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A B S T R A C T   

Background: Pulmonary arterial hypertension (PAH) represents a substantial global risk to human 
health. This study aims to identify diagnostic biomarkers for PAH and assess their association 
with the immune microenvironment through the utilization of sophisticated bioinformatics 
techniques. 
Methods: Based on two microarray datasets, differentially expressed genes (DEGs) were detected, 
and hub genes underwent a sequence of machine learning analyses. After pathways associated 
with PAH were assessed by gene enrichment analysis, the identified genes were validated using 
external datasets and confirmed in a monocrotaline (MCT)-induced rat model. In addition, three 
algorithms were employed to estimate the proportions of various immune cell types, and the link 
between hub genes and immune cells was substantiated. 
Results: Using SVM, LASSO, and WGCNA, we identified seven hub genes, including (BPIFA1, 
HBA2, HBB, LOC441081, PI15, S100A9, and WIF1), of which only BPIFA1 remained stable in the 
external datasets and was validated in an MCT-induced rat model. Furthermore, the results of the 
functional enrichment analysis established a link between PAH and both metabolism and the 
immune system. Correlation assessment showed that BPIFA1 expression in the MCP-counter al-
gorithm was negatively associated with various immune cell types, positively correlated with 
macrophages in the ssGSEA algorithm, and correlated with M1 and M2 macrophages in the 
CIBERSORT algorithm. 
Conclusion: BPIFA1 serves as a modulator of PAH, with the potential to impact the immune 
microenvironment and disease progression, possibly through its regulatory influence on both M1 
and M2 macrophages.   
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1. Introduction 

Pulmonary arterial hypertension (PAH) is a severe cardiovascular condition threatening the heart and lung functions [1]. The 
diagnostic process usually involves right heart catheterization to measure pulmonary artery pressure. The criteria include a pulmonary 
pressure exceeding 20 mmHg, a pulmonary artery wedge pressure of ≤15 mmHg, and pulmonary vascular resistance of ≥3 Woods 
units [2]. There are some approved medications for PAH, such as guanylate cyclase stimulators, phosphodiesterase inhibitors, pros-
tacyclin analogs, receptor agonists, and endothelin receptor antagonists [3]. These drugs primarily expand the pulmonary artery 
vascular system and reduce pulmonary vascular resistance, providing relief from symptoms but not completely reversing vascular 
remodeling or significantly extending overall survival [4]. Despite treatment improvements, the 5-year survival rate continues to be 
relatively low, ranging from 57% to 59%, emphasizing the need for a more profound understanding of PAH pathogenesis and its 
associated biomarkers [5]. 

Pulmonary vascular remodeling is one of the significant pathological features of PAH involving excessive thickening of the vascular 
wall, which leads to narrowing or occlusion of the lumen [6]. Functional impairment predominantly impacts the intrinsic cells 
comprising endothelial cells, smooth muscle cells, and adventitial fibroblasts situated within the vascular wall [7]. Endothelial cells, 
located in the inner layer of blood vessels, play a crucial role in blood clotting prevention and regulation of vasodilation and vaso-
constriction by releasing substances such as nitric oxide (NO) and prostacyclin (PGI2) [8]. Simultaneously, smooth muscle cells in the 
vessel middle layer possess the ability to contract and relax, influencing vessel diameter, and consequently, blood flow [9]. Adventitial 
fibroblasts, primarily found in the outer layer of vessels, are responsible for generating and maintaining connective tissues, including 
collagen and elastic fibers. These tissues are fundamental components in maintaining vascular structure and function [10]. Recent 
studies have shown that immune cells, specifically macrophages and lymphocytes, are crucial in the development of PAH [11–13]. 
Through the release of inflammatory and cytokine components, specifically tumor necrosis factor (TNF) and interleukin (IL), these 
immune cells impact the functioning of cells in the vascular wall, leading to a deterioration of pulmonary vascular remodeling [14]. 
The immune response in PAH depends on maintaining a delicate equilibrium between pro- and anti-inflammatory elements, and any 
disturbance to this balance can lead to vascular injury and remodeling [15]. Therefore, understanding these complex interactions in 
the immune microenvironment is crucial for providing substantial support for the treatment and prevention of PAH. 

Recently, with rapid advancements in next-generation sequencing (NGS) techniques, new perspectives for tackling this issue are 
provided based on holistic strategies in systems biology [16]. A growing body of evidence indicates a connection between PAH and 
metabolism disruptions, with the participation of the immune system in the onset and advancement of PAH [11,17,18]. Despite these 
findings, the absence of widely applicable and sensitive biomarkers for clinical use leads to significant difficulties in clinical diagnosis 
and treatment, particularly in devising strategies for early detection and monitoring. Hence, revealing the molecular mechanisms that 
contribute to the development of PAH is imperative. To address these challenges, we used diverse bioinformatics analysis techniques to 
explore the differentially expressed genes (DEGs) between individuals with and without PAH, identify robust biomarkers, and 
investigate the relationship between the immune microenvironment and nutritional metabolism; in addition, we delineated distinct 
gene expression patterns and validated them using external gene datasets; finally, pivotal hub genes were selected and confirmed in an 
animal model of PAH. This all-encompassing methodology broadens our understanding and establishes the groundwork for the 
formulation of targeted therapeutic approaches. 

Fig. 1. Research workflow.  
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2. Materials and method 

2.1. Datasets and data pre-processing 

Fig. 1 shows a flowchart outlining our study. Two microarray datasets (GSE113439 and GSE117261) of pulmonary artery tissues 
were obtainedfrom the GEO database (https://www.ncbi.nlm.nih.gov/geo/). After background correction and normalization of raw 
data, we calculated gene expression patterns in PAH using the SVA program package [19]. Principal component analysis (PCA) was 
performed to eliminate batch effects (Supplementary Figure S1). External validation datasets (GSE131793 and GSE15197) were 
subjected to similar preprocessing steps to ensure comparability. Applying consistent preprocessing to both the primary and validation 
datasets ensured the robustness of the comparative analysis. GSE113439 includes lung samples from 15 PAH patients and 11 healthy 
controls obtained during lobectomy for lung cancer. The PAH group consisted of patients with idiopathic PAH (n = 6), connective 
tissue diseases (CTD, n = 4), congenital heart disease (CHD, n = 4), and chronic thromboembolic pulmonary hypertension (CTEPH, n 
= 1). Additionally, GSE117261 contains gene expression data from 58 PAH and 25 control lung tissues. 

2.2. Screening and validation of hub markers 

DEGs in PAH versus normal specimens were identified through the limma package [20], using thresholds of | log 2 fold change (FC) 
| > 1 and p < 0.05. Then, the gtsummary package in R was used to perform Logistic Regression analysis on these DEGs [21]. Sub-
sequently, hub genes underwent additional screening by the Least Absolute Shrinkage and Selection Operator (LASSO, glmnet 
package) with 10-fold cross-validation [22]. In addition, support vector machine-recursive feature elimination (Support Vector Ma-
chine [SVM]-RFE) is a machine learning method that relies on SVM [23]. Based on DEGs, the optimal core genes were identified after 
deleting the feature vectors through support vector machines (e1071 and msvmRFE packages) [24]. In Weighted Gene Co-expression 
Network Analysis (WGCNA) [25], all identified DEGs were used as input, and the clustering of all samples was good. A shear of 50 was 
established to exclude any outlier samples. Soft threshold levels from 1 to 20 were examined to identify an optimal soft threshold of 7, 
which was instrumental in transforming the correlation matrix into an adjacency matrix and further into a topological overlap matrix 
(TOM) for hierarchical clustering via an average linkage method. Modules were categorized based on the TOM, ensuring that each 
module contained no fewer than 50 genes. The gene modules used in this study were defined at a cut height of 0.3. For each module, 
gene significance (GS) and module membership (MM) values were computed to facilitate scatter plots generation. Finally, the cor-
relation between the modules and clinical traits was tested using Pearson’s method. 

2.3. Protein-protein interaction analysis 

In our study, we utilized the Search Tool for the Retrieval of Interacting Genes (STRING) database (http://string-db.org/) as a 
resource to predict protein-protein interactions (PPI) [26]. The PPI network of DEGs was constructed with a minimum interaction 
score of 0.4 and visualized in Cytoscape software (version 3.7.2) [27]. 

2.4. GO enrichment analysis 

Gene Ontology (GO) enrichment analysis is frequently employed in identifying functional annotations significantly enriched in a 
specific set of genes [28]. We conducted GO enrichment analysis on identified core genes by the ClusterProfiler package in R [29]. In 
order to identify critical pathways involving the core genes, a pathway enrichment analysis was conducted using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [30]. Furthermore, Disease Ontology (DO) analysis was performed in order to examine 
prospective diseases that may be linked to the core genes that were identified [31]. The results of KEGG, DO and GO analyses were 
represented graphically using the GOplot software application [32]. Moreover, critical signaling pathways related to hub genes were 
detected using ClusterProfile and Gene Set Variation Analysis (GSVA) packages [33]. The MSigDB c7 Immunesigdb V7.4 Symbols GMT 
gene sets, genes and gene expression matrix were used for GSVA analysis to explore the immune regulating pathway that may be 
involved in the identified core genes [34]. 

2.5. Construction of hub gene regulatory network 

Initially, the mirDIP database was employed to predict potential miRNAs downstream of targeted hub genes [35], with a threshold 
at a very high minimum score to discern the regulatory network. Subsequently, Transcriptional Regulatory Relationships Unravelled 
by Sentence-based Text-mining (TRRUST) database, encompassing 800 individual transcription factors (TFs), was used to establish an 
upstream regulatory network [36], with TF-core genes (p < 0.05) chosen for interactions. Finally, the NetworkAnalyst database 
(https://www.networkanalyst.ca/) was used to visualize the regulatory networks of hub genes. 

2.6. Immune analysis algorithm 

The proportions of various immune cell types were estimated by analyzing gene expression data using the CIBERSORT package 
[37]. The resulting output provides information on the presence of 22 different immune cells, which can be used to generate an 
immune cell component matrix for further analysis. Based on transcriptome data, the abundance of 8 immune cell types and 2 stromal 
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cell populations in heterogeneous tissues [38] was quantified using the MCP counter algorithm. Lastly, based on relevant gene sets, 
enrichment of the immune cell fraction and immune pathway activity fraction was performed by the ssGSEA algorithm through the 
GSVA package [33]. 

2.7. Animal study 

Animal experiments adhered to the Guidelines for the Care and Use of Experimental Animals. All animal procedures were approved 
by the Experimental Animal Ethics Committee of Central South University (No. 2021SYDW0110). Prior to experimentation, a one- 
week acclimation period was provided for all animals under controlled conditions, including unrestricted access to food and water, 
a temperature of 22 ± 1 ◦C, and a humidity range of 45–55%. This acclimation period lasted for a total of 24 h. The animals were 
separated into the control and MCT groups. After weighing the animals in the MCT group, a drug injection of 60 mg/kg body weight 
was administered to induce pulmonary hypertension, following the same feeding protocol as the control group. 

RT-qPCRanalysis 
Total RNA was isolated from each specimen utilizing the TRIzol agent (Thermo Fisher Scientific, Carlsbad, CA, USA), adhering to 

the protocols provided by the manufacturer. For mRNA expression analysis, the QuantiTect Reverse Transcription Kit (QIAGEN, 
Hilden, Germany) along with the SYBR Green PCR Kit (Thermo Fisher Scientific) were used. The PCR was executed using β-actin mRNA 
as an endogenous reference, employing the 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Primer 
sequences applied were as follows: 

BPIFA1: 
Forward 5′-CCAGACACCCACTGAGACCT-3’. 
Reverse 5′-TCCAAACCGCTGAGAATCCC-3’. 

Fig. 2. Differentially expressed genes and hub biomarker screening.(A) The heatmap visualizes the top 10 differentially expressed genes (DEGs).(B) 
The volcano plot reveals 25 DEGs, with genes experiencing upregulation marked in red and those undergoing downregulation depicted 
in green.(C)LASSO regression analysis.(D)Machine learning method of SVM. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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Fig. 3. WCGNA analysis.(A) The sample, excluding one outlier and employing a shear line threshold of 50, was deemed effective. (B) Topological calculations using soft thresholds ranging from 1 to 20 
were performed to ascertain the optimal soft threshold of 7. (C) Utilizing soft thresholds, the relationship matrix was transformed into an adjacency matrix, which was further converted to a topological 
overlap matrix (TOM) for the purpose of average link hierarchy clustering, subsequently categorizing the relevant modules based on TOM. (D) An analysis of the correlation between genes within 
modules and clinical traits revealed that the green module exhibited the highest correlation with the incidence of PAH (p = − 0.71). (E)The scatter plot delineates the correlation between gene sig-
nificance (GS) and module membership (MM) for 4003 genes within the green module. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 4. Enrichment analysis. (A) DO analysis (B) KEGG analysis (C) GO enrichment analysis (D) GSVA analysis.  
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β-actin: 
Forward 5′-CGT TGA CAT CCG TAA CGA CTCC-3′, 
Reverse 5′-ATA GAGCCA CCA TTC CGA CAC AG-3’. 
Western blotting (WB). 
Lung tissues from rats were disrupted for protein isolation using the radioimmunoprecipitation assay (RIPA) buffer (PC101; Epi-

Zyme, China). The concentration of the proteins was determined with a bicinchoninic acid (BCA) assay kit (ZJ101, China) obtained 
from EpiZyme. Following this, the protein extracts were subjected to SDS-PAGE, and subsequently, the separated proteins were 
transferred to a polyvinylidene fluoride (PVDF) membrane. This membrane was then blocked and incubated with primary antibodies 
against BPIFA1 (1:500, sc-398,376, Santa Cruz) at 4 ◦C overnight. For normalization, an Alpha Tubulin Polyclonal Antibody 
(1:500011224-1-AP, Protein) served as the internal standard. The membrane underwent four washes, each lasting 5 min, before being 
exposed to a secondary antibody (1:10,000, SA00001-2, and SA00001-1; Proteintech) at 37 ◦C for 40 min. 

2.8. Statistical analysis 

All statistical computations were conducted using R software (v.4.0.1). The antecedent section provides an exhaustive description 
of the statistical procedures utilized in the processing of transcriptome data. Statistical significance is established as p < 0.05. 

Fig. 5. Investigating the prognostic significance of biomarkers. (A) An integrated approach combining WGCNA, machine learning techniques and 
LASSO was employed to pinpoint potential candidate genes. (B–H) ROC analysis was conducted on the identified genes to evaluate their predic-
tive accuracy. 
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3. Results 

3.1. LASSO analysis and machine learning algorithm integration for hub biomarker screening 

We used the GSE113439 and GSE117261 datasets to screen for DEGs using the ‘limma’ program package. 25 DEGs were identified 
in total and a heat map was generated to display the top ten DEGs ranked using logFC (Fig. 2A). A volcano plot indicated that 12 genes 
(HBB, HBA2, COL14A1, POSTN, VCAM1, RGS1, SFRP2, WIF1, ASPN, PI15, ENPP2, and CCDC80) were upregulated and 13 genes 
(S100A9, LOC441081, RNASE2, S100A8, LCN2, S100A12, MT-TW, MS4A15, SAA1, BPIFA1, BPIFB1, IL1R2, and SOSTDC1) were 
downregulated in PAH endothelial tissues (Fig. 2B). In addition, logistic regression analysis showed that these 25 DEGs remained 
stable, demonstrating consistent and significant differences (Figure S2A). Moreover, we constructed a PPI network for the DEGs, which 
revealed 105 interactions (Figure S2B). To further identify the core genes among the 25 DEGs, we performed 10-fold cross-validation 
using LASSO and selected 14 candidate genes (Fig. 2C). Furthermore, we used the machine learning method of SVM to conduct a more 
comprehensive analysis and determined that the highest accuracy was achieved when 16 genes were included (Fig. 2D). 

Fig. 6. Confirming the significance of hub biomarkers in external datasets: (A) Candidate genes were validated within the GSE15197 dataset, with 
those highlighted in red denoting stable expression. (B) The candidate gene BPIFA1 was subjected to ROC analysis within the GSE15197 dataset. (C) 
Validation of candidate genes was also conducted in the GSE131793 dataset, where genes marked in red signify stable expression levels. (D) The 
candidate gene BPIFA1 underwent a further ROC analysis within the GSE15197 dataset to ascertain its diagnostic performance. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 7. Immune analysis. (A) Utilizing the MCP-counter algorithm, disparities in immune cell expression were identified. (B) Analysis of monocytic 
lineage across various tissues was conducted through the MCP-counter.(C)The ssGSEA algorithm facilitated a more precise categorization of immune 
cells. (D) Examination of monocytic lineage in diverse tissues was carried out using the ssGSEA. (E) Differential expression of immune cells was 
unveiled by the CIBERSORT algorithm. (F–H) The content of M0, M1, and M2 macrophage types was examined using the CIBERSORT algorithm. *p 
< 0.05, **p < 0.01, and ***p < 0.001. 
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3.2. WCGNA analysis 

The input matrix for conducting the WGCNA analysis comprised the expression levels of 8009 genes that exhibited a notable 
difference (p < 0.05) between normal and PAH samples. Effective sample clustering was attained, and one outlier sample was 
eliminated by the cutoff threshold of 50 (Fig. 3A). With the optimal soft threshold identified as 7, the relationship matrix was 
transformed into an adjacency matrix and subsequently into a TOM (Fig. 3B). Modules with interrelated genes were discerned based on 
TOM, ensuring that each module encompassed a minimum of 50 genes. Similar gene modules were consolidated, which led to the 
identification of four distinct modules (Fig. 3C). As shown in Fig. 3D, the magenta module had the strongest correlation (P = − 0.71) 
with the presence of PAH; therefore, it was designated the core module. Additionally, the GS and MM values were computed for the 
4003 genes included in the magenta module, and a scatter diagram was produced to illustrate their correlation. Interestingly, a strong 
correlation was observed between the GS in the core module and MM, providing additional support for our findings (Fig. 3E). 

3.3. Analysis of enrichment in DEGs 

The probable biological processes between the 25 differential genes and the occurrence of PAH were investigated using DO analysis 
to identify related diseases. The results showed that psoriatic arthritis, obesity, overnutrition, and nutritional disease may share 
pathogenesis with PAH, suggesting the involvement of metabolic or immune-related regulation (Fig. 4A). KEGG analysis also revealed 
a correlation between PAH occurrence and immunity, with the enrichment of the IL-17 signaling pathway (Fig. 4B). GO enrichment 
analysis further confirmed the importance of immune responses in PAH development (Fig. 4C). In addition, GSVA analysis of gene 
expression data from the MSigDB c7. Immunesigdb. V7.4. Symbols. GMT gene sets showed that pathways such as epithelial mesen-
chymal transition (EMT), interferon-γ response, mitotic spindle, and TNFA signaling via NFkb are possibly involved in the patho-
genesis of PAH (Fig. 4D). Collectively, these data offer compelling evidence of the immune system’s role in the development of PAH. 

3.4. Predictive value of biomarkes 

By merging the related genes from WGCNA, LASSO, and machine learning, a cross-referencing method was used to find the hub 
genes. Seven biomarkers were found as potential genes (Fig. 5A). ROC values revealed that each gene demonstrated a high degree of 
prognostic predictive performance. The following are the AUC values: BPIFA1 (0.775, Fig. 5B), HBA2 (0.893, Fig. 5C), HBB (0.900, 
Fig. 5D), LOC441081 (0.841, Fig. 5E), PI15 (0.827, Fig. 5F), S100A9 (0.847, Fig. 5G), and WIF1 (0.852, Fig. 5H). 

3.5. Validation of hub biomakers 

To verify the accuracy of the prognostic effect of the above 7 genes, non-coding Rnas were excluded and verified using an external 
validation set. Across samples of sequenced vascular endothelial tissue in the GSE15197 dataset, BPIFA1 expression was consistent 
(Fig. 6A), and ROC analysis exhibited good predictive performance (AUC = 0.731, Fig. 6B). In order to assess the possible utility of core 
biomarkers in the future for bodily fluid diagnosis, we conducted a thorough analysis of the GSE131793 whole blood sequencing 
sample dataset and found that BPIF1A was consistently expressed in all of the samples. Moreover, the ROC analysis showed that the 
AUC value of this marker was 0.740 (Fig. 6C and D). The regulatory networks of seven core genes were visualized based on the 
NetworkAnalyst database, including mRNA-miRNA and TF-mRNA networks (Figure S3). BPIFA1 interacts with the TFs SOX10, 
HOXA5, GATA2, GATA3, and SREBF1. It has a potential regulatory relationship with miRNAs, such as mir-182–5p and mir-335–5p. 

3.6. Examination of variations in the immune microenvironment 

To investigate the possible contribution of immunity to PAH, we performed an immune cell content analysis in different tissues 
using the three algorithms. The MCP-counter algorithm revealed differential expression in the monocytic lineage, T cells, neutrophils, 
and fibroblasts (Fig. 7A). Monocytic lineage samples had significantly higher levels in normal tissues than in PAH samples (Fig. 7B). 
Next, the ssGSEA algorithm was used to refine immune cell classification and identified that macrophages were differentially expressed 
in the monocytic lineage and were more abundant in normal tissues (Fig. 7C and D). Finally, using the CIBERSORT algorithm, we 
classified macrophages into three types: M0, M1, and M2 (Fig. 7E). The content of M0 type cells did not show any significant difference 
between the two samples (Fig. 7F). However, the PAH samples exhibited a higher proportion of M1 type cells (Fig. 7G) and a lower 
proportion of M2 type cells (Fig. 7H). These findings indicate that macrophages and immunological dysregulation have a role in the 
genesis and progression of PAH. 

Fig. 8. BPIFA1 correlation with macrophages in PAH tissues. (A) The MCP-counter algorithm was employed to explore the association between the 
BPIFA1 and the composition of immune cells, where those highlighted in red denote a statistically meaningful relationship between the gene and 
immune cells. (B) Utilizing the ssGSEA algorithm, the study investigated the linkage between the BPIFA1 and immune cell content, with significant 
correlations marked in red. (C) The CIBERSORT algorithm’s application revealed the connection between BPIFA1 and immune cell abundance, with 
red highlights indicating statistically significant associations. (D) Correlation analysis was performed on all immune cells in the CIBERSORT al-
gorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.7. Correlation of BPIFA1 with macrophage in PAH 

To explore the correlation between BPFA1 and immune cell content, correlation analyses were performed using three different 
algorithms. Using the MCP-counter algorithm, BPFA1 expression negatively correlated with the cell content of CD8 +T cells, endo-
thelial cells, cytotoxic lymphocytes, natural killer (NK) cells, and myeloid dendritic cells (Fig. 8A). In the ssGSEA algorithm, BPFA1 
expression positively correlated with macrophages but negatively correlated with NK cells and iDCs (Fig. 8B). Using the CIBERSORT 
algorithm, BPFA1 expression was determined to be weakly positively correlated with macrophage M1 (r = 0.039) and weakly 
negatively correlated with macrophage M2 (r = − 0.192) (Fig. 8C). The CIBERSORT algorithm was used to conduct further correlation 
analysis on different immune cells. The results revealed that Macrophages M0 had a strong negative correlation (r = − 0.47) with CD4 
+T cells memory resting. Conversely, CD8 +T cells showed a significant positive correlation (r = − 0.64) with resting dendritic cells 
(Fig. 8D). Therefore, we hypothesized that the core gene BPFA1 is involved in the progression of PAH by mediating macrophages M2. 
Detailed results of the interactions between other hub genes and immune cells are shown in Figure S4. 

3.8. Validation in MCT pulmonary hypertension animal model 

To validate the potential of BPIFA1 as a biomarker, we investigated its expression in a rat model of MCT-induced pH. BPIFA1 
expression was markedly reduced in the MCT group compared to the normal group (Fig. 9), observed at both mRNA and protein levels. 
Collectively, these findings strongly indicate that BPIFA1 is a promising biomarker for pulmonary hypertension. 

4. Discussion 

In this investigation, a thorough analysis of the PAH was performed. Initially, 25 DEGs were identified from public datasets, and a 
PPI network was constructed to reveal their interactions. Subsequently, core genes were determined using 10-fold cross-validated 
LASSO and SVM machine learning methods, with a focus on the intersection with WGCNA. For WGCNA delineating four modules, 
the magenta module was highly negatively correlated to PAH occurrence, earning its designation as the core module. Enrichment 
analyses of the 25 DEGs highlighted associations between PAH and immune responses, metabolism, and diseases. To further refine the 
identification of the core genes, an integrated analysis of WGCNA, LASSO, and machine learning was performed, resulting in the 

Fig. 9. Expression profile of diagnostic biomarkers in the MCT group, validated using qPCR and WB. (A) The expression level of BPIFA1 mRNA in 
the lungs of MCT-induced PAH subjects compared to controls. (B–C) Western blot analysis and subsequent quantification of BPIFA1 and α-tubulin in 
the lung tissues from subjects with MCT-induced PAH versus control subjects. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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identification of seven candidate genes as potential biomarkers (BPIFA1, HBA2, HBB, LOC441081, PI15, S100A9, and WIF1). 
Furthermore, immune cell content analysis using the three algorithms demonstrated the differential expression of the monocytic 
lineage, T cells, neutrophils, and fibroblasts in patients with PAH. Notably, the CIBERSORT algorithm underscored higher M1 cell 
content and lower M2 cell content in PAH samples, suggesting the potential roles of macrophages and immune dysregulation in PAH 
development. Finally, the correlation between the core gene BPIFA1 and macrophages emphasizes its potential mediating role in PAH 
progression. 

The enrichment analysis revealed a potential association between the IL-17 pathway and PAH. IL-17 is an inflammatory cytokine 
produced by T lymphocytes, playing a pivotal role in regulating immune responses [39]. Previous studies have suggested that the IL-17 
pathway is important in the pathogenesis of PAH [40]. In patients with PAH, IL-17 levels are often elevated, which is potentially linked 
to abnormal activation of the immune system and inflammatory responses [41]. IL-17 can promote the release of inflammatory factors, 
triggering inflammation in the vascular wall and leading to the remodeling and narrowing of pulmonary vessels [42]. These changes 
may increase pulmonary arterial resistance, ultimately leading to the onset of PAH. Moreover, IL-17 may affect endothelial function 
and the proliferation of vascular smooth muscle cells, further affecting vascular structure and function [43]. Therefore, It is possible 
that activation of the IL-17 pathway is essential for the progression of PAH. GSVA analysis further enriched DEGs involving EMT, 
interferon-gamma response, and TNFA signaling mediated through NFκB. Pulmonary artery fibrosis has a significant phenotype [44]. 
Specifically, epithelial cells acquire mesenchymal characteristics through EMT, thereby enhancing cell motility and migratory ca-
pabilities [45]. Interferon-gamma, as a cytotoxic cytokine, modulates the activity of the immune system, influencing pulmonary 
vascular remodeling [46]. Furthermore, TNFα, functioning as a pro-inflammatory cytokine, can stimulate the production of several 
typical pro-inflammatory cytokines, including IL-1, IL-6, and GM-CSF, by activating the NF-κB signaling pathway. This signaling 
system also has a vital function in the process of pulmonary vascular remodeling [47]. 

Inflammation is increasingly recognized as a burgeoning area of interest, with its hallmark being the critical contribution of the 
immune system to immunosurveillance in the vascular environment [48]. Consequently, Increasing research has documented the 
substantial impact of inflammation and immunological changes in PAH [13]. In the present study, ssGSEA revealed differential 
expression within the monocyte lineage by using the CIBERSORT algorithm for classification. Macrophages are categorized into M0, 
M1, and M2 types, with higher M1 and lower M2 levels being observed in PAH. Macrophages have a crucial function in the immune 
system and undergo differentiation into either M1 or M2 phenotypes depending on the signals they receive from their surroundings. 
M1 macrophages largely contribute to inflammatory reactions and defense against pathogens, while M2 macrophages are involved in 
tissue healing and the resolution of inflammation [49]. In diseases such as coronary artery disease, the dynamic polarization of 
macrophages between M1 and M2 responds to microenvironmental stimuli within atherosclerotic plaques [50]. In addition, M2 
macrophages express elevated levels of Mer receptor tyrosine kinase (MerTK), which contributes to effective phagocytosis [51]. 
Changes in the balance between M1/M2 macrophage phenotypes are associated with various diseases, including atherosclerosis and 
type 2 diabetes [52]. Studies have suggested that the M1/M2 balance is dynamic in atherosclerotic plaques, with M1 dominance during 
disease progression and M2 dominance during regression [52]. In diseases such as type 2 diabetes, a transition from pro-inflammatory 
M1 macrophages to pro-fibrotic M2 macrophages has been reported [52]. In PAH, the activity of M2 macrophages may contribute to 
the suppression of excessive inflammatory responses, promotion of vascular wall repair, and maintaining balance [47]. Recent studies 
have suggested that danazol inhibits M2 macrophage activation in rats treated with monocrotaline, effectively reducing pulmonary 
arterial smooth muscle cell proliferation and improving lung vascular remodeling [53]. In order to confirm the presence of alterations 
in macrophage polarization in patients with PAH, a study observed an imbalance in M1/M2 between MacLow-derived macrophages 
and monocyte-derived macrophages stimulated by doxycycline and interleukin-4 (IL-4) [54]. This finding suggests the participation of 
immune cells in this phenomenon, and reestablishing the equilibrium in macrophage populations may provide forthcoming thera-
peutic prospects, given that inflammation is a defining characteristic of PAH. Invading and inflammatory cell interaction is critical for 
the progression of PAH. 

After the final screening, we identified seven potential biomarkers. However, only BPIFA1 demonstrated consistent stability in 
subsequent external datasets, a validation that was further confirmed through our MCT animal model experiments. BPIFA1, also 
recognized as short palate, lung, and nasal epithelium clone 1 (Splunc1), belongs to the killing/increasing permeability protein folding 
(Bpif) superfamily [55]. This diverse superfamily comprises proteins with a structure reminiscent of killing/increasing permeability 
proteins (BPI), which are known for their ability to bind lipopolysaccharide (LPS) and exhibit antimicrobial and immunoregulatory 
properties [56]. However, BPIFA1 expression increases in response to respiratory insults such as bacterial infections, inflammation, 
and cigarette smoke exposure [57]. BPIFA1 has been shown to exhibit antimicrobial activity against gram-negative and gram-positive 
bacteria, as well as anti-inflammatory and immunomodulatory effects [58]. Genomic and proteomic studies have indicated differential 
expression of Bpifa1 in lung diseases, and multifaceted BPIFA1 has been established to possess both pro-inflammatory and 
anti-inflammatory effects [59]. In an allergic airway inflammation model, mice lacking BPIFA1 displayed increased airway inflam-
mation accompanied by increased eosinophil counts, augmented mucus production, airway hyperreactivity, and elevated T levels 
[60]. Previous research postulated that BPIFA1 does not only influence chemokine expression but also exerts a moderate chemotactic 
effect on macrophages and neutrophils [61]. BPIFA1 may curtail the increase in eosinophils in allergic airway inflammation models by 
influencing eosinophil chemotactic factors; in contrast, it may potentially contribute to an increased presence of lung neutrophils in an 
inhaled single-walled carbon nanotube (SWCNT) model [62]. Our results, derived from the CIBERSORT algorithm, indicate that 
BPIFA1 exhibits varying correlations with M1 and M2 macrophages, suggesting its potential involvement in the progression of PAH by 
regulating the M1/M2 macrophage ratio. 

It is crucial to recognize the significant constraints of this study. The size of the sample was somewhat limited. Moreover, our results 
highly relied on computer analysis grounded in bioinformatics; thus, validation through in vivo and in vitro experiments is required. 
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We validated the differential expression of BPIFA1 at the mRNA and protein levels without experimentally confirming its specific role 
in PAH. 

5. Conclusion 

BPIFA1 is a potential diagnostic marker of PAH. Inflammation and immune dysfunction are involved in the pathogenesis of PAH, 
and anti-inflammatory medications have the potential to be efficacious therapies. 
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