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Our jobs can provide intellectually and socially enriched environments but also be
the source of major psychological and physical stressors. As the average full-time
worker spends >8 h at work per weekday and remains in the workforce for about
40 years, occupational experiences must be important factors in cognitive and brain
aging. Therefore, we studied whether occupational complexity and stress are associated
with hippocampal volume and cognitive ability in 99 cognitively normal older adults. We
estimated occupational complexity, physical stress, and psychological stress using the
Work Design Questionnaire (Morgeson and Humphrey, 2006), Quantitative Workload
Inventory and Interpersonal Conflict at Work Scale (Spector and Jex, 1998). We found
that physical stress, comprising physical demands and work conditions, was associated
with smaller hippocampal volume and poorer memory performance. These associations
were independent of age, gender, brain size, socioeconomic factors (education, income,
and job title), duration of the job, employment status, leisure physical activity and
general stress. This suggests that physical demands at work and leisure physical activity
may have largely independent and opposite effects on brain and cognitive health.
Our findings highlight the importance of considering midlife occupational experiences,
such as work physical stress, in understanding individual trajectories of cognitive and
brain aging.
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INTRODUCTION

An average full time worker in the United States spends 8.56 h at
work per weekday (Bureau of Labor Statistics, 2016) and remains
in the workforce for about 40 years (Komp-Leukkunen, 2019).
Thus, occupational experiences likely play an important role in
cognitive and brain aging. On the one hand, a job can provide
an intellectually and socially enriched environment, supporting
cognitive function. Indeed, midlife occupational complexity with
people and data has been associated with better verbal skills,
memory, and speed of processing after retirement (Finkel et al.,
2009; Smart et al., 2014; Andel et al., 2015, 2016). On the other
hand, work is the second main source of stress among employees
(American Psychological Association, 2015). Both psychological
and physical stress (e.g., physical hazards) at work have been
linked with poorer cognitive ability in midlife (McEwen and
Sapolsky, 1995; Sandström et al., 2005; Scott et al., 2015) and after
retirement (Gow et al., 2014; Andel et al., 2015; Sindi et al., 2017;
Dong et al., 2018).

To better understand the neural underpinnings of the
above associations, we recently proposed the “Brain Aging:
Occupational Stimulation and Stress” (BOSS) model (Burzynska
et al., 2019). The BOSS model acknowledges the possibly
opposing influences of occupational complexity and stress
on cognitive aging. Specifically, it posits that occupational
enrichment may protect against age-related cognitive decline,
either by supporting cognitive reserve [i.e., providing mind’s
resistance to biological brain aging (Stern et al., 2018)] or
by supporting brain maintenance [i.e., minimizing age-related
neural losses (Nyberg, 2017)]. Conversely, occupational stress
may deplete the brain reserve and accelerate age-related
changes through a variety of neural and systemic processes
(Burzynska et al., 2019).

The hippocampus is the ideal first target for studying the
BOSS model. First, the hippocampus undergoes a reduction
in volume in both healthy aging (Scahill et al., 2003; Kennedy
and Raz, 2005) and dementia (Barnes et al., 2009), which is
associated with declines in memory and general cognition (Van
Petten et al., 2004; Den Heijer et al., 2010; Gorbach et al., 2017).
More importantly, the hippocampus is the brain structure
where occupational stimulation and stress may converge. For
example, research on both humans and animals shows that
enriched environments promote hippocampal neurogenesis,
neuroplasticity, and neurotrophic support (Bettio et al.,
2017). Alternatively, psychological and physical stress inhibits
hippocampal neurogenesis, neurotrophic support, and can
induce neurotoxicity via upregulation of glucocorticoid cascade,
inflammation, or oxidative stress (Nagata et al., 2009; Choi et al.,
2014; Bettio et al., 2017; Burzynska et al., 2019).

Currently, the evidence for the effects of occupational
stimulation and stress on the hippocampus is scarce. Greater
midlife managerial experience has been associated with greater
hippocampal volume and lesser atrophy over a period of 2.5 years
in older adults (Suo et al., 2012, 2017), and taxi drivers
had greater hippocampi than bus drivers, where hippocampal
volume correlated with their navigating experience (Maguire
et al., 2006). This suggests that certain types of occupational

complexity may support brain health maintenance. Conversely,
another study demonstrated that greater work complexity
with data, people, and things, when controlling for cognitive
function, was associated with smaller hippocampi in middle-
aged adults at risk of Alzheimer’s Disease (Boots et al., 2015)
this lends support to the cognitive reserve theory. Finally,
others found no association between early-life occupational
complexity [estimated from the O∗NET occupational codes;
(Kaup et al., 2018)] or exposure to novelty [i.e., work task
changes (Oltmanns et al., 2017)] and hippocampal volume
in middle age. To our knowledge, the one existing study
linking occupational stress to brain structure found that
burnout in middle-aged workers was related to decreased
volumes of several brain regions, but not the hippocampus
(Blix et al., 2013).

In sum, the associations between occupational complexity,
stress, and hippocampal health in older age need to be further
investigated to understand individual differences in cognitive and
brain aging. Therefore, the current study related occupational
characteristics to hippocampal volume and cognitive function
in healthy aging. The unique aspect of our study was the direct
and subjective (as opposed to derived from occupational codes)
assessment of stimulating and stressful work characteristics
using three validated questionnaires. We hypothesized that
older adults who experienced more cognitive complexity at
work would have larger hippocampi and better cognition,
and those who reported more occupational stress (either
physical or psychological) would have smaller hippocampi
and poorer cognition, after controlling for age, gender,
and brain size. Importantly, our key question was whether
occupational experiences are related to hippocampal volume
and cognition beyond the known proxies of cognitive reserve
related to socioeconomic status (e.g., education, occupational
attainment, and income), as well as general stress and leisure
physical activity.

METHODS

Participants
The current study was conducted using the MRI, cognitive,
and other baseline data from a 6-month randomized controlled
exercise trial (clinical study identifier NCT01472744). Healthy,
low active older adults were recruited in Champaign County in
Illinois. Of the 1,119 participants recruited, 247 (n = 169 women,
n = 78 men) met inclusion criteria of the clinical trial, agreed
to enroll in the study, and underwent a series of demographic,
health, neuroimaging, cognitive, and cardiorespiratory data
collection at baseline. For more details on this clinical trial,
its primary outcomes and neuroimaging data, refer to our
earlier work (Burzynska et al., 2017; Ehlers et al., 2017; Fanning
et al., 2017; Baniqued et al., 2018; Voss et al., 2019). Eligible
participants met the following criteria to be enrolled in the
clinical trial: (1) were between the ages of 60 and 80 years
old; (2) were free from psychiatric and neurological illness
and had no history of stroke, transient ischemic attack, or
head trauma; (3) scored ≥23 on the Mini-Mental State Exam
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(MMSE) and >21 on a Telephone Interview of Cognitive
Status (TICS-M) questionnaire; (4) scored < 10 on the geriatric
depression scale (GDS-15); (5) scored ≥75% right-handedness
on the Edinburgh Handedness Questionnaire; (6) demonstrated
normal or corrected-to-normal vision of at least 20/40 and
no color blindness; (7) were screened for safe participation
in an MRI environment (e.g., no metallic implants that could
interfere with the magnetic field or cause injury and no
claustrophobia); and (8) reported to have participated in no more
than two moderate bouts of exercise per week within the past
6-months. The baseline data were collected in four waves in
years 2011–2014.

In 2017 we sent questionnaires assessing occupational
characteristics to participants who indicated interest in follow-
up assessments; 100 participants returned the completed work
questionnaire and participants with MMSE ≤ 23 were excluded
from final analyses due to possible mild cognitive impairment
(Marioni et al., 2011). Seventy of 99 participants were women, 76
identified as Caucasian White, six as Black, one as Asian, and 16
decided not to answer; 83 identified as Non-Hispanic 16 decided
not to respond; 96 had MRI data (Table 1).

To estimate cognitive reserve socioeconomic factors, we used
years of education, income and job title collected at the clinical
trial baseline. The participants were asked to choose the following
household income categories: (1) <$5,000, (2) $5,001–10,000,
(3) $10,001–$15,000, (4) 15,001–20,000, (5) 20,001–25,000, (6)
25,001–30,000, (7) 30,001–40,000, (8) >40,000. Sixty-five subjects
responded >40,000, six 30,000–40,000, two 25,001–30,000, three
20,001–25,000, three 15,001–20,000, and four 10,000–15,000; 16
chose not to respond. The number of participants who identified
with the following job titles were: (1) officials and managers
(n = 26), (2) professionals (n = 29), (3) technicians (n = 3), (4)
sales (n = 6), (5) office and clerical (n = 14), (6) craft workers
(skilled, n = 3), (7) operatives (semiskilled, n = 10), (8) laborers
(unskilled, n = 1), (9) service workers (n = 6), (10) homemakers
(n = 1). In addition, we asked the participants about their current
employment status: 13 worked full time, 10 part time, 26 were
retired but employed, and were retired and not employed.

MRI Acquisition
Structural images were acquired on a 3 T Siemens Trio Tim
system (Siemens, Erlangen, Germany) using a T1-weighted
0.9 mm3 MPRAGE sequence (TR = 1,900 ms, TE = 2.32 ms, TI:

TABLE 1 | Sample characteristics.

N Min Max M SD

Age (at MRI) 99 60 79 65.3 3.1

Education (years) 99 12 26 16.3 3.1

MMSE 99 26 30 28.7 1.3

eTIV (mm3) 96 1205091 2054710 1457556 151131

Hippocampal volume (mm3) 96 6484 10140 8319 848

Years in current occupation 99 1.5 51.5 18.4 13.4

Years MRI/cog – occupation 99 3 9 4.6 1.1

PASE leisure score 99 5 254 114 46

Stress (PSS-10) 99 0 28 12 6

900 ms, FA = 9◦; matrix = 256 × 256; FOV = 230 mm; 192 slices;
GRAPPA acceleration factor 2).

MRI Data Processing
Automated brain tissue segmentation and reconstruction of
cortical models was performed on T1-weighted images using the
Freesurfer software, version 5.31. Individual T1-weighted images
underwent non-brain tissue removal, Talairach transformation,
and creation of representations of the gray/white matter
boundaries (Dale and Sereno, 1993; Fischl et al., 1999).
AZB screened all reconstructions to evaluate the success
and plausibility of the automatically processed results, as
recommended by the software developers. Volumes of estimated
total intracranial volume (eTIV), left and right hippocampus
were extracted per individual; total volume of hippocampus was
calculated as the sum of bilateral volumes (Table 1).

Subjective Occupational Experiences
Participants were instructed to answer the questionnaires
with regard to their most recent job that they had been
performing (full time or part-time) for 2 years or longer.
We focused on the most recent job to minimize the effects
of age-related declines in memory (Park and Festini, 2017).
Subjective occupational experiences were assessed with the 77-
item Work Design Questionnaire (WDQ) that results in 21
occupational factors (Morgeson and Humphrey, 2006), the
5-item Interpersonal Conflict at Work Scale (Spector and
Jex, 1998), and the 4-item Quantitative Workload Inventory
(Spector and Jex, 1998). Both have been validated and tested
in different contexts (Bayona et al., 2015; Wright et al.,
2017). Among the total of 23 factors across the three
questionnaires, we identified six factors that refer to cognitive
job complexity (task variety, job complexity, information
processing, problem solving, skill variety, and specialization),
two related to psychological stress (workload and interpersonal
conflict), and two representing physical stress (physical demands
and work conditions). To reduce data dimensionality, we
used a principal component analysis (PCA) and a varimax
rotation. It resulted in three constructs with eigenvalues > 1
that represented “job complexity,” “psychological stress,” and
“physical stress” (Table 2).

Cognitive Function
To measure the latent constructs of reasoning, perceptual speed,
episodic memory, and vocabulary knowledge we administered
a well-validated Virginia Cognitive Aging Project cognitive
battery (Salthouse and Ferrer-Caja, 2003; Salthouse, 2004, 2010)
consisting of 16 computer-based and pen-and-pencil tasks. To
obtain components representing the four cognitive constructs
and to confirm the validity of task structure, we performed a
PCA with varimax rotation, with missing values replaced by the
sample mean (Burzynska et al., 2015). Data were within 3SD and
normally distributed.

1http://surfer.nmr.mgh.harvard.edu/
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TABLE 2 | Results of factor analysis with PCA on select occupational
characteristics.

Job complexity Psychological stress Physical stress

% variance explained 37% 19% 12%

Factor loadings:

Task variability 0.729

Processing speed 0.754

Problem solving 0.686

Skill variety 0.514

Sense of achievement 0.893

Specialization 0.743

Complexity 0.548 0.567

Workload 0.662

Interpersonal conflict 0.807

Work conditions −0.787

Physical demands 0.905

General Stress and Leisure-Time
Physical Activity
As an attempt to tease apart occupational physical demands
from leisure physical activity, we used a well-validated 10-item
Physical Activity Scale for the Elderly (PASE) (Washburn et al.,
1993). We summed the weighted PASE scores related to leisure
physical activities walking outside, light, moderate and strenuous
sport/recreational activities, muscle strength/endurance
exercises, light and heavy housework, home repairs, lawn
work or yard care, outdoor gardening, and care for another
person, omitting the score related to work or volunteering
(Washburn et al., 1999).

To tease apart occupational from general psychological
stress, we used the 10-item Perceived Stress Scale [PSS-10;
(Cohen and Williamson, 1988)]. PSS-10 evaluates the degree
to which individuals believe their life has been unpredictable,
uncontrollable, and overloaded during the previous month on a
5-point Likert scale, with total score ranging from 0 to 40 (higher
scores indicating higher levels of stress).

Statistical Analyses
We used a linear hierarchical regression model (SPSS v. 26), with
total hippocampal volume or the four cognitive constructs as
dependent variables and the three occupational measures and
other covariates as independent variables. R2 change statistics
were used to determine whether occupational characteristics
explained a significant amount of variance in the dependent
variable, after controlling for the covariates. The covariates
were age, gender, eTIV (for the model with hippocampal
volume), and socioeconomic factors: years of completed formal
education, household income, and job title (dummy coded,
with homemaker as reference), “years between MRI/cog and
occupational data,” “years in the occupation,” and current
employment status. The same analyses were performed with
adding either the general stress or leisure physical activity
variables as covariates. The assumptions of linearity, normality
of distributed errors, and uncorrelated errors were tested and
fulfilled by the regression models.

RESULTS

Occupational Characteristics,
Hippocampal Volume, and Cognition
Only physical stress predicted hippocampal volume in the fully
adjusted model [R2 = 0.419, R2

change = 0.074, F(3,74) = 3.1,
p = 0.031; Table 3].

Next, we explored the associations between occupational
characteristics and the four cognitive constructs. Only physical
stress predicted a significant amount of variance in memory
[R2 = 0.400, R2

change = 0.082, F(3,78) = 3.5, p = 0.018; Table 4].

Physical Demands at Work, Leisure
Physical Activity, and General Stress
The physical stress construct referred to both physical demands
and work conditions. Post hoc two-tailed bivariate correlations
indicated that “physical demands” correlated with hippocampal
volume (r = −0.305, p = 0.003, n = 96) and memory (r = −0.247,
p = 0.014, n = 99) but not with “work conditions.” Thus, we
investigated whether occupational physical demands were related
to hippocampal volume or memory beyond leisure physical
activity or general stress.

After controlling additionally for leisure physical activity,
physical stress remained associated with hippocampal
volume (βphysical_stress = −0.367, t = −3.4, p = 0.001) and
leisure physical activity was also positively associated with
hippocampal volume (βleisure physical activity = 0.195, t = 2.01,
p = 0.048). The result was similar when controlling for
general stress, with only physical stress being associated
with hippocampal volume (βphysical_stress = −0.317,
t = −2.9, p = 0.005). General stress was not related to
hippocampal volume.

After controlling for leisure physical activity, the association
of physical stress at work with memory remained significant
(βphysical_stress = −0.287, t = −2.6, p = 0.011). After controlling
for general stress, both physical stress (βphysical_stress = −0.295,
t = −2.8, p = 0.007) and psychological stress at work
(βpsychological_stress = 0.203, t = 2.1, p = 0.040) were associated
with memory. General stress and leisure physical activity were
not related to memory.

DISCUSSION

Our results indicate that physical stress, comprising physical
demands and work conditions, was associated with smaller
hippocampal volume and poorer memory performance. These
associations were independent of age, gender, brain size,
socioeconomic factors (education, income, and job title),
duration of the job, time passed between MRI/cognitive and
occupational data collection, employment status, general
stress, and leisure physical activity. In addition, there was
a weak positive association of leisure physical activity with
hippocampal volume, and of occupational psychological
stress with memory.
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TABLE 3 | Occupational correlates of hippocampal volume.

Independent variable Std. beta t p VIF

Age −0.466 −4.6 < 0.001 1.3

Gender −0.115 −1.1 0.275 1.4

eTIV 0.204 1.7 0.085 1.7

Education −0.035 −0.317 0.752 1.6

Income −0.056 −0.557 0.579 1.3

Officials 0.137 0.339 0.736 20.1

Professional 0.071 0.0168 0.867 22.9

Technician −0.005 −0.025 0.980 4.3

Sales 0.129 0.0541 0.590 7.2

Clerical 0.086 0.0256 0.799 14.2

Skilled 0.094 0.515 0.608 4.2

Semiskilled 0.214 0.796 0.429 9.2

Unskilled 0.127 0.967 0.337 2.2

Service 0.030 0.137 0.891 6.1

Employment status −0.10 −0.091 0.928 1.5

Years in occupation 0.036 0.0361 0.719 1.2

Years MRI/cog − occupation −0.072 −0.728 0.469 1.2

Job complexity 0.017 0.152 0.879 1.6

Occupational psychological stress 0.095 0.957 0.342 1.2

Occupational physical stress −0.315 −2.9 0.005 1.5

VIF, variance inflation factor. eTIV, estimated total intracranial volume. Bold values
p < 0.05.

TABLE 4 | Occupational correlates of memory.

Independent variable Std. beta t p VIF

Age −0.039 −0.390 0.697 1.3

Gender 0.476 4.8 < 0.001 1.3

Education −0.085 −0.769 0.444 1.6

Income 0.027 0.256 0.798 1.4

Officials −0.389 −0.969 0.336 20.1

Professional −0.439 −1.0 0.302 23.2

Technician 0.086 0.474 0.637 4.3

Sales −0.186 −0.791 0.432 7.2

Clerical −0.276 −0.834 0.407 14.3

Skilled −0.132 −0.738 0.463 4.2

Semiskilled −0.093 −0.321 0.759 11.0

Unskilled −0.031 −0.241 0.810 2.2

Service −0.072 −0.308 0.759 7.0

Employment status −0.098 −0.959 0.340 1.3

Years in occupation −0.076 −0.764 0.447 1.3

Years MRI/cog − occupation 0.043 0.446 0.657 1.2

Job complexity 0.088 0.810 0.420 1.5

Occupational psychological stress 0.184 1.9 0.058 1.2

Occupational physical stress −0.292 −2.8 0.007 1.5

VIF, variance inflation factor. Bold values p < 0.05.

Occupational Physical Stress and
Hippocampal Volume
The main result of this study was a negative association
between physical stress at work and hippocampal volume. In
general, our results give support to the brain maintenance
model of cognitive aging (Nyberg, 2017), where presence

of a stressor may deplete brain health and memory, and
the absence of the stressor may be protective. Importantly,
post hoc correlations indicated that this association was driven
by the “physical demand” aspect of occupational physical
stress (i.e., need for muscular strength, endurance, and
physical effort), with a lesser role for working conditions
(e.g., environmental hazards). However, it is important to
note that a very small portion of our sample worked in
occupations that are defined as physical labor; only one person
identified as an unskilled laborer and six as service workers.
Therefore, our findings likely refer to one’s subjective or job-
specific physical demand, beyond the official job title or a
general job definition.

The negative physical demand-hippocampal volume
association is an intriguing result, given that aerobic fitness,
aerobic exercise, as well as resistance training have been
shown to increase hippocampal volume and improve cognitive
performance in older adults (Erickson et al., 2011; Szabo et al.,
2011; Best et al., 2015; Ten Brinke et al., 2015). However, we found
that controlling for leisure physical activity did not attenuate this
negative association, although leisure physical activity showed
the expected positive association with hippocampal volume. This
suggests that leisure physical activity and physical demands at
work may have independent and opposing associations with
hippocampal structure and warrant replication and further study
in larger samples.

Research on both animals and humans has demonstrated
the negative effects of stress on the function and structure
of the hippocampus (McEwen, 2006). However, to our
knowledge, our results are novel in that we showed negative
associations of (a) occupational and (b) subjective physical
stress with hippocampal volume. Physical restraint or forced
swimming has been used to induce physical stress in mice,
resulting in increased oxidative stress (Nagata et al., 2009)
or reduced serotonin receptor density in the hippocampus
(Choi et al., 2014). With no doubt, more research is needed
to understand the effects of occupational physical stress
on the structure and function of the human hippocampus.
Importantly, our data indicated that the occupational physical
stress-hippocampus association was independent of general
stress, suggesting that this relationship may be specific to
occupational experiences.

Finally, our data indicated that the association between
occupational physical stress and hippocampal volume was
independent of socioeconomic factors, including early-life
education, the related subsequent occupational attainment (i.e.,
job title), and income. This is in line with earlier studies linking
occupational experiences to cognitive outcomes in older age,
suggesting that the recency of occupational experiences may take
precedence in predicting neural and cognitive outcomes in older
age (Dartigues et al., 1992a,b; Frisoni et al., 1993).

Occupational Characteristics and
Cognition
We found that greater occupational physical stress was related
to poorer episodic memory, independent of demographic and
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socioeconomic covariates. This is consistent with recent studies
showing that older adults who reported high physical work
strain showed declines in memory and general cognition (Gow
et al., 2014; Sindi et al., 2017; Dong et al., 2018), controlling
for sex, education and social class. These studies resembled
ours in the subjective assessment of physical demands, physical
hazards, and risk of injury at work, but assessed cognitive
ability using single tasks or crude composite scores. Therefore,
our study extends these earlier findings by a using a broader
construct of memory.

Interestingly, our findings also converge with studies that
used occupational category as a proxy of physical stress at
work. For instance, an epidemiological study in France found
that older farmers, service employees, or blue-collar workers
had higher risk of memory (Dartigues et al., 1992b) or general
cognitive decline (Dartigues et al., 1992a) than those working
in professional/managerial occupations, controlling for age,
sex, and education. A similar association was found among
older adults in Italy, after adjustment for age, education,
and financial dissatisfaction (Frisoni et al., 1993). Thus, the
association between physical stress at work and poorer cognitive
abilities in older age, independent of socioeconomic status, seems
to hold across different countries and operationalizations of
physical stress.

In addition, we found a weak but positive association
between occupational psychological stress (i.e., workload
and intrapersonal conflict) and memory when controlling
for general stress. This finding is an important addition to
the mixed results linking work-related psychological stress
to cognition in later life: one study reported that greater
work strain predicted poorer memory performance and
greater memory decline 15–21 years later (Agbenyikey
et al., 2015). Another study found that midlife work-related
stress predicted poorer global cognition and processing
speed 25 years later, but was unrelated to episodic memory,
executive functioning, and verbal fluency (Sindi et al., 2017).
Similarly, adults who worked in jobs with high psychological
demands or strain had greater 11-year declines in MMSE
scores that those in low strain jobs, with no difference in
verbal memory (Dong et al., 2018). These discrepancies
may stem from different operationalizations of cognitive
function, work-related stress, and study timelines. In sum,
as research in both animals and humans shows that stress
can facilitate memory and learning under some conditions
(e.g., Joëls et al., 2006) our preliminary findings warrant
further research.

Finally, we did not find positive associations
between occupational complexity, hippocampal size
and cognition. This resembles findings by Oltmanns
et al. (2017) and Kaup et al. (2018), but not Suo et al.
(2012), suggesting that different operationalizations of
occupational stimulation (e.g., novelty at work, managerial
experience, complexity with data or people, or subjective
variety of tasks or information processing) may lead to
different outcomes.

Limitations and Future Directions
The main limitation of our study was the retrospective collection
of occupational data, which occurred several years after the
MRI and cognitive measurements. Although controlling for
this time lag, job duration, or employment status did not
change the results, we do not know whether our participants
referred to their current or past job, how long ago they
retired from the job, and whether it was their main lifetime
occupation, a later post-retirement, or a bridge job. Furthermore,
although all our participants scored high on the MMSE at
the time of MRI and cognitive data collection, it remains
unknown whether and to what extent their responses to
occupational questionnaire were affected by age-related declines
in memory (Park and Festini, 2017) or the positivity effect
(Mather and Carstensen, 2005). Future studies could consider
combining occupational surveys with 24-h recalls (Matthews
et al., 2018) or real-time assessments such as the Ecological
Momentary Assessment (Shiffman et al., 2008) to gauge the
nature of job tasks, their intellectual and physical challenge,
objective stress, and emotional reactivity with lesser recall
bias and greater ecological validity. Next, our cross-sectional
approach does not allow for any causal interpretations. Thus,
the observed associations are equally likely to be bidirectional
(i.e., one’s memory ability or brain health could affect one’s
occupational choices or opportunities) or driven by a third
variable that was not captured in our study but could
affect both hippocampal volume, memory, and perception of
work environment, for example, quality of sleep, metabolic
disorders such as obesity and diabetes, chronic pain and
inflammation, and depression (Fotuhi et al., 2012; Mutso
et al., 2012). However, our approach is the next best way
to establish the relationships between occupational exposures,
brain and cognitive health, given it is not possible to
experimentally manipulate long-term occupational exposures
in a randomized design. Future observational longitudinal
studies may help establish time-ordered associations. Finally,
our promising results should be extended to other brain
regions and metrics of brain health, and possible interactions
of occupational stress and stimulation on brain and cognition
need to be explored.

CONCLUSION

Using validated questionnaires of subjective work characteristics,
we found a negative association between occupational
physical demands, hippocampal volume, and memory in
cognitively healthy older adults. The observed associations
were independent of early-life education and socioeconomic
factors, which highlights the importance of considering
occupational experiences in understanding individual trajectories
of cognitive and brain aging. Our findings suggest that
future interventions aimed at maintaining hippocampal and
cognitive health may need to target both workplace and
leisure activities.
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