemoresistance of SCCs found in 
ES to dox and Vin using spheres formed by CFSE‑labeled 
cells (Fig. 4A). Following 2 days of drug treatment, CFSE 
fluorescence was observed in the evaluated spheres under 
a fluorescence microscope (Fig. 4B). The area with CFSE 
fluorescence was significantly greater in the spheres treated 
with dox and Vin than in the spheres subjected to the control 
treatment (no drugs) (P<0.05; Fig. 4C).

The apoptotic cells were further examined following 
drug treatment using flow cytometry with dual staining with 
Annexin V and PI (Fig. 4d). In the control group, there were 
no significant differences in the percentages of Annexin 
V‑positive cells among the total cells, non‑SCCs and SCCs. 
OF note, the percentages of Annexin V‑positive cells were 
significantly decreased in the SCCs as compared with both the 
total cells and non‑SCCs when the spheres were treated with 
dox or Vin (P<0.05; Fig. 4E).

Upregulated expression of various genes and involved pathways 
in RNA sequencing. RNA sequencing was performed using the 
SK‑ES‑1 cells to evaluate differences in gene expression patterns 
between SCCs and non‑SCCs. As illustrated in Fig. 5A, 255 
genes were upregulated by >2‑fold in the SCCs as compared to 
the non‑SCCs (red dots), whereas 58 genes were downregulated 
by ≤2‑fold in SCCs as compared to the non‑SCCs (blue dots).

A total of 11 pathways were detected using pathway 
analysis, including ‘dNA damage/telomere stress induced 
senescence’, ‘Transcriptional regulation by the AP‑2 (TFAP2) 
family of transcription factors’, and ‘ATF4 activates genes 
in response to endoplasmic reticulum stress’. Each detected 
pathway was associated with a P‑value <10‑5, and these 
pathways were associated with the aforementioned 255 
upregulated genes found in SCCs (Fig. 5B). Genes involved in 
each pathway included cyclin‑dependent kinase inhibitor 1A 
(CDKN1A), activating transcription factor 3 (ATF3) and dNA 
damage‑inducible transcript 3 (DDIT3) (Table I). Pathway 
analyses of the aforementioned downregulated genes did not 
reveal any statistically significant pathways (data not shown).

Discussion

In recent years, SCCs have been studied and are presently 
considered to be associated with local recurrence and/or distant 
metastasis in various types of cancer (13‑21). However, to the 
best of our knowledge, SCCs have not been investigated in ES 
to date, and the present study was the first to successfully iden‑
tify and isolate SCCs from ES cell lines. As specific markers 
for SCCs are currently unknown, a label‑retaining system was 
employed using CFSE; this system is relatively easy to manage 
and has been widely used in the research field in previous 
studies evaluating SCCs (17,19‑21). Moreover, the distinctive 
properties of SCCs in ES were elucidated, such as a higher 
sphere formation ability, an increased cell proportion in the 
G0/G1 phase, and chemoresistance to doxorubicin and vincris‑
tine. These results are consistent with the properties of SCCs 
previously reported for other types of cancer (13‑15,17‑21).

The present study revealed that SCCs in ES exhibited a 
higher sphere‑formation ability than non‑SCCs. Previously, 
Zeng et al (18) reported a high sphere‑forming ability of SCCs in 
glioblastoma cell lines, and Wahl et al (24) reported that single 
cells derived from spheres exhibited a high tumorigenicity in ES 
cell lines. These studies strongly suggest that SCCs in ES have 
a high tumorigenicity associated with a high sphere‑formation 
ability. In addition, the sphere formation ability has previously 
been used to evaluate anchorage‑independent growth (25), a 
critical step in metastasis (26). Thus, the high sphere formation 
ability evidenced in the present study may also reflect the meta‑
static potential of SCCs in ES.

SCCs/quiescent cells are considered to be in a particular 
phase of the cell cycle (16,17,27‑29). However, the cell cycle 
phases of SCCs remain controversial. Bleau et al (27) found 
that SCCs were enriched in the G0/G1 phase in a sphere 
culture of a non‑small cell lung cancer cell line, and Carcereri 
de Prati et al (28) reported that breast cancer cells entered 
the quiescent state in the G0/G1 phase under hypoxic condi‑
tions. By contrast, a high proportion of SCCs in the G2/M 
phase has been reported in melanoma (16) and colon cancer 
cell lines (17); Gao et al (29) demonstrated that SCCs were 

Figure 2. Sphere formation ability of SCCs and non‑SCCs in the SK‑ES‑1 cell 
line. (A) Representative images of sphere formation assays in sorted SCCs 
and non‑SCCs in the SK‑ES‑1 cell line. Scale bars, 50 µm. Formed spheres 
≥50 µm in size (shown using white arrows) were counted under microscopy. 
(B) Comparative number of spheres between SCCs and non‑SCCs. The error 
bars indicate the standard error of the mean. *P<0.05. SCCs, slow‑cycling 
cells. 
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enriched in the S phase in ovarian cancer cells derived from a 
patient. In the present study, it was revealed that SCCs in ES 
cell lines were enriched in the G0/G1 phase, and these findings 

indicated an extended G0/G1 phase in ES SCCs. Moreover, as 
regards the cell cycle, RNA sequencing detected CDKN1A as 
one of the upregulated genes in SCCs in ES cells; this gene is 

Table I. Genes involved in the 11 pathways detected using pathway analyses.

Pathway Genes

dNA damage/telomere stress Induced Senescence CdKN1A, HIST1H2BC, HIST1H2AC, HIST1H1E,
 HIST1H2BJ, HIST2H2BE
Transcriptional regulation by the AP‑2 (TFAP2) family of CdKN1A, APOE, KCTd15
transcription factors
ATF4 activates genes in response to endoplasmic reticulum stress ATF3, ddIT3
dNA methylation HIST1H2BC, HIST1H2AC, HIST1H2BJ, HIST2H2BE
SIRT1 negatively regulates rRNA expression HIST1H2BC, HIST1H2AC, HIST1H2BJ
NCAM signaling for neurite out‑growth 3x4Hyp‑5Hyl‑COL6A2, NCAN, SPTBN4
Transcriptional cascade regulating adipogenesis KLF2, EGR2, ddIT3
Activated PKN1 stimulates transcription of AR (androgen receptor) HIST1H2BC, HIST1H2AC, HIST1H2BJ, HIST2H2BE
regulated genes KLK2 and KLK3
PRC2 methylates histones and dNA HIST1H2BC, HIST1H2AC, HIST1H2BJ, HIST2H2BE
Senescence‑associated secretory phenotype (SASP) CdKN1A, HIST1H2BC, HIST1H2AC,
 HIST1H2BJ, HIST2H2BE
ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA HIST1H2BC, HIST1H2AC, HIST1H2BJ, HIST2H2BE
expression

Figure 3. Cell cycle distribution of total cells, non‑SCCs and SCCs in the SK‑ES‑1 cell line. (A) Representative cell cycle distributions for the SK‑ES‑1 cell line 
are shown using flow cytometry after PI staining. The G0/G1 phase is shown in black, the S phase is shown in light gray, and the G2/M phase is shown in dark 
gray. (B) Comparative proportions of cells in each cell cycle phase among total cells, non‑SCCs and SCCs in the SK‑ES‑1 cell line. The error bars indicate the 
standard error of the mean. *P<0.05. PI, propidium iodide; SCCs, slow‑cycling cells. 
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involved in three of the detected pathways (Table I). Moreover, 
CDKN1A encodes p21, which is a widely known inhibitor of 
the G1/S transition (30,31). Therefore, CDKN1A may play a 
crucial role in the extension of the G0/G1 phase in ES SCCs.

Previous studies have indicated the chemoresistance of 
SCCs in various types of cancer, including glioblastoma (32), 
and colon (17) and breast cancer (17). In addition, 
Moore et al (17) demonstrated that SCCs in colon and breast 
cancer cells could re‑enter the cell cycle and actively prolif‑
erate following the removal of anticancer drugs. In the present 
study, a statistically significant increase was observed in the 
percentage of the CFSE fluorescence area in ES spheres, and a 
statistically significant decrease in the apoptotic activity of ES 
SCCs under treatment with both dox and Vin (i.e., the drugs 
used in conventional chemotherapeutic regimens for ES) (33).

The main mechanism underlying the anticancer effects 
of dox is the cessation of the dNA replication process (34), 
which occurs at the S phase. Thus, SCCs in ES likely evade 
the effects of dox by extending the G0/G1 phase. Moreover, 
SCCs, which are enriched in the G0/G1 phase, may be less 
susceptible to Vin as this drug functions as an inhibitor in 
the M phase (35). The findings of the present study strongly 
suggest that resistance to dox and Vin in SCCs within ES is 
caused by the enrichment of cells in the G0/G1 phase, and that 
the effects of anticancer agents may be improved by promoting 
re‑entry into the cell cycle.

Using RNA sequencing, the present study identified a 
pathway ‘ATF4 activates genes in response to endoplasmic 
reticulum stress’, by the pathway analysis of upregulated genes 
in SCCs. Endoplasmic reticulum stress has previously been 

Figure 4. Continued.
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reported to play a critical role in cell cycle arrest and chemo‑
resistance in leukemia and squamous carcinoma (36,37). 
Moreover, ATF3 and DDIT3 are upregulated in SCCs and are 
each involved in this pathway. Li et al (38) previously reported 

that ATF3 knockdown impaired the invasion of lung cancer 
cells. Bandyopadhyay et al (39) revealed that ATF3 overexpres‑
sion promoted invasiveness in vitro, as well as that the nuclear 
expression of ATF3 was positively associated with metastases in 

Figure 4. Chemoresistance of CFSE‑labeled SK‑ES‑1 cells. (A) Schematic diagram evaluating the chemoresistance of CFSE‑labeled SK‑ES‑1 cells. 
(B) Representative phase‑contrast, fluorescence and merged images of spheres derived from CFSE‑labeled SK‑ES‑1 cells. Scale bars, 100 µm. (C) Percentage 
of the CFSE fluorescence area following 2 days of drug treatment. The error bars indicate the standard error of the mean. *P<0.05. (d) Apoptosis assays 
by dual staining with APC Annexin V and PI using flow cytometry. The percentage of the cells was calculated after 2 days of drug treatment in each 
fraction: Left lower panel, APC Annexin V‑negative/PI‑negative; right lower panel, APC Annexin V‑positive/PI‑negative; left upper panel, APC Annexin 
V‑negative/PI‑positive; right upper panel, APC Annexin V‑positive/PI‑positive. (E) Percentage of apoptotic cells after 2 days of drug treatment in total cells, 
non‑SCCs and SCCs in the SK‑ES‑1 cell line. The error bars indicate the standard error of the mean. *P<0.05. CFSE, carboxyfluorescein diacetate succinimidyl 
ester; dox, doxorubicin; PI, propidium iodide; SCCs, slow‑cycling cells; Vin, vincristine. 
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prostate cancer. As regards the cell cycle, both ATF3 and ddIT3 
are known to block the G1/S transition (40‑42), thereby poten‑
tially resulting in the enrichment of cells in the G0/G1 phase of 
SCCs in ES. Therefore, ATF3 and ddIT3 may be involved in 
mechanisms relevant to SCCs and, pending confirmation, may 
be attractive therapeutic targets specific to SCCs within ES.

Several limitations of the present study should be acknowl‑
edged. First, all the experiments were performed in vitro 
without any in vivo experimentation. As SCCs comprise a 
very small population of total cells, it was difficult to collect 
a sufficient number of SCCs for in vivo experiments. Second, 
the present study did not attempt to confirm the existence of 

cells with a molecular signature similar to that of the SCCs 
identified in the present study in tumor tissues from patients 
with ES. It is thus recommended that future research investiga‑
tions build on these efforts in order to elucidate these questions 
more comprehensively.

In conclusion, in the present study, SCCs were identified 
in ES cell lines using a label‑retaining system with CFSE. 
It was found that SCCs in ES exhibited an enhanced sphere 
formation ability, a distinctive cell cycle distribution in the 
G0/G1 phase, and chemoresistance to dox and Vin. To the best 
of our knowledge, the present study was the first to identify 
SCCs in ES and demonstrate their characteristics. Moreover, 

Figure 5. RNA sequencing of SCCs and non‑SCCs. (A) Scatter plots illustrating >2‑fold or higher upregulated genes (shown using red dots) and ≤2‑fold 
downregulated genes (shown using blue dots). (B) List of 11 pathways with an associated P‑value <10‑5. SCCs, slow‑cycling cells. 
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RNA sequencing identified 255 genes upregulated by >2‑fold 
in SCC, and 11 pathways were detected by pathway analysis 
using the 255 genes. The genes and the pathways may be used 
to develop biomarkers or as therapeutic targets for SCCs and/or 
Ewing sarcoma. Although additional studies are required to 
elucidate the characteristics of SCCs in ES, exploring SCCs 
using the employed label‑retaining system with CFSE may 
be useful in revealing molecular mechanisms and identifying 
effective therapeutic targets in ES.
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