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SUMMARY

Animals and humans are able to quickly and effortlessly estimate the number of
items in a set: their numerosity. Numerosity perception is thought to be critical
to behavior, from feeding to escaping predators to human mathematical cogni-
tion. Virtually, all scientific studies on numerosity mechanisms use well controlled
but artificial stimuli to isolate the numerosity dimension fromother physical quan-
tities. Here, we probed the ecological validity of these artificial stimuli and eval-
uate whether an important component in numerosity processing, the numerosity-
selective neural populations, also respond to numerosity of items in real-world
natural scenes. Using 7TMRI and natural images from a wide range of categories,
we provide evidence that the numerosity-tuned neuronal populations show nu-
merosity-selective responses when viewing images from a real-world natural
scene. Our findings strengthen the role of numerosity-selective neurons in numer-
osity perception and provide an important link to their function in numerosity
perception in real-world settings.

INTRODUCTION

Animals and humans are able to quickly, and effortlessly estimate the number of items in a set: their numer-

osity. Identifying the numerosity of objects in the environment is essential for numerous behaviors such as

foraging, mating, and navigation and are therefore considered to be of adaptive value. In humans, the

basic ability to perceive non-symbolic quantities is linked with the development of mathematical cognition,

and are therefore suggested to hold educational significance (Anobile et al., 2016; Halberda et al., 2008;

Malone et al., 2019).

Studying numerosity perception is complex since different sets cannot be different in numerosity alone.

Increase in numerosity goes hand in hand with increase in some dimension of sensory input. For example,

as the average number of items increase, so is the total area they occupy. Therefore, most numerosity

studies use multiple well-controlled artificial stimuli, most commonly dots, trying to account for effects

of other continuous magnitudes (Burr and Ross, 2008; Clayton et al., 2015; Dakin et al., 2011; Franconeri

et al., 2009; Gebuis et al., 2016; Gebuis and Reynvoet, 2012a, 2012b; Harvey and Dumoulin, 2017a).

Using well-controlled artificial stimuli, electrophysiology studies found neurons that are specialized for nu-

merosity in both animals and humans (Ditz and Nieder, 2015; Kutter et al., 2018; Nieder et al., 2002; Tsouli

et al., 2022). These neurons show tuned response curves: they exhibit a pick in response for a specific nu-

merosity, and this response decreases as the numerical distance grows. Human neuroimaging showed that

the tuned neural populations are organized in a network of topographic maps (Cai et al., 2021; Harvey et al.,

2013; Harvey and Dumoulin, 2017b; Hofstetter et al., 2021). The tuning features of the numerosity neurons

follow important aspects of our numerosity perception and behavior, such as the numerical distance and

size effects (Cai et al., 2021; Nieder and Dehaene, 2009; Tsouli et al., 2022), and in monkeys, their activity

was linked to numerical skills (Nieder et al., 2002; Nieder and Miller, 2004).

Even though the use of artificial stimuli made important contributions of our understanding of numerosity

perception, artificial stimuli have little ecological validity. Several studies suggest a limited ability to extrap-

olate to real-life situations from artificial stimuli and tasks (Carandini et al., 2005; Kayser et al., 2004). For

example, performance of visual tasks in the absence of attention differs substantially with artificial versus
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natural stimuli (Li et al., 2002), and single neuron descriptions derived from artificial stimuli do not always

extrapolate well to natural stimuli (David et al., 2004). Therefore, several investigators have called for more

natural experimental protocols using natural images and tasks (Felsen and Dan, 2005; Kayser et al., 2004;

Olshausen and Field, 2005; Yuille and Kersten, 2006).

Here, we ask whether numerosity-tuned neural responses also respond to real-world natural images. To

that end, we utilize the recently uncovered network of visual topographic numerosity maps, and evaluate

whether numerosity-selective responses can be driven by viewing natural images, i.e., 2D photographs of

real-world scenes showing a variety of real-world items with different numerosities. Our results provide ev-

idence indicating that the numerosity-tuned neural populations (Cai et al., 2021; Harvey et al., 2013; Harvey

and Dumoulin, 2017b; Tsouli et al., 2022) show similar properties of selectivity when viewing, briefly, an im-

age from a real-world visual scene.

RESULTS

Seven participants were scanned at ultra-high field (7T) MRI while watching a series of natural images or

artificial dots organized in blocks. The stimuli were comprised of 6 categories (Figures 1A and 1B): (1) nat-

ural images with one to three main objects, (2) natural images with high numerosity (mean number of ob-

jects was 19.42 with a SD of 8.8), (3) natural images of scenery, (4) computerized stimuli consisting of one to

three dots, (5) 20 dots (constant high numerosity), (6) 10–42 dots with a similar frequency of the numerosity
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Figure 1. Study design

(A) A schematic representation of the block design, consisting of 6 visual categories of either natural images or dots. The

blocks were presented in a random order, and each category was repeated twice in one functional run. Each block lasted

15 s followed by a 15 s presentation of mean-luminance.

(B) Examples of the stimuli. Stimuli included presentation of natural image or dots, divided into different categories based

on their numerosities. In the natural images categories, the images were randomly picked out of a pre-selected pool.

(C) Though natural images vary along many dimensions, the power spectrum of the natural images containing either 1, 2,

or 3 main objects, 10–42 main objects and scenery are similar and following a similar amplitude spectra across categories

(Field, 1987). The shaded errorbars show the SD across images of an image category.

(D) Example of the numerosity maps of one participant. Within these maps, we localized the neural populations tuned to

numerosity 1 to 3.
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of condition (2) (high numerosity but not constant). The natural images varied across many dimensions (co-

lor, texture, etc.), but are similar in their power spectra, i.e. all natural images showed the expected 1/f dis-

tribution with natural images (Field, 1987) (Figure 1C). Participants were asked to keep fixation and respond

when the same image or dot display was presented repeatedly (1-N back test). No numerosity judgment

was required. In a separate experiment, we localized the participants’ numerosity maps (Figure 1D).

The current study aimed to take advantage of the high ecological validity of natural images. However, the

use of natural images limits our ability to control for specific visual aspects (such as color, contrast, density,

etc.). Therefore, our first step was to check the neural responses to our selected stimuli and study design

using three visual regions that have known selectivity characteristics: the primary visual area (V1); the lateral

occipital area (LO), specialized in objects shape recognition (Kourtzi and Kanwisher, 2001; Malach et al.,

1995); and the parahippocampal place area (PPA), specialized in scenery recognition (Epstein and Kanw-

isher, 1998). As expected, in V1 and LO, we found an overall high response across all the dots and natural

images categories. In the PPA, only the natural images showed a significant response, which is expected

since all image categories contain scenery information (Figure 2A; one-sided Wilcoxon signed rank test,

p < 0.05, FDR corrected).

Next, we identified the network of numerosity maps in all of our participants (Figure 1D) and selected the

neural populations with tuned responses to numerosity 1 to 3. The use of natural images inherently results

in a mix of visual neurons responding to diverse visual dimensions. For example, within the partial lobe,

object size selective neural populations were found to be intertwined with the numerosity-tuned neural

populations (Harvey et al., 2015; Tsouli et al., 2022). Furthermore, the network of numerosity maps overlaps

to some degree with visual field maps (Wandell et al., 2007) and the relation between the two is unclear
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Figure 2. Neural responses to natural images in selective visual areas

(A) Averaged neural response in three control regions of the visual system: primary visual cortex (V1), lateral occipital area

(LO), and parahippocampal place area (PPA). As expected, in the visual regions the natural images in all of the three

categories produced high responses. The dots stimuli produced high responses in V1 and LO (lateral occipital area) but

not in the PPA (parahippocampal place area). Colored dots represent themean response of each participant. Black circles

represent median of the data. Error bars show the SD of observations. ** indicates p < 0.01 following one-sidedWilcoxon

signed rank test and FDR correction for multiple comparisons.

(B) An example of cortical responses to natural images of scenery in one participant. The statistical map shows the t-values

of a contrast between the scenery blocks and rest. The borders of the numerosity maps and the visual control ROIs are

shown in white. The responses in the numerosity maps are mixed and includes negative or non-significant responses to

viewing of the natural images (i.e., irrespective of numerosity).
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(Harvey et al., 2013). Therefore, also properties of experimental stimuli design, such as stimulus size, in

combination with known neural properties, such as visual field maps and center-surround, might affect

the overall measured neural response in some parts of the numerosity maps (Wandell et al., 2007). In other

words, natural images elicit a broad response that includes many other neurons beyond those tuned to

numerosity.

In order to minimize the influence of neural responses that is mostly driven by other stimulus features (such

as expected negative responses at the borders of the presented images), we excluded from further ana-

lyses cortical points where the responses to the natural images of scenery, where no clear numerosity is pre-

sent, were negative or non-significant (t < 1.96 in a GLM analysis contrasting scenery images with rest; Fig-

ure 2B). Taking into consideration, cortical points that show responses to the natural images of scenery

increased the averaged neural responses in the other two categories of the natural images (low and

high numerosity). In all of the numerosity maps but the frontal maps, the neural responses were significantly

positive (Figure 3). However, even without a threshold based on the scenery, we observed similar neural

responses though with decreased significance (Figure S1).

Last, we asked whether the neural populations within the numerosity maps show their known tuning char-

acteristic when presented with different number of objects in natural images, i.e., preferred lower numer-

osities over higher numerosities. To that end, we compared the responses in the low numerosity blocks to

the responses in the high numerosity blocks. We note that this analysis does not reveal the entire tuning

function, but is indicative and consistent with tuning. Due to the low responses in both dots and natural

images categories, the frontal maps were excluded from this analysis. Significantly higher responses to

low high low high 
 varied

high

0

1

2

3

4

M
ea

n 
Am

pl
itu

de
 (%

si
gn

al
)

---------- 
natural 
images

------------------ 
dots

** ** ** ** **
npc1

low high low high 
 varied

high

---------- 
natural 
images

------------------ 
dots

* * * * *
npc2

low high low high 
 varied

high

---------- 
natural 
images

------------------ 
dots

** ** ** ** **
npc3

low high low high 
 varied

high

0

1

2

3

4

M
ea

n 
Am

pl
itu

de
 (%

si
gn

al
)

---------- 
natural 
images

------------------ 
dots

** ** ** ** **
nto

low high low high 
 varied

high

---------- 
natural 
images

------------------ 
dots

nf

low high low high 
 varied

high

---------- 
natural 
images

------------------ 
dots

* * * * *
npo

Figure 3. Neural responses to natural images and dots in the numerosity maps

The natural scenery category was used to remove cortical points where the main driven response might be due to the

design of the presented stimuli. Excluding these cortical points, significant positive responses to all natural images

categories were found across all the numerosity maps, except for the frontal maps (NF). Colored dots represent the mean

response of each participant. Black circles represent median of the data. Error bars show the SD of observations. *

indicates p < 0.05, **p < 0.01 following one-sidedWilcoxon signed rank test and FDR correction for multiple comparisons.
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low vs high numerosity were found in all of the maps (one-sided Wilcoxon signed rank test, p < 0.05, FDR

corrected; Figure 4). These results indicate that in accordance with the selected neural population’s

preferred numerosity, as was found using an artificial stimulus, a different response is gained based on

the numerosity of objects contained in the natural images.

DISCUSSION

An important stage in identifying the biological mechanism of numerosity perception was the findings of

neurons that are tuned to numerosity (Ditz and Nieder, 2015; Nieder et al., 2002; Nieder and Miller, 2004;

Piazza et al., 2004). The tuned response properties of numerosity-selective neurons follow weber’s law, and

are thought to underlie important aspects of numerosity perception such as the distance effect and the size

effect (Nieder, 2016; Tsouli et al., 2022). Tuned numerosity responses were also found to emerge in trained

and untrained neural networks (Kim et al., 2021; Nasr et al., 2019). In the study by Nasr et al., neural networks

were trained to classify objects from natural images. Following training, the networks were able to correctly

identify the numerosity of dots displays, suggesting that numerosity-tuned responses are based on mech-

anisms inherent to the visual system (Nasr et al., 2019). Though numerosity neural selectivity greatly

advanced our understanding of numerosity perception, their responses to real-world images were not

tested before. The results of our study expand the ecological validity of numerosity-selective neurons

and therefore reinforce their role in numerosity perception in daily life.

How numerosity is extracted from the visual scene is still unknown. Some proposals suggest that numeros-

ity may be extracted from different spatial frequency representations of early visual cortex, either ratio of
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Figure 4. Preferred neural responses to low numerosity presented in natural images

The averaged neural responses to low numerosity were significantly higher than the averaged responses to high

numerosity, indicating the neural populations were influenced by the numerosity presented in the natural images and

suggest that the response follows a tuned response curve. Colored dots represent themean response of each participant.

Black points represent the median of the data. Error bars show the SD of the observations. * indicates p < 0.05, **p < 0.01

following one-sided Wilcoxon signed rank test and FDR correction for multiple comparisons.
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high and low spatial frequencies (Dakin et al., 2011) or aggregate power (Paul et al., 2022). Given that the

power spectra are similar for the different images used in this study, these proposals would not work on the

raw natural images per se, but may still be feasible in combination with object segmentation (Dehaene and

Changeux, 1993; Nasr et al., 2019) and/or more basic second-order filters (Johnson and Baker, 2004).

In real-world environments, the numerosity being identified may depend on which objects, or their fea-

tures, are at the focus of attention. For example, one can quickly estimate three bagels and disregard

the one platter that carries them. The numerosity of an image of a four-leg chair can be interpreted as

one, but focusing on the legs of the chair may result in numerosity perception of four. Using simple stimuli

of black and white dots, we have recently found that attention, to some feature of a presented stimuli (e.g.,

shape), is needed in order to drive numerosity responses (Cai et al., 2022). The numerosity-tuned neural

populations were responsive to the numerosity of the objects being attended, and not to the overall quan-

tity of objects being presented. In the current study, participants were fixating at the center of natural im-

ages and were engaged in a memory task which also did not require any numerosity estimation but did

focus the participants attention toward the natural image. Within the short presentation time of each im-

age, the main objects of the natural can already be recognized (Thorpe et al., 1996). The finding of different

responsemagnitude between low and high numerosity in the natural images categories (Figure 4) suggests

that the numerosity identified by our participants was of the number of main objects in the image, while

ignoring either background or other sub-features of the objects in the images (e.g., the number of legs

in an image of 3 dogs). In the block design, the task was the same for natural images and dots (one

back task). However, during the localizer scans of the numerosity maps, the participants performed a

different task (color judgment). However, in all conditions, the participants paid attention toward the stim-

uli and did not perform a numerosity judgment. Therefore, we do not believe that a difference in task be-

tween the localizer and experiment explains our results.

Limitations of the study

The study of natural images holds an inherent limitation of uncontrolled visual properties such as contrast,

color, etc. Therefore, the measured neural response is the outcome of many types of neurons preferring

different dimensions of the visual scene. We have tried to limit the influence of neural responses related

to stimuli design by thresholding the cortical points based on their responses to natural images of scenery

(i.e., irrespective of numerosity). This, of course, cannot rule out other types of stimuli-driven responses.

However, by selecting cortical points with known numerosity-tuned neural populations (Cai et al., 2021;

Harvey et al., 2013; Harvey and Dumoulin, 2017b), we were able to overcome some of this limitation and

find neural responses to natural images that differentiated in the numerosity of items they presented.

That said, the results are similar without the thresholding based on natural images of scenery though

with decreased significance (Figure S2).

In addition, we did not reveal the entire tuning curves elicited by viewing natural images, but only the com-

parison between preferred numerosities and baseline. This is due to our simple but robust design. We did

not opt for a full pRF design due to concerns of SNR, stimulus confounds, and availability of enough natural

images especially for the higher numerosities in existing datasets. However, we feel revealing the entire

tuning curve is not necessary to prove that neural populations within the numerosity maps respond to

the numerosity in natural images.

Furthermore, we used images of natural scenes, i.e. photographs of real-world scenes displayed on a com-

puter screen. Though they are more natural and ecological valid than images of dots, they are not the same

as the three-dimensional world we encounter and interact with on a daily base. Therefore, this study is a

step in the direction of more ecological valid stimuli, but not identical to daily life experiences.

In addition, we were unable to find significant responses to all of the dots’ categories and to the categories

of the natural images in the numerosity maps of the frontal lobe (Figure S1). We believe that this result is

due to lack of statistical power since only four participants in our cohort showed topographic numerosity

maps in their frontal lobes. The lack of significant responses to the presentation of numerous dots suggests

that the low responses in the frontal maps are not due to the types of stimuli (i.e., dots vs. natural images),

but are the result of low statistical power. Future studies that wish to focus on the neural responses in these

maps should take into consideration the intrinsic variability in the presentation of the topographic numer-

osity maps between participants and across the cortex.
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(2017). Nipype: A Flexible, Lightweight and
Extensible Neuroimaging Data Processing
Framework in Python. 0.13.1. https://doi.org/10.
5281/ZENODO.581704.

Greve, D.N., and Fischl, B. (2009). Accurate and
robust brain image alignment using boundary-
based registration. Neuroimage 48, 63–72.
https://doi.org/10.1016/j.neuroimage.2009.06.
060.

Halberda, J., Mazzocco, M.M.M., and Feigenson,
L. (2008). Individual differences in non-verbal
number acuity correlate with maths achievement.
Nature 455, 665–668. https://doi.org/10.1038/
nature07246.

Harvey, B.M., and Dumoulin, S.O. (2017a). Can
responses to basic non-numerical visual features
explain neural numerosity responses?
Neuroimage 149, 200–209. https://doi.org/10.
1016/j.neuroimage.2017.02.012.

Harvey, B.M., and Dumoulin, S.O. (2017b). A
network of topographic numerosity maps in

human association cortex. Nat. Hum. Behav. 1,
0036. https://doi.org/10.1038/s41562-016-0036.

Harvey, B.M., and Dumoulin, S.O. (2011). The
relationship between cortical magnification
factor and population receptive field size in
human visual cortex: constancies in cortical
architecture. J. Neurosci. 31, 13604–13612.
https://doi.org/10.1523/JNEUROSCI.2572-11.
2011.

Harvey, B.M., Fracasso, A., Petridou, N., and
Dumoulin, S.O. (2015). Topographic
representations of object size and relationships
with numerosity reveal generalized quantity
processing in human parietal cortex. Proc. Natl.
Acad. Sci. USA 112, 13525–13530. https://doi.
org/10.1073/pnas.1515414112.

Harvey, B.M., Klein, B.P., Petridou, N., and
Dumoulin, S.O. (2013). Topographic
representation of numerosity in the human
parietal cortex. Science 341, 1123–1126. https://
doi.org/10.1126/science.1239052.

Hofstetter, S., Cai, Y., Harvey, B.M., and
Dumoulin, S.O. (2021). Topographic maps
representing haptic numerosity reveals distinct
sensory representations in supramodal networks.
Nat. Commun. 12, 221. https://doi.org/10.1038/
s41467-020-20567-5.

Huntenburg, J.M. (2014). Evaluating Nonlinear
Coregistration of BOLD EPI and T1w Images
(Freie Universität).

Jenkinson, M., Bannister, P., Brady, M., and
Smith, S. (2002). Improved optimization for the
robust and accurate linear registration and
motion correction of brain images. Neuroimage
17, 825–841. https://doi.org/10.1006/nimg.2002.
1132.

Johnson, A.P., and Baker, C.L. (2004). First- and
second-order information in natural images: a
filter-based approach to image statistics. J. Opt.
Soc. Am. Opt Image Sci. Vis. 21, 913–925. https://
doi.org/10.1364/JOSAA.21.000913.

Kayser, C., Körding, K.P., and König, P. (2004).
Processing of complex stimuli and natural scenes
in the visual cortex. Curr. Opin. Neurobiol. 14,
468–473. https://doi.org/10.1016/j.conb.2004.06.
002.

Kim, G., Jang, J., Baek, S., Song, M., and Paik,
S.-B. (2021). Visual number sense in untrained
deep neural networks. Sci. Adv. 7, eabd6127.
https://doi.org/10.1126/sciadv.abd6127.

KleinerM, Brainard D, Pelli D, 2007. What’s new in
Psychtoolbox-3? Perception 36 ECVP Abstract
Supplement.

Kourtzi, Z., and Kanwisher, N. (2001).
Representation of perceived object shape by the
human lateral occipital complex. Science 293,
1506–1509. https://doi.org/10.1126/science.
1061133.

Kutter, E.F., Bostroem, J., Elger, C.E., Mormann,
F., and Nieder, A. (2018). Single neurons in the
human brain encode numbers. Neuron 100, 753–
761.e4. https://doi.org/10.1016/j.neuron.2018.08.
036.

Li, F.F., VanRullen, R., Koch, C., and Perona, P.
(2002). Rapid natural scene categorization in the
near absence of attention. Proc. Natl. Acad. Sci.

USA 99, 9596–9601. https://doi.org/10.1073/
pnas.092277599.

Malach, R., Reppas, J.B., Benson, R.R., Kwong,
K.K., Jiang, H., Kennedy, W.A., Ledden, P.J.,
Brady, T.J., Rosen, B.R., and Tootell, R.B.
(1995). Object-related activity revealed by
functional magnetic resonance imaging in
human occipital cortex. Proc. Natl. Acad. Sci.
USA 92, 8135–8139.

Malone, S.A., Pritchard, V.E., Heron-Delaney, M.,
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

Seven participants participated in the study (3 females, 2 left handed, mean age 34, age range 25–48). All

participants had normal or corrected-to-normal visual acuity. All experimental procedures were approved

by the ethics committee of VU Amsterdam. Participants gave informed consent.

METHOD DETAILS

Stimuli and experimental design

Visual stimuli were presented on a 69.843 39.29 cm LCD screen (Cambridge Research Systems) behind the

MRI bore. Stimuli were viewed through a mirror attached to the head coil. The total distance from the

attached mirror to the display screen was 220 cm. The display resolution was 1920 3 1080 pixels. A button

box recorded behavioral responses. Visual stimuli were generated or viewed in Matlab using PsychToolbox

(Kleiner et al., 2007). A large diagonal cross composed of thin red lines was displayed consistently across

the entire screen, serving as a fixation marker.

The experiment consisted of 6 categories of stimuli (Figure 1A): (1) natural images with one to three main

objects; (2) natural images with high numerosity (mean number of objects was 19.42 with a standard devi-

ation of 8.8; (3) natural images of scenery; (4) computerized stimuli consisting of one to three dots; (5) 20

dots; (6) 10–42 dots with at a similar frequency to the numerosity of (2). The images vary across many dimen-

sions (colour, texture, etc.) but are similar in powerspectra (expected 1/f distribution as known with natural

images)(Field, 1987) (Figure 1B).

Thenatural imageswere selected fromthe ImageNetLargeScaleVisual RecognitionChallenge (ILSVRC) (https://

www.kaggle.com/c/imagenet-object-localization-challenge/data?select=LOC_synset_mapping.txt). The im-

ages were resampled to fit the central 2� (diameter) of the visual field.

The stimuli in each category were presented in blocks of 15 seconds, followed by 15 seconds of gray back-

ground (rest periods). In each block, 30 natural images were randomly chosen out of their pre-selected pool

(the pool included 93 images of 1 main object, 95 images of 2 objects ,70 images of 3 objects, 70 images of

the high numerosity and 61 images that showed scenery views). Each natural image or dots display were

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Vistasoft (http://vistalab.stanford.edu/software/), NA
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presented for 300 ms, with 200 ms of gray background between displays. The 6 categories were presented

twice in each trial. Their order was randomly assigned.

The dots were randomly generated where either constant area of dots or the dot size was kept constant.

Similar to previous numerosity experiments (Cai et al., 2021; Harvey et al., 2013), in each presentation

the dots were placed in a new, random position, and the individual items were distributed roughly homo-

geneously across the stimulus area.

Participants were asked to keep fixation and respond when the same image or dot display was presented

repeatedly (1-N back test). No numerosity judgment was required.

MRI acquisition

MRI data was acquired on a 7T Philips Achieva scanner. Functional runs were acquired using a 32 channel

head coil with the following parameters: isotropic resolution of 1.7 mm3; TR/TE = 1500/22.5; flip angle = 65;

multiband factor = 3. Data included 57 slices, 248 TRs that lasted 6:24 min. The natural images experiment

included 7 functional trials (runs) that were acquired in one scanning session.

We used T1 weighted images that were acquired prior to our experiment. These scans were acquired with

MP2RAGE sequence with the following parameters: TR = 6.8 ms; TE = 2.3 ms, flip angle = 5�; isotropic res-
olution of 0.83, SENSE factor = 2; slices = 205.

Pre-processing

Data was analysed using fMRIPrep 20.1.1 (Esteban et al., 2019), which is based on Nipype 1.5.0 (Gorgolew-

ski et al., 2011, 2017). The T1-weighted (T1w) image of each participant was corrected for intensity non-uni-

formity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al.,

2008), and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as

target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-mat-

ter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, (Zhang et al.,

2001)).

For each of the BOLD runs acquired per subject (across all conditions and sessions), the following prepro-

cessing was performed: First, a reference volume and its skull-stripped version were generated using a

custom methodology of fMRIPrep. A deformation field to correct for susceptibility distortions was esti-

mated based on fMRIPrep’s fieldmap-less approach. The deformation field is that resulting from co-regis-

tering the BOLD reference to the same-subject T1w-reference with its intensity inverted (Huntenburg, 2014;

Wang et al., 2017). Registration is performed with antsRegistration (ANTs 2.2.0), and the process regular-

ized by constraining deformation to be nonzero only along the phase-encoding direction, and modulated

with an average fieldmap template (Treiber et al., 2016). Based on the estimated susceptibility distortion, a

corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the

anatomical reference. The BOLD reference was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration (Greve and Fischl, 2009). Co-registration was

configured with six degrees of freedom. Head-motion parameters with respect to the BOLD reference

(transformation matrices, and six corresponding rotation and translation parameters) are estimated before

any spatiotemporal filtering using mcflirt (FSL 5.0.9, (Jenkinson et al., 2002)). The BOLD time-series were

resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsnative, fsaverage.

The BOLD time-series were resampled onto their original, native space by applying a single, composite

transform to correct for head-motion and susceptibility distortions.

The rest of the analysis was done using MATLAB and vistasoft (http://vistalab.stanford.edu/software/). For

each subject, the first 8 timeframes were discarded from the functional scans. In order to increase signal

strength, data from all recording points (voxels) across cortical thickness were collapsed and averaged

onto the nearest point on the cortical surface (Harvey et al., 2013; Hofstetter et al., 2021).

Localizing numerosity maps

We used data from former numerosity experiments to identify the numerosity maps of our participants (Fig-

ure 1D). The data was acquired for other studies and included a similar design to that previously described
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(Harvey et al., 2013; Harvey and Dumoulin, 2017a, 2017b; Tsouli et al., 2022; Cai et al., 2021; Hofstetter et al.,

2021). In short, a sequence of numerosity stimuli consisting of 1 to 7 dots were first presented in ascending

order, followed by a long period with a baseline presentation of 20 dots, then followed by the same

sequence in descending order and another identical baseline period. This sequence was repeated four

times for each fMRI scan run.

Numerosity stimuli consisted of a group of dots, presented in the central 4� (diameter) of the visual field,

with a constant total surface area. Dots were randomly positioned at each presentation within this area.

Therefore, contrast energy was equally distributed across the stimulus area for all numerosities. Each nu-

merosity presentation that contained the same number of dots was placed in a new, random position,

so no specific visual position was associated with any numerosity. To prevent perceptual grouping, individ-

ual items were distributed roughly homogeneously across the stimulus area. Dot patterns were presented

briefly (300 ms) to ensure participants did not have time to count. A new random pattern was presented

every 650 ms, with 350 ms presentation of a uniform gray background between dot pattern presentations.

This was repeated six times, over 3900 ms, corresponding to two fMRI volume acquisitions (TR), before the

numerosity changed. The numerosity stimuli were displayed as black dots, where in 10% of numerosity pre-

sentations the dots were shown in white. Participants were asked to fixate at the red cross in the center and

press a button when whites dots were shown to ensure they were paying attention to the stimulus during

fMRI acquisition. No numerosity judgements were required.

Tuned numerosity responses were estimated using pRF modeling (Dumoulin and Wandell, 2008; Harvey

et al., 2013; Harvey and Dumoulin, 2017b). The pRF model describes the averaged tuning of the underlying

neural populations using logarithmic Gaussian functions. These Gaussian functions are characterized by

two parameters: preferred numerosity (mean of the Gaussian) and tuning width (standard deviation of

the Gaussian).

Control regions of interests (ROIs)

Three regions of the visual cortex (V1, parahippocampal place area (PPA), and lateral-occipital object area

(LO)) were selected as controls. Bilateral PPA and LO were defined using brain atlases (Wang et al., 2015;

Weiner et al., 2018). Bilateral V1 were defined using retinotopy maps of each participant that were previ-

ously acquired for other studies (Harvey and Dumoulin, 2011; Oliveira et al., 2022). The retinotopy maps

were analysed using the pRF method (Dumoulin and Wandell, 2008). V1 were manually defined and

restricted to 2� of visual angle.

QUANTIFICATION AND STATISTICAL ANALYSIS

Using vistasoft (http://vistalab.stanford.edu/software/), a general linear model was used to test the neural

responses to natural images of scenery along the cortex. Moreover, we averaged the neural responses of all

categories per regions of interest (control ROIs and numerosity maps) and participants. Within the numer-

osity maps we pre-selected the neural populations that showed preferred response to numerosity 1–3. For

each type of numerosity map (i.e., npc1, npc2 etc.) we averaged the responses across both hemispheres.

One-sided Wilcoxon test, followed by FDR correction for multiple comparisons was used to test for a sig-

nificant positive BOLD response. These statistical tests were computed using MATALB.
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