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Abstract

Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential
shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness
to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in
viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding.
We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral
population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic
multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales
on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are
small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic
calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific
secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to
prevent the extinction of viruses by lethal mutagenesis.
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Introduction

Lethal mutagenesis is a proposed therapy for patients with viral

infections. The general approach is to increase the deleterious viral

mutation rate enough so that the viral population will go extinct

[1]. Here, we analyze the risk that lethal mutagenesis therapy will

fail as a result of the virus population evolving mutational

robustness.

Research on lethal mutagenesis and the question of how much

mutational robustness can affect mutagenesis are of practical

importance. In support of the promise of lethal mutagenesis as a

treatment for many human and agricultural viruses, there are

reports of the addition of a mutagen severely reducing or

extinguishing populations of coxsackievirus B3 [2], foot-and-

mouth disease virus [3–6], Hantaan virus [7,8], hepatitus C virus

[9], human immunodeficiency virus type 1 (HIV-1) [10],

lymphocytic choriomeningitis virus (LCMV) [11–14], poliovirus

[2,15,16], and vesicular stomatitis virus (VSV) [15,17]. Several

recent works have started to develop a theoretical framework to

describe lethal mutagenesis [18–22]. Theoretical work has led to

the prediction that lethal mutagenesis could also be a viable

treatment for bacterial infections [20,22].

An important limitation to any pathogen treatment is the ability

of the pathogen to develop resistance. Since lethal mutagenesis

introduces deleterious mutations throughout the genome of

viruses, it seems that there are only two types of effective

resistance mechanisms. First, the virus could evolve a mechanism

to reduce the number of mutations that the therapeutic mutagen

introduces. Ref. [23] described such resistant mutations in

poliovirus being treated with ribavirin and Ref. [24] described

them for foot-and-mouth disease virus. Second, the virus could

evolve so that the mutations introduced become, on average, less

deleterious. In other words, it could evolve to have greater

sequence neutrality or mutational robustness.

Empirical studies of lethal mutagenesis appear to yield

conflicting results. While Ref. [25] has provided evidence that

two strains of VSV differed in mutational robustness during

mutagenesis treatment, Ref. [14] later concluded from work with

LCMV that lethal mutagenesis does not lead to the evolution of

greater mutational robustness. Here, we explain how these

apparently contradictory results are both consistent with a simple

model of lethal mutagenesis.

The organization of this paper parallels our line of inquiry. First

we ask, when will a population at equilibrium go extinct? We find

with a deterministic model that an approximation for the critical

mutation rate, i.e. the mutation rate beyond which the population

goes extinct, is the log of reproductive capacity divided by the non-

neutrality of the population at equilibrium. The implication is that

small increase in the mutation rate can compensate for relatively

large increases in neutrality. Next, we ask, how will elevating the

mutation rate increase the rate at which populations move to areas

of a neutral network with higher equilibrium neutrality? We find

with a semi-deterministic model that the time it takes for a

population undergoing mutagenesis to find the optimal area of the

PLoS Computational Biology | www.ploscompbiol.org 1 June 2010 | Volume 6 | Issue 6 | e1000811



network grows exponentially with the size of the barrier to it. The

implication is that we can usually disregard these shifts of the virus

population, since the population will quickly shift to the optimal

area if the barrier is small and the population will stay where it

begins if the barrier is large. Finally, we ask, when will a

population that is not at equilibrium go extinct? We show with a

stochastic analytical model and simulations based on RNA-

secondary structure networks both the critical mutation rate in

these more complex models and the probability of stochastic

extinction at mutation rates below the critical mutation rate. The

implication is that the initial robustness of the population can be

important in some cases, but not when the mutation rate exceeds

the critical mutation rate.

Results

Deterministic theory
First, we consider the effects of mutational robustness in a

deterministic model of lethal mutagenesis. In general, virus

extinction is guaranteed if [18]

R0v1: ð1Þ

R0 is the basic reproductive ratio known from epidemiology. In

the context of lethal mutagenesis, it measures the mean number of

offspring virions (per infecting virion) that successfully infect a

susceptible cell. R0 combines the effects of both virus reproduction

and virus death. Offspring virions that die before having the

chance to infect a susceptible cell do not contribute to R0.

We can write R0 as wR [18]. R is the basic reproductive

capacity of the best genotype in the viral fitness landscape and w is

the mean fitness of the viral population, measured in units of R.

We use the term reproductive capacity for R since no individual of

any genotype can have a greater expected number of reproductive

offspring. We assume that changes in the mutation rate affect only

w and leave R unchanged. Under the fairly weak assumptions that

populations are large, recombination is absent, and mutations are

Poisson-distributed [18], we have w~e{Ud . Thus, we can rewrite

Equation (1) as

e{Ud Rv1, ð2Þ

where Ud is the deleterious genomic mutation rate. Equation (2)

allows us to solve for the deleterious mutation rate beyond which

extinction is guaranteed. We find that Udwln R leads to

extinction.

In general, we can write the deleterious mutation rate as

Ud~pU , where U is the overall genomic mutation rate and p is

the probability that a random mutation is deleterious. Equation (2)

then becomes

e{pU Rv1: ð3Þ

Mutagenesis will increase U . The evolution of mutational

robustness will decrease p.

Throughout the remainder of this paper, we consider

populations evolving on neutral networks. All sequences on the

neutral network have the same reproductive capacity R, and

sequences off the neutral network are inviable. The neutral-

network metaphor is a reasonable approximation for populations

near the top of their fitness peak in more general fitness

landscapes. Strongly deleterious mutations will generally be

purged from the population quickly and thus can be considered

lethal. Weakly deleterious mutations will have a minor effect on

population fitness and can—to first order—be considered as

neutral mutations.

In the case where neutral sequences are distributed at equal

density throughout the mutational network, p is a constant and

corresponds to the fraction of non-neutral mutational neighbors at

each node in the network. More generally, p is determined

approximately by the average population neutrality at equilibrium.

This approximation has lead to good predictions for fitness

landscapes based on RNA secondary-structure folding [26]. To

first order, p is independent of the mutation rate, because the

average neutrality of a population depends primarily on the

structure of the neutral network [27,28]. However, for very large

mutation rates, p will depend on U [29]. For example, for U~2,

the number of a sequence’s neutral two-point mutants will have a

larger effect on the average neutrality than the number of neutral

one-point mutants.

Under the assumption that p is independent of U , we can

rearrange Equation (3) and solve for the value of U that must be

exceeded for the population size to deterministically decrease.

Throughout this paper, we denote this value of U as Ucrit and for

this deterministic model we find that

Ucrit~ln(R)=p: ð4Þ

As long as the critical mutation rate is close to unity and we use a p
value measured at equilibrium, this expression will give a

reasonable approximation for the critical mutation rate. Figure 1

shows how an increase in mutational robustness, i.e., a decrease in

p, extends the regime in which a viral population can survive

mutagenesis treatment.

Of course, the critical mutation rate may be far above unity and

the assumption that p is independent of U may not be valid in that

regime. The stochastic models we analyze below indicate a way to

make an analogous measurement in this case for the purpose of

calculating Ucrit. Before presenting that result, however, we next

consider a more troubling possibility: Will the elevation of the

mutation rate during lethal mutagenesis increase the rate at which

Author Summary

The high mutation rate of RNA viruses, such as HIV, allows
them to rapidly evolve resistance to host defenses and
antiviral drugs. A new approach to treating these viruses—
lethal mutagenesis—turns the mutation rate of these
viruses against them. It uses mutagens to increase the
viruses’ mutation rates so much that the accumulation of
harmful mutations drives viral populations to extinction. Is
there any way that a virus could adapt to a drug that
increases its mutation rate? One way is that the virus could
evolve so that mutations tend to be less harmful. In
previous experimental work, there have been reports that
virus populations can differ in robustness. Yet, the
evolution of mutational robustness did not seem to inhibit
extinction by lethal mutagenesis. In this work, we model
viral populations under lethal mutagenesis in order to see
when viruses might escape extinction by evolving
robustness to mutations. We find that viruses can benefit
from robustness only at relatively low mutation rates
because the extent to which robustness increases fitness is
rapidly drowned out by the extent to which higher
mutation rates decrease fitness. The implication is that
the evolution of mutational robustness is not a funda-
mental impediment to lethal mutagenesis therapy.

Lethal Mutagenesis and Mutational Robustness
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the virus population evolves to a higher equilibrium level of

robustness?

Lethal mutagenesis in the neutral-staircase landscape
In general, a neutral network may be broken into separate areas

of differing neutrality and separated by entropic barriers. (The

term entropic barrier means that the probability to jump from one

network to another with one mutational event is low.) In other

words, there may be few possible paths in the network from one

area to another. In this case, there is the risk that increasing

mutation rates will increase the rate at which virus populations

find rare paths to other areas of the neutral network in which it is

possible to evolve greater neutrality. This process is comparable to

that of demes drifting between equilibria (adaptive peaks) in the

context of shifting-balance theory [30].

Depending on how great a barrier is in comparison to the

mutation rate, the evolution of greater neutrality during lethal

mutagenesis will be either inevitable or extremely unlikely. The

barriers between areas of the neutral network at high mutation

rates will often be so small that they can be neglected. In this case,

the separate areas form one large, connected neutral network.

Alternatively, the barriers will be so large that we may disregard

the undiscovered areas of the neutral network. We next illustrate

this concept with a specific example.

We consider the neutral-staircase landscape [29], a fitness

landscape consisting of multiple nested neutral networks. Networks

with relatively low connection density are embedded into larger

networks with increasingly higher connection density. To discover

the next larger network, a population has to cross an entropic

barrier.

Sequences in the neutral-staircase landscape consist of zeros and

ones (bits). The bits are organized into b blocks of c pairs of bits.

Each block is separated by an additional h bits. The total sequence

length is thus l~2bczh(b{1). Blocks can be either active or

inactive. Sequences are viable if and only if all bits in inactive blocks

are set to zero and no pairs of bits in active blocks are both set to

one. Viable sequences with minimal neutrality contain one active

block at one end of the sequence and sequence neutrality increases

when the inactive block adjacent to an active block becomes

active. The inactive block adjacent to an active block becomes

active when the h bits between the adjacent inactive and active

blocks are all set to one at the same time. Thus, the h bits between

blocks form an entropic barrier. The larger h, the harder it is to

discover the more-densely connected areas of the neutral network.

The neutral-staircase landscape can be solved analytically, and

the full derivation can be found in Ref. [29]. We express the

solution in terms of the bit-copying–fidelity rate q~1{U=l and

the reduced mutation rate ~mm:(1{q)=(3q). The average fitness of

a population at equilibrium is given by

SfaT~Rql 1z
~mm2

2
z

~mm

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8z~mm2

p� �ca

, ð5Þ

under the assumption that the dominant sequence in the

population has a active blocks. To increase the number of active

blocks, the population has first to generate a mutant with az1
active blocks, and then this mutant has to go to fixation. The

probability that at least one offspring sequence in one time step

will have az1 active blocks is

Pcrea,a~1{ 1{SfaTR{1~mmhq{2c(1{q2~mm2)c
� �NSfaT

, ð6Þ

where N is the population size. A sequence with az1 active blocks

will become fixed with probability paz1. We obtain paz1 from the

classic expression for the probability of fixation,

paz1~2(Sfaz1T=SfaT{1) [31]. We can combine Pcrea,a and

paz1 to estimate ta, the expected number of generations until the

dominant sequence changes from having a active blocks to having

az1 active blocks [29]:

ta~
1

paz1Pcrea, a

: ð7Þ

(This expression assumes that the time to fixation is negligible

compared to the time to discovery.)

If we sum ta over all possible values of a, we obtain the

convergence time, i.e., the expected time for the population to

move from having one active block to the maximum number of

active blocks, b:

tconv~
Xb{1

a~1

ta: ð8Þ

Figure 2 shows convergence times as a function of mutation

rate. The curves in Figure 2 are only plotted for Uvh=2, where

Equation (8) has previously been found to be in good agreement

with simulations [29]. When barriers are large, there is a log-log

relationship between convergence time tconv and the genomic

mutation rate U . So convergence times may decline quickly as the

mutation rate increases. However, there is a log-linear relationship

between the convergence time and the size of the barrier.

Therefore, even at high mutation rates, the time to convergence

may be an astronomical number of generations if the barrier is

large (Figure 2). This is true even for large populations.

Figure 1. Effect of robustness on virus population survival. The
set of mutation rates and reproductive capacities that allow the virus
population to survive according to Equation (3) are shaded. This set is
smaller in the absence of mutational robustness (p~1) than in the
presence of considerable robustness (p~0:5), but the relationship
between Ucrit and R is consistently log-linear.
doi:10.1371/journal.pcbi.1000811.g001

Lethal Mutagenesis and Mutational Robustness
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The prospect of the equilibrium neutrality increasing raises the

question of how much increases in equilibrium neutrality may

increase Ucrit. Although the calculation of convergence times

assumed that that the population size was constant, we can answer

this question by considering Equation (5) as a measure of absolute

fitness. Then we find that an increase in the number of active

blocks does not greatly increase the critical mutation rate Ucrit

(Figure 3).

When barriers are small, we can expect that the area of the

neutral network with the greatest connection density can be found

in a reasonable number of generations. In this case, the main

question is whether the population can find areas with high

connection density before it goes extinct under mutagenesis. In the

following subsections, we will address this question using fully

stochastic models.

Stochastic theory
According to Equation (1), extinction is guaranteed if the

mutation rate is so high that the equilibrium mean fitness of the

population is less than 1. But lethal mutagenesis is not an

equilibrium process. Therefore, we next explore how extinction

occurs in a population out of equilibrium, using the mathematical

framework of multi-type branching processes. Because this

approach is a stochastic one, we calculate not only the mutation

rate at which extinction is guaranteed but more generally the

probability that extinction happens at any given mutation rate.

Our main question here is how the extinction probability changes

if the population resides initially in regions of the neutral network

with particularly low or high connection density.

The mathematical framework we use to calculate the extinction

probability under lethal mutagenesis is that of multi-type

branching processes. This framework has been used previously

to calculate the fixation probability of a rapidly mutating virus on

Figure 2. Expected time to evolve maximum robustness. In the neutral-staircase fitness landscape, the maximum neutrality increases as the
number of active blocks increases. The expected time, in generations, for the number of active blocks a to go from one to a maximum number b of 20
is plotted using Equation (8). The curves in each panel, from lowest to highest, correspond to the number of between-block bits h being 2, 4, 6, and 8.
The curves for the lowest barrier can be fairly flat because fixation probabilities become the rate-limiting factors. Parameters: number of bitpairs per
block c~20, reproductive capacity R~100.
doi:10.1371/journal.pcbi.1000811.g002

Figure 3. Critical mutation rates in the neutral-staircase fitness
landscape. Critical mutations rates derived from Equation (5) are
plotted as a function of the total number of blocks b for varying
numbers of active blocks a. The critical mutation rates increase slowly as
the number of active blocks increases. Parameters: number of bitpairs
per block c~20, reproductive capacity R~100, between-block bitstring
length h~8.
doi:10.1371/journal.pcbi.1000811.g003

Lethal Mutagenesis and Mutational Robustness
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a neutral network [32,33]. The next two paragraphs offer a brief

introduction.

Consider a population where all offspring are identical to their

parents. A sequence produces a random number of offspring in the

next generation. All these offspring sequences produce their own

random number of offspring according to the same probability

distribution. The number of progeny that a sequence has in two

generations, then, is the sum of these random variables. The use of

a probability generating function (p.g.f.) allows for convenient

expression of these sums. We use

f (z)~
X?
k~0

P(k)zk, ð9Þ

where P(k) is the probability that the number of offspring equals

k. The convenience of using p.g.f.s is that we obtain the p.g.f. for

the distribution of sizes for the second, third, and all following

generations by iteratively substituting the p.g.f. f (z) into itself two,

three, or more times. The theory of branching processes [34]

shows that the probability x of extinction, the condition in which

all sequences stop producing offspring, is the value of z that

satisfies the simple expression

x~f (x), ð10Þ

so long as the expected number of offspring E(k)~R0w1 but

finite. The theory also shows that the condition R0ƒ1 guarantees

extinction.

When there is a finite number B of distinct genotypes, we use

multivariate offspring distributions. In this case, the p.g.f. is a

vector-valued function and takes a vector z~(z1, . . . ,zB) as its

argument. Component i of the p.g.f. f(z)~(f1(z), . . . ,fB(z)) has

the form

fi(z)~
X

k1,...,kB

P(k1, . . . ,kBDi)zk1
1 � � � z

kB
B : ð11Þ

Here, P(k1, . . . ,kBDi) is the joint probability that genotype i has k1

offspring of type 1, k2 offspring of type 2, and so on. As in the one-

dimensional case, the extinction probability follows from the fixed-

point equation

x~f(x): ð12Þ

Component xi of the fixed point x gives the probability that the

branching process goes extinct if it was started with a single

particle of type i, as long as the following assumptions are met

[34]: The expectation and variance of the offspring of each type

are finite; all types do not have exactly one offspring; each type can

have a descendant of any other type; and the dominant eigenvalue

% of the matrix of means is greater than one. The matrix of means,

here denoted R0, in a multi-type branching process is comparable

to the expected number of offspring R0 in a single-type branching

process and has elements

R0,ij~
X

k1,...,kB

kjP(k1, . . . ,kBDi): ð13Þ

If the above assumptions are satisfied except that %(R0)ƒ1,

extinction is guaranteed.

Extinction probabilities can easily be found numerically from

Equation (12), but we next present two approximations to

illuminate how extinction probabilities follow from offspring

distributions.

First, we need an explicit expression for the multivariate p.g.f.s

in the fixed-point equation. If the number of offspring of type r

produced by a type-i sequence is Poisson-distributed with mean

R0,ir, then Equation (9) defines the corresponding p.g.f. as

exp R0,ir(z{1)½ �. The p.g.f. for a sum of independent random

variables is the product of the p.g.f.s of all the variables. Assuming

independence of the number of offspring of each type, then, our

multivariate p.g.f.s are

fi(z)~exp
XB

r~1

R0,ir(zr{1)

" #
: ð14Þ

When extinction probabilities x are close to one, we can

approximate them by taking the log on both sides of Equation (12),

expanding ln(xi) to second order, and performing some algebra to

obtain

xi~1{ (R0,ii{1)z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R0,ii{1)2z2

X
r=i

R0,ir(1{xr)
r !

: ð15Þ

Equation (15) says that the probability of extinction of a type-i

sequence is approximately 1{2(R0,ii{1) if this sequence does not

produce any other types of sequences. This is natural since

R0,ii{1 is a measure of how much the replication rate of type-i

sequences exceeds the replacement rate. If we equate R0,ii{1 with

the selective advantage s in a constant–population-size model, we

see the classic result 1{xi~2s [31]. We also see in Equation (15)

how the probabilities 1{xr that other types of sequences do not

go extinct weight the contribution of the rates R0,ir in reducing the

extinction probability.

When extinction probabilities x are close to zero, we can

express xi using the linear approximation of Equation (14) at zero:

xi~(1z
XB

r~1

R0,irxr)fi(0): ð16Þ

Equation (16) says that xi is at least the probability fi(0) that a

type-i sequence produces no offspring. The equation also shows

how xi further increases as the fraction of offspring that will go

extinct,
PB

r~1 R0,irxr, increases. Solving Equation (16) gives

x~ I{diag f(0)ð ÞR0ð Þ{1
f(0), ð17Þ

where I is the identity matrix and diag(f(0)) is the diagonal matrix

whose diagonal elements are the elements of the vector f(0).

Stochastic extinction on an RNA secondary-structure
network

The previous subsection developed the general theory of

stochastic extinction under lethal mutagenesis. We will now apply

this theory to the special case of a neutral network of RNA

sequences. To this end, we will first describe a model that links a

sequence’s location in a neutral network with the sequence’s

neutrality. This model yields the rates Mir at which sequences

produce offspring sequences with different levels of neutrality. We

then present both analytic and simulation results that show how

the initial location of a population affects its extinction probability.

Lethal Mutagenesis and Mutational Robustness
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Consider how the probability-density function of the offspring

distribution P(k1, . . . ,kBDi), the probability that a sequence will

produce any number of offspring with any combination of

neutralities, depends on a sequence’s location in a neutral

network. The sequence’s location determines how many mutations

can push sequences off of the neutral network. The sequence’s

location also determines how mutations can change the fraction of

a sequence’s neighbors that are neutral (i.e. change the sequence’s

neutrality or robustness). In theory, we could determine the graph

that connects all sequences in a neutral network, and read off

P(k1, . . . ,kBDi) from this graph. But in practice, this graph is so

large for RNA sequences of even modest length that this approach

is not feasible. A more feasible, but still computationally intensive,

approach would be to group sequences into classes of various levels

of neutrality and then estimate a matrix of means from a sample of

sequences from each class. The principle eigenvalue of this matrix

of means would indicate if extinction was guaranteed. Instead, we

here describe a sequence simply by two parameters a and b. The

parameter a measures the probability that mutant offspring are

neutral, and the parameter b determines whether this probability

stays constant (no epistasis), increases (antagonistic epistasis), or

decreases (synergistic epistasis) as the number of mutations

increases.

We define a such that the larger it is, the smaller the probability

that offspring are neutral (see next paragraph). Instead of a, we

also use the fraction of deleterious mutations p, which satisfies

p~1{e{a: ð18Þ

The larger p, the smaller the probability that offspring are neutral.

As in the deterministic model, p~0 means that all offspring are

neutral and p~1 means that no offspring is neutral.

Our approach is inspired by Ref. [35], which showed that the

fraction of neutral sequences at a distance n from a reference

sequence decays approximately as

w(n)~e{anb
: ð19Þ

Ref. [35] also showed that a and b are not independent from each

other, but that either parameter determines the other. The

relationship between a and b arises because the total number of

neutral sequences in a given neutral network is a constant, N n. We

can express N n in terms of w(n) as

N n~
Xl

n~1

w(n)
l

n

� �
3n, ð20Þ

where l is the sequence length and 3 represents the number of

RNA bases to which an existing base can mutate. Using Equation

(19) for w(n) and given either a or b, we can solve Equation (20)

for the other parameter.

Equations (19) and (20) say that, since there are only so many

neutral sequences, if a sequence is in an area of the neutral

network with a high connection density, then the connection

density of neutral sequences must generally decline as we move

away from it, and vice versa. This reasoning implies that a and b
are negatively correlated, and we found here that b!{ln(a)
(Figure S1).

We can use this framework to determine the a and b of an

offspring sequence, given that we know a and b of the parent

sequence. Equation (19) describes the expected density of neutral

sequences as we move away from the parent sequence. The

fraction w(nz1)=w(n) is the factor by which the probability of an

offspring being neutral is reduced as the number of mutations goes

from n to nz1. We take this fraction as the neutrality 1{p of an

offspring with n mutations. Then, a~{ln(1{p). Note that this

approach neglects back mutations, which generally are highly

unlikely for sufficiently long sequences. Once we have the

offspring’s a, we can solve for the offspring’s b using Equations

(19) and (20). We close this system by evenly dividing the range of

the continuous variable p into B bins. Sequences with a p in the

range of a bin are given the p value of the upper boundary of the

bin. The bins are indexed so that the p of type-i sequences

pi~i=B.

Putting everything together, the probability that any one

offspring of a parent of type i is of type r is

Mir~
Xl

n~0

mnwi(n)dr(n), ð21Þ

where mn is the probability of having n mutations, and dr(n)~1 if

1{wi(nz1)=wi(n) is in (pr{1,pr� and dr(n)~0 otherwise. To fully

specify Mir, we assume that the distribution of mutations is Poisson

with mean U . As explained in the previous subsection, if the

number of offspring of each type are independent and Poisson-

distributed, the p.g.f.s for the fixed-point equation used to calculate

extinction probabilities are products of Poisson p.g.f.s. See Text S1

for a more detailed derivation.

The matrix M defined in Equation (21), multiplied with the

reproductive capacity R, corresponds to the matrix of means R0

discussed in the previous subsection. Therefore, the critical

mutation rate Ucrit is the mutation rate at which the dominant

eigenvalue of RM equals one. Here, Ucrit is determined by the

parameters sequence length l, neutral-network size N n, and

reproductive capacity R according to

l(M(Ucrit))~1=R, ð22Þ

where l(M) is the dominant eigenvalue of M and represents the

fraction of offspring produced at equilibrium that are neutral.

l(M) is an exponentially decaying function of U (Figure 4). Since

l(M)~1 when U~0, we can derive the rate of decay ~pp of l(M)
with U by measuring l(M) at a positive mutation rate U1:

~pp~
{ln l M(U1)ð Þð Þ

U1

: ð23Þ

This ~pp is an effective value of the probability of neutrality p from

the deterministic model subsection, and ~pp allows us to calculate

critical mutation rates that are far above one as

Ucrit~ln(R)=~pp: ð24Þ

~pp, and thus Ucrit, is largely determined by l and log4(N n)=l
(Figure 4). The relationship between R and Ucrit in Equation (24)

is the same as in the deterministic model (Equation (4)). We next

present results directly showing the relationships between l, N n,

and Ucrit.

First, we present results based on the assumption that

populations initially consist of a single sequence. This case is

relevant to a scenario in which a patient is inoculated with a

small dose of virus while on lethal mutagenesis therapy or a

virus is establishing itself in a new tissue of a patient’s body.

With this assumption, we found that the probability of

Lethal Mutagenesis and Mutational Robustness
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extinction declined with the initial sequence’s neutrality, but

also that the gradient in extinction probabilities rapidly leveled

as the mutation rate increased (Figure 5). In agreement with the

theory of branching processes, the critical mutation rate Ucrit at

which extinction is guaranteed was independent of the initial

sequence’s robustness.

Figure 4. Effect of mutation rate on the dominant eigenvalue of the matrix M. The dominant eigenvalue decays exponentially with the
genomic mutation rate U and the slope of the decay for a given sequence length is largely determined by the proportion of neutral sites in the
sequences. The panels are labeled with the sequence lengths of 40, 5,000 and 10,000. For each sequence length, the lines, from lowest to highest, are
numerical solutions where log4(N n) was set to approximately one third, two thirds, and five sixths of the sequence length. This gave neutral networks
sizes equivalent to those from fitness landscapes in which approximately one third of sites are neutral, two thirds of sites are neutral, and the same
proportion of sites are neutral as for the sequences in the RNA simulations in Figure 5.
doi:10.1371/journal.pcbi.1000811.g004

Figure 5. Extinction probability as a function of initial neutrality and genomic mutation rate. Panel A displays results from simulations
where sequence neutrality was determined by RNA folding. Panel B displays results from a branching process model derived from the correlation
between sequence neutrality and epistasis. Only in a band of intermediate mutation rates does the extinction probability depend on initial neutrality
1{p. Parameters: sequence length l~40, neutral-network size N n&434, reproductive capacity R~50, initial population size = 1 sequence.
doi:10.1371/journal.pcbi.1000811.g005
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Next we used the analytic calculations to study the effect of the

size of the neutral network. When going from a smaller neutral

network to a larger neutral network, the extinction threshold Ucrit

slowly moves towards larger values (Figure 6). Extinction

probabilities decline faster with increasing N n for populations

that initially are highly robust (p is small) compared to populations

that initially are not very robust (p is large). Consequently, the

larger the neutral network, the stronger is the extinction

probability affected by the robustness of the sequence seeding

the population (Figure 6).

Since lethal mutagenesis is intended to eliminate virus

populations that have grown to high levels, we also considered

the effect of the initial population size. We considered an initial

population that was uniformly composed of sequences with a given

initial robustness 1{p. When going from a smaller initial

population to a larger initial population, only the extinction

probabilities for mutations rates below the extinction threshold

changed (Figure 7). The gradient of extinction probabilities

receded into a region in which sequence neutrality was low and

mutation rates were just below the threshold. As in Figure 1A, the

extinction threshold with p~1 was the mutation rate where the

expected number of offspring without any mutations was one, i.e.

U~ln R. When the initial population was large and had at least a

small amount e of neutrality (pv1{ ), the extinction threshold

was the mutation rate where, at equilibrium, the expected number

of offspring without any mutations was one, i.e. U such that the

eigenvalue of RM was one (Figure 7C).

We verified our branching-process model by carrying out

simulations with individual RNA sequences (see Methods for

details). The simulations used an RNA-folding algorithm to obtain

a computationally tractable genotype-to-phenotype mapping that

did not make the simplifying assumption that a sequence is fully

described by just the two parameters a and b. The simulations

were initiated with sequences having a wide range of neutralities,

as measured from the fraction of point mutations that maintained

the neutral phenotype. In each generation of the simulations,

sequences with the neutral phenotype reproduced, their offspring

received a random set of mutations, and the phenotypes of these

offspring were then determined. Simulations were continued until

each population exploded or went extinct. The length of the

sequences was 40. We found that the analytic calculations and the

RNA secondary-structure simulation results were in broad

agreement (Figures 5 and S2). The main difference was that the

analytic calculations had a Ucrit of roughly one to two mutations

per replication above the Ucrit in the simulations.

Discussion

We have studied how the evolution of mutational robustness

affects lethal mutagenesis. Using a simple deterministic theory, we

found that extinction was guaranteed past a critical mutation rate

Ucrit given by the log of reproductive capacity R divided by the

probability p that a random mutation is deleterious. Thus, a

reasonable change in mutational robustness (say, 10–30%) will

result only in a minor change to Ucrit. For neutral networks

composed of subunits divided by barriers, we argued that barriers

will in practice either be negligible or unsurmountable. In either

case, a theory describing only a single neutral network is sufficient

to explain how robustness affects lethal mutagenesis. We

determined whether and to what extent robustness could evolve

while mutagenesis was ongoing using a stochastic branching-

process model of lethal mutagenesis. We found that when the

initial population was small and mutation rates were high enough

to be able to cause extinction, but not so high that extinction was

assured, the initial neutrality of a population could affect the

probability of extinction. When mutation rates were more

extreme, the neutral network small, or the initial population size

large, initial neutrality had little effect on the probability of

extinction.

Figure 6. Effect of neutral-network size on extinction probability. The sizes of the neutral networks in panels A, B, and C are 4100, 4200, and
4300, respectively. The dependence of the extinction probability on the initial robustness is greatest in panel C, where the neutral network is largest.
These results are from a branching process model derived from the correlation between sequence neutrality and epistasis. Parameters: sequence
length l~400, reproductive capacity R~50, initial population size = 1 sequence.
doi:10.1371/journal.pcbi.1000811.g006
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In our model of replicating RNA sequences, we found that the

critical mutation rate Ucrit increased with increasing neutral-

network size N n. The larger the neutral network, the larger Ucrit.

This result follows immediately from the relationship between N n

and a. The larger N n, the smaller a for the same b. Thus, larger

neutral networks are in general composed of more robust

sequences that can withstand a higher mutation rate. Yet the

relationship between N n and Ucrit was rather weak. Increasing the

neutral network size by over 10120-fold (from 4100 to 4300) changed

Ucrit by less than a factor of 3 (Figure 6).

We found that the stochastic model behaved nearly determin-

istically when the initial population size was 100,000, which is not

a large population for viruses. This result assumed a completely

homogeneous initial population. If the initial population were

heterogeneous, we would likely see nearly deterministic behavior

at even lower initial population sizes. At high heterogeneity, the

population might contain a single individual with high neutrality.

This individual would have a low extinction probability unless U
was close to Ucrit. The extinction probability of the entire

population would then be dominated by the extinction probability

of this one individual, since the extinction probability of the entire

population can only be as high as the extinction probability of any

one of its members.

What are reasonable values for the fraction of deleterious

mutations p? Estimates for the fraction of lethal mutations for

various viruses (VSV, poliovirus, bacteriophages) range from

between 20% to 40% [18,36,37]. For the same viruses, between

30% and 60% of random mutations are deleterious but non-lethal

[36,37], and there seems to be a tendency for those viruses that

have a higher fraction of lethal mutations to have fewer non-lethal

deleterious mutations. Together, approximately 70% to 80% of

random mutations are deleterious. These measurements do not

provide, however, an estimate of p for a robust and a non-robust

strain of the same virus. While such estimates are not available for

entire virus genomes, several exist for individual proteins.

Neutralities of less-robust variants of a protein tend to be 15%

to 50% lower than neutralities of more-robust variants of the same

protein [38–40]. If we accept an increase in robustness by a factor

of two as a worst case scenario for a real-world virus, then likewise

the critical mutation rate will at most double (Figure 1).

Yet mutational robustness can only increase to the extent to

which it is not already present. Theory predicts that populations

evolve robustness if the product of mutation rate and population

size exceeds one, and that the level of robustness achieved is

largely independent of the actual mutation rate [27–29]. For RNA

viruses, whose mutation rates alone are on the order of one per

genome and generation [41], we would therefore expect that their

wild types have already evolved most of the robustness their

genome architectures are capable of. Artificial mutagenesis should

therefore not result in major additional gains in robustness for

these viruses.

The reproductive capacity R is difficult to relate to data, because it

depends not only on the virus burst size but also on the number of

offspring particles that go on to establish a successful infection. Burst

sizes range from values in the double digits (e.g., 76 for bacteriophage

w6 [42]) to many thousand (e.g., up to 10,000 for poliovirus [43]).

Which percentage of these offspring viruses die before infecting a cell

in vivo is unclear. More importantly, R interacts with the neutral-

network size to determine extinction probabilities in our stochastic

models. Since we know of no precise and accurate estimates for the

neutral-network size, a precise and accurate value for R would not

make the final results more meaningful. At any rate, the log-linear

relationship between Ucrit and R (Equation (24)) means that the

change in Ucrit due to the evolution of robustness is not highly

sensitive to the exact value of R.

The sequence lengths of 40 and 400 used in the stochastic

models are short in comparison to the genomes of RNA viruses,

which are about 10,000 base pairs long. Since the relationship

Figure 7. Effect of the initial population size on extinction probability. The initial population sizes in panels A, B, and C are 1, 100, and
100,000, respectively. The dependence of the extinction probability on the initial robustness is greatest in panel A, where the initial population size is
small. These results are from a branching process model derived from the correlation between sequence neutrality and epistasis. Parameters:
sequence length l~400, reproductive capacity R~50, neutral-network size N n&4300.
doi:10.1371/journal.pcbi.1000811.g007
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between a and b remains similar for sequences up to lengths of

10,000 (Figure S1), we expect that our analytical branching-

process model gives reasonable results even when extrapolated to

sequences of realistic lengths.

For our model of replicating RNA sequences under mutagen-

esis, we found that the critical mutation rate Ucrit in the analytic

model was slightly higher than the one in the simulations. This

observation suggests that our estimates of neutral-network size N n

are too large. We would have overestimated N n if the neutral

networks for the RNA shapes chosen have multiple components,

which has been observed for many RNA secondary-structure

neutral networks [44]. In this case, N n should be the size of the

component, rather than the size of the entire neutral network.

Alternatively, the difference in Ucrit may be the result of Equation

(19) not exactly matching the true fitness landscape.

The bulk of our results implies that the evolution of mutational

robustness during lethal mutagenesis is not a serious threat to the

efficacy of lethal mutagenesis. As long as lethal-mutagenesis

treatment aims to increase U substantially beyond Ucrit (say, to

2Ucrit or more), the population will not be capable of

compensating this increase in mutation rate by evolving a

commensurate increase in robustness. This implication is consis-

tent with the report that lymphocytic choriomeningitis virus

(LCMV) passaged with a sub-lethal dose of 20 mg=mL 5-

flourouracil (5-FU) went extinct without exception when a lethal

dose of 100 mg=mL 5-FU was later used [14].

Additionally, our results are not a contradiction to the report

that a mutationally robust strain of vesicular stomatitis virus (VSV)

prevailed in competition against a strain that was more fit in the

absence of a mutagen when 5-FU doses were 20, 40, 60, and 80

mg=mL [25]. When two strains are in direct competition, relatively

minor differences in robustness can favor the more robust strain

over the less robust one at sub-lethal concentrations of mutagen

[26,45]. Yet both strains would likely go extinct at higher doses of

mutagen.

While our models do show that the initial neutrality of a

population can affect its probability of extinction, this relationship

may be overshadowed in practice. For example, the models

neglect the effect of defective interfering particles, which may

contribute to extinction by lethal mutagenesis [13]. The defense

systems of host cells or the abundance and distribution of

susceptible cells could also be more important than initial

population neutrality. Finally, we have not addressed the potential

for resistance to the mutagen, observed in some experimental

systems [23,24].

This work has provided quantitative support for the statement

that the evolution of mutational robustness will have only a minor

effect on lethal mutagenesis. In an extreme case, half of all non-

beneficial mutations could evolve to become neutral. In this case,

doubling the mutation rate will be sufficient to cause extinction

(Figure 1). For less extreme cases of robustness, less extreme

increases in mutation rates would suffice. If entropic barriers to

higher levels of robustness are substantial, increasing mutation

rates to critical levels will not make the epochal evolution of this

greater robustness appreciably more likely. If the entropic barriers

are small and virus population sizes are appreciable, we generally

need to treat the population as if it consisted of viruses with the

mutation-selection–equilibrium level of robustness. So while

natural selection may increase the sequence neutrality of viruses

during lethal mutagenesis, by itself, this effect is unlikely to affect

the course of treatment. The analysis of the potential effects of

increased sequence neutrality combined with the evolution of

higher-fidelity polymerases and other compensatory mutations

remains a topic for future work.

Methods

Numerical evaluation of analytic results
We evaluated the convergence times given by Equation (8),

numerically derived Ucrit from Equation (5), and implemented a

bisection root finding algorithm to solve Equations (19) and (20)

for b, given all other parameters, using the Sage [46] computing

environment. Specific components of Sage used included the

multiple-precision library MPFR [47], SciPy [48], and the

computer algebra system Maxima [49]. The scripts used are

included in Dataset S1.

We obtained the fixed point x in Eq. 12 by iterating the p.g.f.s

until the total difference between the input vector and the resulting

vector was less than 1:1|10{7. Component xi of x gives the

extinction probability of a population that begins with a single

sequence of type i. To calculate the extinction probabilities of

populations of size Pi where Piw1, we assumed independence of

the extinction of each lineage in the initial population (consistently

with the branching process) and used the probability that all of the

lineages went extinct, xPi

i .

Simulations on RNA secondary-structure networks
Sequences that folded into a target shape were considered

neutral, and all others were considered inviable. The neutrality of

a sequence was the fraction of neighbors at a Hamming distance of

one that also had the target phenotype. The RNAfold function in

the Vienna package [50] version 1.7 was used for the folding.

Unpaired bases were allowed to participate in at most one

dangling end (the default option -d1). The size of the neutral

network was determined by randomly sampling the sequence

space and seeing what proportion was neutral, and then

multiplying this proportion by the size of the sequence space.

We chose target shapes that were relatively common and limited

the sequence length to 40. This limit reduced the number of

random sequences that needed to be sampled to estimate the

neutral-network size without introducing any obvious biases in the

results. We used the following targets:

1. ((((....))))............................

2. .(((..........(((((.....))))))))........

Here, positions that form base pairs are indicated with matching

parentheses, and unpaired positions are indicated with dots. For

the first target, which was used to generate the results in Figure 5A,

we sampled two hundred million sequences and found 88,840 to

be neutral. Therefore, log4(N n)&34. For the second target, which

was used to generate the results in Figure S2A, we sampled one

hundred billion sequences and found 19,782 to be neutral.

Therefore, log4(N n)&29.

The extinction probability of a sequence was determined by

simulation of a branching process on the RNA secondary-structure

neutral network. Simulations began with a single neutral sequence.

These sequences were selected from the sample of sequences used

to estimate the size of the neutral network so as to get the full range

of initial neutralities. At each iteration, each sequence in the

population had a Poisson distributed number of offspring. Each

letter of the sequence changed to any of the other three possible

letters with a probability equal to the genomic mutation rate

divided by the sequence length. Mutation rates ranged from zero

to fifteen. Each sequence was tested to see if it folded into the

target, and sequences that did not were removed. Simulation was

continued until the population size reached zero or 10,000.

Simulations were replicated 100 times for each of 500 initial

sequences and the extinction probability was the number of
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simulations in which extinction occurred divided by the total

number of simulations. A local polynomial fitting function (the

loess function in R [51]) was used to produce smooth curves from

the extinction probability data. In Figure 5A, the maximum

mutation rate used in simulation runs was 15. The extinction

probability for larger mutation rates is an extrapolation of the

observed pattern. We have no reason to expect that this

extrapolation is incorrect.

The code written for these analyses is in Dataset S1.

Supporting Information

Figure S1 Negative correlation between neutrality and epistasis.

Equations (19) and (20) predict that as the parameter a of a

sequence increases, the epistasis parameter b decreases. The

panels are labeled with the sequence lengths of 40, 5000, and

10000. For each sequence length, the lines, from highest to lowest,

are numerical solutions where log4(N n) was set to approximately

one third, two thirds, and five sixths of the sequence length. This

gave neutral-network sizes equivalent to those from fitness

landscapes in which approximately one third of sites are neutral,

two thirds of sites are neutral, and the same proportion of sites are

neutral as for the sequences in the RNA simulations in Figure 5.

Found at: doi:10.1371/journal.pcbi.1000811.s001 (0.02 MB EPS)

Figure S2 Extinction probability as a function of initial

neutrality and deleterious genomic mutation rate. Panel A

displays results from simulations where sequence neutrality was

determined by RNA folding. Panel B displays results from a

branching process model derived from the correlation between

sequence neutrality and epistasis. Only in a band of intermediate

mutation rates does the extinction probability depend on initial

neutrality 1-p. Parameters: sequence length l = 40, neutral-

network size N n<429, reproductive capacity R = 50, initial

population size = 1 sequence.

Found at: doi:10.1371/journal.pcbi.1000811.s002 (0.26 MB EPS)

Dataset S1 Raw data and computer code necessary to

reproduce all results reported in this paper.

Found at: doi:10.1371/journal.pcbi.1000811.s003 (0.46 MB ZIP)

Text S1 Supplementary text.

Found at: doi:10.1371/journal.pcbi.1000811.s004 (0.06 MB PDF)
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