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1  |  INTRODUC TION

Toxicologists perform various experiments to determine the effects 
of toxins on humans and other living organisms. Cellular, molecular, 
and biochemical research experiments are performed to investigate 
the mechanism of action of toxic substances and their effects on the 
nervous system, immune system, and so on. Experiments in this area 
are mostly performed on laboratory organisms. Therefore, specialists 
inject a certain amount of a toxic substance into the living organism 
through food, inhalation, or skin and then examine the harmful ef-
fects caused by it on the body. They try to generalize the effects of 
these substances on humans. Of course, this is one of the methods 
used for obtaining toxicological information. The use of toxins in lab-
oratory animal models is also sometimes intended to cause systemic 

or local toxicity. In these studies, after the development of toxicity in 
the animal in question, the authors prescribe a substance or drug that 
they intend to study for the first time and possibly this substance has 
beneficial effects in improving the toxicity process, and its effects on 
the desired parameters of the serum, urine, or tissue are evaluated.

Therefore, this study aimed to investigate different and common 
models of hepatotoxicity and nephrotoxicity in laboratory animals to 
help researchers advance their research goals.

2  |  MATERIAL S AND METHODS

This review used comprehensive data from main databases, includ-
ing Scopus, Medline, Web of Science, and Embase. The searched 
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Abstract
Therapeutic experiments are commonly performed on laboratory animals to inves-
tigate the possible mechanism(s) of action of toxic agents as well as drugs or sub-
stances under consideration. The use of toxins in laboratory animal models, including 
rats, is intended to cause toxicity. This study aimed to investigate different models of 
hepatotoxicity and nephrotoxicity in laboratory animals to help researchers advance 
their research goals. The current narrative review used databases such as Medline, 
Web of Science, Scopus, and Embase and appropriate keywords until June 2021. 
Nephrotoxicity and hepatotoxicity models derived from some toxic agents such as 
cisplatin, acetaminophen, doxorubicin, some anticancer drugs, and other materials 
through various signaling pathways are investigated. To understand the models of 
renal or hepatotoxicity in laboratory animals, we have provided a list of toxic agents 
and their toxicity procedures in this review.

K E Y W O R D S
animal, drug toxicity, drug- induced abnormality, liver dysfunction, renal injury

www.wileyonlinelibrary.com/journal/ame2
mailto:﻿
https://orcid.org/0000-0002-1645-7094
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mohebbatir@mums.ac.ir


    |  437ABBASNEZHAD et al.

terms were “kidney,” “liver,” “hepato,” “renal,” “toxicity,” “mecha-
nism,” “rat,” and other related keywords until June 2021. Inclusion 
criteria were articles published in English. The searched keywords 
were selected based on the MeSH alone and combined.

3  |  RESULTS

3.1  |  Cisplatin

3.1.1  |  Hepatotoxicity

Tumor cells treated with cisplatin lead to membrane peroxidation, 
mitochondria dysfunction, protein synthesis inhibition, and DNA 
damage.1,2 Cisplatin causes abnormalities in the liver, including in-
flammatory infiltration, hyperplasia, periportal fibrosis, hepatic cord 
disruption, blood sinusoid dilation, and hepatocyte apoptosis.3,4 
Studies show that heavy metals such as cisplatin exert their toxic 
effects by induction of reactive oxygen species (ROS) production.5,6 
Superoxide dismutase (SOD) and catalase (CAT) convert superoxide 
radicals first to H2O2 and then to molecular oxygen and water, as a 
cellular defense against ROS. An increase in ROS generation or de-
crease in antioxidant enzymes results in oxidative stress.7 Cisplatin 
elevates lipid peroxidation (LPO), an index of tissue damage, and 
empties thiol contents. Liver tissue damage through ROS leads to 
LPO increase via antioxidant enzyme disturbance (CAT, SOD, and 
glutathione peroxidase [GPx]) and total thiol contents.8

3.1.2  |  Nephrotoxicity

The cellular pathways of cisplatin nephrotoxicity are complex. It was 
investigated primarily in vitro using cultured cells and revealed that 
low- administered doses of cisplatin result in renal tubular epithelial 
cell death and higher doses in necrosis.9,10 Cisplatin in nephrotoxic 
doses increases both cell death and then necrosis in the renal tis-
sue in vivo.11,12 Renal epithelial cell death after cisplatin adminis-
tration resulted from the launch of the extrinsic pathway activated 
through tumor necrosis factor (TNF) receptors, intrinsic mitochon-
drial pathway, and endoplasmic reticulum (ER) stress pathway.13 
Inflammatory response stimulation by TNF- α in vivo aggravates 
cisplatin nephrotoxicity.13– 15 After the renal epithelial cells were 
exposed to cisplatin, BCL2- associated X (Bax) was translocated to 
mitochondria; caspase 2 was activated; cytochrome C, Omi/HtrA2, 
apoptosis- inducing factor, second mitochondria- derived activator 
of caspase/direct inhibitor of apoptosis- binding protein with low Pi, 
and endonuclease G were released from mitochondria; and caspase 
9 was activated.10,16,17 Treatment of renal epithelial cells with cis-
platin in vitro led to activation of caspases 3, 8, and 9 after 12 h.18 
Expression and activation of caspases, mainly 6 and 7,19 through 
Bax/BCL2- antagonist/killer pathway mediated the release of cy-
tochrome C,20 which is involved in tubular epithelial apoptosis. 
Another mechanism that participates in cisplatin- induced injury is 

autophagy, a degradation process in which the organelles were dam-
aged and then the digestive enzymes from lysosomes burst causing 
cell death. Renal epithelial cell treatment by cisplatin causes the fast 
expression of autophagy proteins.21– 23

3.2  |  Acetaminophen

3.2.1  |  Hepatotoxicity

Up to 50% of acetaminophen is metabolized in the liver through 
glucuronidation or sulfation, which produces nontoxic metabolites. 
About 10% of acetaminophen is metabolized in the cytochrome 
P450 2E1 (CYP2E1) path, leading to N- acetyl- p- benzoquinone imine 
(NAPQI) production which is very toxic. Higher- than- therapeutic 
doses and elevation of NAPQI production caused mitochondrial 
dysfunction, oxidative stress, and adenosine triphosphate (ATP) 
resource discharge, finally resulting in hepatocellular necrosis and 
cell death. The toxic free radical formation, as well as peroxynitrite 
(ONOO−), from O2·− and NO· is another mechanism of liver toxic-
ity.24,25 ROS, for example, ONOO−, are negated by glutathione 
(GSH), which reduces acetaminophen toxicity.

Due to mitochondrial membrane permeability dysfunction, ROS 
result in mitochondrial membrane disruption, organelle swelling, and 
eventually cellular necrosis.24– 26 Glucuronization or sulfation is the 
main method of acetaminophen metabolization. However, in hepa-
totoxic doses of acetaminophen, most of it is metabolized to NAPQI, 
resulting in the evacuation of GSH.24,26 In the CYP2E1 pathway, 
NAPQI converts into nonreactive metabolites via enzymes, namely 
myeloperoxidase and cyclooxygenase- 1. In the immune system, 
liver toxicity is hampered by the natural killer and natural killer T 
cells and causes pro- inflammatory cytokine release and hepatocyte 
cytotoxicity.27,28

3.2.2  |  Nephrotoxicity

Elevated activity of the cytochrome P450 (CYP- 450) system, 
chronic alcohol consumption, and intake of drugs that induce these 
enzymes, namely anticonvulsants, enhance acetaminophen tox-
icity.29 Although GSH has been known to be a key component in 
acetaminophen and in its metabolite detoxification, its conjugates 
play a role in the formation of nephrotoxic compounds. It is not clear 
yet whether renal damage is due to acetaminophen– GSH conjugate 
or one of its metabolites. Maybe the conjugate formation leads to 
GSH depletion, which prevents reactive metabolite detoxification.30 
Prostaglandin endoperoxide synthetase (PGES), mainly in the me-
dulla of the kidney, converts acetaminophen into toxic metabolites, 
whereas CYP- 450 plays the main role in the cortex. As a result of 
these two pathways, poisonous metabolites are formed, followed by 
tissue necrosis and cell death, resulting in covalent binding to cellular 
proteins. PGES binds acetaminophen with high affinity, and reac-
tive metabolite formation occurs. The enzyme N- deacetylase causes 
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acetaminophen- induced nephrotoxicity; it acts on NAPQI or aceta-
minophen and deacetylates its substrate to p- aminophenol, which 
by converting to a free radical binds to cellular proteins.31

3.3  |  Doxorubicin

3.3.1  |  Hepatotoxicity

Doxorubicin increases 53% spontaneous formation of malonalde-
hyde in the liver. As malondialdehyde (MDA) increases, doxorubicin 
sustains one- electron reduction via nicotinamide adenine dinucleo-
tide phosphate (NADPH) CYP- 450 reductase, and antioxidant en-
zyme decreases CAT and SOD activities.32 In rat liver, doxorubicin 
decreases CYP- 450 and GSH levels in free radical formation, which 
results from a nonenzymatic mechanism. For instance, Fe3+ reacts 
with doxorubicin, and the iron atom obtains one electron and leads 
to Fe2+ doxorubicin free radical complex production. This complex 
can reduce oxygen to active oxygen species such as hydrogen per-
oxide.33 As a result of oxidative metabolism, doxorubicin produces 
superoxide, H2O2, and hydroxyl in rats.34 In the doxorubicin- treated 
rats GSH- Px, SOD, and CAT levels increased significantly, indicat-
ing that doxorubicin generates free radicals and thereby attenuates 
cell damage. In addition to ROS production in tissue, doxorubicin de-
creases its detoxification property. Elevated SOD, CAT, and GSH- Px 
activities in liver tissues show that doxorubicin has hepatotoxic 
effects.35

3.3.2  |  Nephrotoxicity

Doxorubicin exerts harmful effects on renal tissue by increasing glo-
merular capillary penetrance and induces tubular degeneration.36 
Doxorubicin's detrimental effects on tissues such as the liver and 
heart presumably will change blood reserve to the kidney and alter 
the xenobiotic reclamation, resulting in nephropathy.37,38

Doxorubicin- induced nephrotoxicity is typically caused by op-
tional damage of the proximal tubule cells.39 Renal tubular deficiency 
through chemotherapy results in acute renal failure.40 Doxorubicin 
induces renal injury by elevated generation of ROS, apoptosis, and a 
decrease in antioxidant enzymes.41,42

3.4  |  Aluminum

3.4.1  |  Hepatotoxicity

Aluminum is a nonredox metal with pro- oxidant activity. It simpli-
fies superoxide formation induced by some pro- oxidant agents.43 
Aluminum induces mitochondrial permeability pores, which results 
in electron leakage and elevated radical oxygen species formation 
in the cytosol.44 Because of facilitated specific transport system 

uptake, the liver is the target of aluminum toxicity.45 In in vitro mod-
els, elevated cytosolic enzyme secretion by cultured hepatocytes 
subacutely exposed to aluminum has been reported.46 Studies show 
that the balance between antioxidant and oxidant forces is inter-
rupted in aluminum- treated rats, resulting in elevated free radical 
generation and antioxidant defense reduction, such as GSH content, 
CAT, GSH- Px, and glutathione- S- transferase (GST). Aluminum in-
duces a disbalance when prescribed in various chemical forms and 
with different chronicity.47– 49

3.4.2  |  Nephrotoxicity

Aluminum has not been considered as an agent that reacts with 
GSH,50 but the increase in LPO could result in an increase in oxi-
dation reaction rates. According to studies, intraperitoneal usage of 
aluminum induces a temporal decrease in GSH in the liver, increases 
hem oxygenase activity, and then increases LPO level.51 It has been 
shown that aluminum deposition in the liver was due to decreased 
GSH and GPx levels.52 In renal proximal cells, aluminum could affect 
cellular metabolism by oxidative stress enhancement and therefore 
result in alterations.53

3.5  |  CCl4

Reactive oxygen metabolites are one of the assumed mechanisms in 
the nephrotoxicity of CCl4.54 In cultured hepatocyte cells, CCl4 leads 
to increased trichloromethyl peroxyl radical production and hydro-
gen peroxide.55 CCl4 increases LPO and decreases renal reduced/
oxidized GSH ratio and microsomal NADPH CYP- 450 in the kidney 
cortex, microsomes, and mitochondria.56 Antioxidants like SOD/
CAT, melatonin, silibinin, ascorbate, propionyl, and carnitine improve 
renal toxicity resulting from CCl4.57

3.6  |  Acrylamide

Acrylamide can produce ROS. It is oxidized to glycinamide. This 
substance interacts with the nucleophile group in cells such as SH, 
NH2, or OH. The SOD and GST activities are enhanced, and the GSH 
count decreases with an increase in acrylamide concentration.58,59 
Acrylamide can create oxidative stress that leads to apoptosis.60 
Exposure to acrylamide results in increased ROS production and 
GSH oxidation in isolated human monocyte.61 After intestinal ab-
sorption, acrylamide often is conjugated with GSH and results in 
GSH store evacuation.62 Decrease in GSH levels may elevate ROS. 
ROS production results in the activation of the mitogen- activated 
protein kinase (MAPK)- JNKs, which exert an important effect in the 
regulation of cellular processes like apoptosis.63 The low levels of 
GSH lead to cellular oxidative stress and apoptosis, which is a poten-
tial mechanism for acrylamide toxicity.64
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3.7  |  Manganese

Manganese exerts cellular toxicity via mechanisms, including direct 
or indirect ROS formation,65,66 biological molecule oxidation,67 and 
cellular calcium disruption.68 Elevated manganese results in com-
plex blockage of the mitochondrial electron transport chain.69,70 
Manganese- mediated direct oxidation of catecholamines like do-
pamine67 and, therefore, oxidative stress increase may occur.71 
According to some studies, in vitro manganese exposure disturbs the 
regulation of cellular iron by altering the iron regulatory protein (IRP) 
binding activity and IRP- regulated iron homeostatic proteins.72,73 A 
toxic outcome of these latter effects may be the intracellular labile 
iron pool increment.72

3.8  |  Opioids

Morphine causes oxidative stress by inducing ROS production and 
initiating oxidative damage.74 According to clinical studies, morphine 
addicts are at increased risk for chronic renal failure.75,76 Morphine 
induces tubular dilatation, glomerular expansion, peritubular and 
intraglomerular congestion, high kidney mass, and juxtaglomerular 
cells in mice (after 6 weeks of treatment).77 The liver biomarkers 
(AST, ALT, and γ GT) increased in tramadol- treated rats,78 which might 
be due to high LPO.79 Tramadol also induces some histopathological 
changes, including hepatocyte degeneration, hemorrhage, hepatic 
congestion, and necrosis.80 The levels of blood urea nitrogen (BUN) 
and Cr significantly enhanced in the rats treated with tramadol. 
Furthermore, mononuclear cell infiltration, renal tubular vacuoliza-
tion, and focal necrosis occurred after tramadol administration.78

3.9  |  Metals

One of the main metals that induce nephrotoxicity is copper. The 
related possible induction mechanisms can be oxidative stress, au-
tophagy, and apoptosis, which resulted from various signaling path-
ways, including mammalian target of rapamycin, p53, and NF- κB, 
and the ER stress pathway.81– 83 NO levels and oxidative stress play 
a major role in the mechanisms of toxicity for several nanoparti-
cles, including copper oxide, which also results in the recruitment 
of inflammatory cells that mediate oxidative damage.84,85 Oxidative 
stress is a possible mechanism in hepatotoxicity induced by copper 
oxide.86 In the kidney, copper induces proteinuria, aminoaciduria, di-
minished glomerular filtration, and renal phosphaturia.87 In chicken 
kidney tissues, CuSO4 induces mitochondrial dysfunction and cell 
apoptosis.83 Lead is another metal involved in toxicity. The acetate 
form of lead can accelerate proteasome activity, which is related to 
MAPK pathway and inflammatory response.88,89 Psma3 inhibition is 
a new anti- inflammatory strategy in lead acetate nephrotoxicity.90 
Nano nickel oxide induces cytotoxicity through ROS formation and 
apoptosis in the HepG2 cell line.91 Another study has also indicated 
this issue.92 According to Magaye et al,93 nickel nanoparticles cause 

liver inflammation in rats. Nickel ferrite nanoparticles also induce cy-
totoxicity as well as oxidative stress in the hepatocellular carcinoma 
cells.94

3.10  |  Anticancer drugs

Cyclosporin A (CsA)– induced hepatotoxicity occurs mainly through 
some mechanisms, including hypermetabolic state in the liver95 and 
inhibition of ATP- dependent transport of bilirubin and bile salts 
through the hepatocyte canalicular membranes.96,97 Oxidative stress 
as one of the mechanisms of hepatotoxicity in experimental animals 
treated by CsA is presumable.98,99 CsA increases the activities of 
oxidants such as xanthine oxidase.100 Mitochondrial damage plays a 
critical role in CsA hepatotoxicity.101 Also, ER stress related to oxida-
tive stress plays a role in CsA nephropathy.102 Renal- transplant pa-
tients treated with CsA showed upregulation of an ER stress marker 
in kidney biopsies.103 CsA- induced apoptosis in renal tubular cells 
relates to oxidative damage.104 Methotrexate toxicity effects occur 
through increasing ROS production. Imbalance between ROS pro-
duction and antioxidants leads to oxidative stress and then patho-
logical symptoms.105

3.11  |  Cadmium

Cadmium induces nephrotoxicity via ROS production, apoptosis, 
and inflammation in the renal tissue.106,107 Cadmium affects the S1 
and S2 proximal segments that are the main action sites. Oxidant– 
antioxidant imbalance in the renal tissue is the main reason for kid-
ney dysfunction in cadmium toxicity, which is parallel with increased 
NO and LPO levels.108 Higher doses of cadmium in animals resulted 
in membrane LPO and GSH reduction in the kidney and liver.109 
Liver injury induced by cadmium is confirmed by increased levels of 
marker enzymes (AST and ALT).110

3.12  |  Valproic acid

Valproic acid (VPA) hepatotoxicity is due to dysfunction of 
hepatocyte mitochondria.111 Also, oxidative stress plays a role 
in VPA hepatotoxicity.112 Formation of ROS, LPO, and cellular 
antioxidant enzymes are various induction mechanisms of VPA 
hepatotoxicity.112,113 Inhibition of mitochondrial β- oxidation of 
fatty acids induced by VPA, defect in gluconeogenesis, and oxi-
dative phosphorylation inhibition have been suggested in liver 
preparation.112,114

Elevated levels of Cr, BUN, and renal tissue histopathological 
alterations are reported in VPA- treated animals.115 VPA inactivates 
antioxidant enzymes116; according to several studies, oxidative 
stress occurred in the kidney after VPA administration.117,118 VPA 
decreased tissue antioxidant activity, increased LPO, and depleted 
GSH stores.119
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3.13  |  Diclofenac

Nephrotoxic doses of diclofenac administrated to male mice re-
sulted in severe renal damage, leading to apoptosis and/or necrosis. 
Diclofenac is a robust inducer of oxidative stress, which may be the 
cause of its apoptogenic effect.120

Diclofenac toxicity is related to mainly LPO and cellular mac-
romolecule damage.121,122 Diclofenac causes enhanced levels of 
kidney MDA and H2O2. H2O2 level is enhanced during intracellular 
buildup of ROS concentration.123

3.14  |  Thioacetamide

Thioacetamide induces the formation of free radicals derived from 
thioacetamide- S- oxide, which leads to apoptosis and necrosis.124 
ROS production resulting from thioacetamide administration was 
followed by LPO, GSH depletion, and SH- thiol group reduction.125

3.15  |  Carbofuran

Carbofuran increased MDA level in liver cells by generation of oxi-
dative stress.126 Carbofuran also increased ALT, AST, and LDH and 
decreased these parameters in the liver tissue.127

3.16  |  KBrO3

KBrO3 as a nephrotoxic agent is a trigger for ROS production, LPO, 
and 8- hydroxyguanosine modification in the DNA.128,129

Numerous works suggest that ROS production that causes LPO 
and reduction in antioxidant enzymes is a major mechanism of nephro-
toxicity induced by KBrO3.130,131 Regarding KBrO3 effects on liver cells, 
vacuolization and sinusoidal dilatation studies have reported that these 
effects can be mainly related to the reduction of antioxidant enzymes 
and enhancement of xanthine oxidase and lipid peroxidase.132,133

3.17  |  Gentamicin

Gentamicin (80 mg/kg) causes hepatotoxicity and nephrotoxicity by 
the increase in serum AST, ALT, TG, DB, TB, total protein, urea, sodium, 
potassium, and chloride levels. There was a significant increase in oxi-
dative stress, indicating liver and kidney damage in gentamicin- treated 
rats.134 Oxidative stress plays a main role in gentamicin- induced ne-
phrotoxicity.135 Gentamicin increases hydrogen peroxide, superoxide 
anion, and hydroxyl radical generation by mitochondria.136

3.18  |  Ochratoxin A

Ochratoxin A (OTA) both in vitro and in vivo leads to overproduc-
tion of free radicals. Elevated ROS generation and oxidative injury 

are reported in this issue.137 Using Fe3+ as a cofactor, OTA triggers 
LPO. OTA- Fe3+ complex facilitates Fe3+ reduction, and the resultant 
OTA- Fe2+ complex generates free radicals leading to DNA damage 
and LPO.138,139

3.19  |  Bisphenol A

Bisphenol A (BPA) causes apoptosis by the induction of adenylate ki-
nase activation, TNF- α gene expression,140 and dysregulation of Ca2+ 
homeostasis.141 A high dose of bisphenol A elevates the formation 
of free radicals and reduces its ability to detoxify ROS. A high dose 
of BPA induces superoxide radical formation, and ONOO− causes 
tissue damage, leading to an increase in LPO levels. Therefore, ac-
tivated caspases induce apoptotic signals, leading to apoptosis and 
hepatotoxicity in liver tissue.142

3.20  |  Cyclophosphamide

Based on previous studies, oxidative stress is one of the prin-
cipal causes of cyclophosphamide (CP)– induced hepatotoxicity. 
It seems that CP metabolites induce this mechanism. CP admin-
istration elevates MDA levels and also reduces GSH level and 
SOD, GST, CAT, and GPO activities.143 All these results reveal 
that CP- induced hepatotoxicity was related to GSH level, a main 
content in eliminating active metabolites and defending oxida-
tive stress.144

A list of the toxic agents on liver has been provided in Table S1. 
Also, a list of toxic agents on kidney has been provided in Table S2.

4  |  CONCLUSION

In recent years, the number of hospitalized patients with kidney 
and/or liver disorders due to normal or overuse of drugs has in-
creased such that kidney poisoning due to drug use accounts for 
about 60% of acute kidney damage. Despite clinical supportive 
measures such as medication and electrolyte replacement, on 
average about 20% of patients undergoing treatment experience 
organ toxicity and related problems. Medicinal drugs and even 
substances derived from some medicinal plants can play a promi-
nent therapeutic or preventive role in liver and/or kidney toxicity. 
Therefore, to initially evaluate the effect of any of the aforemen-
tioned substances, they should first be tested on laboratory ani-
mals that have hepato-  and/or renal toxicity. To achieve this goal, 
it is important to understand the models of renal or hepatotoxic-
ity induction in laboratory animals depending on the conditions. 
Substances or drugs can be used to create models of toxicity. 
In this review article, we tried to provide a list of toxic materi-
als and drugs that cause hepato-  and/or renal toxicity models in 
laboratory animals, along with relative protocols for creating those 
models for researchers so that they can make appropriate choices 
depending on the situation.
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