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Hybrid classical-quantum linear 
solver using noisy intermediate-
Scale Quantum machines
chih-chieh chen1*, Shiue-Yuan Shiau2, Ming-feng Wu1 & Yuh-Renn Wu  3*

We propose a realistic hybrid classical-quantum linear solver to solve systems of linear equations of a 
specific type, and demonstrate its feasibility with Qiskit on IBM Q systems. This algorithm makes use of 
quantum random walk that runs in o(N log(N)) time on a quantum circuit made of o(log(N)) qubits. The 
input and output are classical data, and so can be easily accessed. It is robust against noise, and ready 
for implementation in applications such as machine learning.

Algorithms that run on quantum computers hold promise to perform important computational tasks more effi-
ciently than what can ever be achieved on classical computers, most notably Grover’s search algorithm and Shor’s 
integer factorization1. One computational task indispensable for many problems in science, engineering, mathe-
matics, finance, and machine learning, is solving systems of linear equations → =

→
x bA . Classical direct and iter-

ative algorithms take  N( )3  and  N( )2  time2,3. Interestingly, the Harrow-Hassidim-Lloyd (HHL) quantum 
algorithm4–13, which is based on the quantum circuit model14, takes only  N(log( )) to solve a sparse ×N N  sys-
tem of linear equations, while for dense systems it requires N N( log( )) 11. Linear solvers and experimental 
realizations that use quantum annealing and adiabatic quantum computing machines15–17 are also reported18–20. 
Most recently, methods21,22 inspired by adiabatic quantum computing are proposed to be implemented on 
circuit-based quantum computers. Whether substantial quantum speedup exists in these algorithms remains 
unknown.

In practice, the applicability of quantum algorithms to classical systems are limited by the short coherence 
time of noisy quantum hardware in the so-called Noisy Intermediate-Scale Quantum (NISQ) era23 and the diffi-
culty in executing the input and output of classical data. Other roadblocks toward practical implementation 
include limited number of qubits, limited connectivity between qubits, and large error correction overhead. At 
present, experiments demonstrating the HHL linear solver on circuit quantum computers are limited to ×2 2 
matrices24–29, while linear solvers inspired by adiabatic quantum computing are limited to ×8 8 matrices21,22. For 
quantum annealers, the state-of-the-art linear solvers can solve up to 12 12×  matrices20.

In addition to the problems of limited available entangled qubits and short coherence time, the HHL-type 
algorithms for the so-called Quantum Linear Systems Problem (QLSP) are designed to work only when input and 
output are quantum states30. This condition imposes severe restriction to practical applications in the NISQ 
era23,30,31. It has been shown that the HHL algorithm can not extract information about the norm of the solution 
vector x→4. A state preparation algorithm for inputting a classical vector 

→
b  would take N( )  time30,32–34, with large 

overhead for current hardware. In addition, quantum state tomography is required to read out the classical solu-
tion vector x→, which is a demanding task35,36, except for special cases like one-dimensional entangled qubits37. 
Inputting the matrix A is also a challenge that may kill the quantum speedup1,24–29.

In this work, we propose a hybrid classical-quantum linear solver that uses circuit-based quantum computer 
to perform quantum random walks. In contrast to the HHL-type linear solvers, the solution vector x→ and the 
constant vector 

→
b  in this hybrid algorithm stay as classical data in the classical registers. Only the matrix A is 

encoded in quantum registers. The idea is similar to that of variational quantum eigensolvers38–41, where quantum 
speedup is exploited only for sampling exponentially large state Hilbert spaces, while the rest of computational 
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task is done by classical computer. This makes it easy to perform data input and output: the 
→
b  vector can be arbi-

trary, and the components and the norm of the x→ vector can be easily accessed.
We consider matrices that are useful for Markov decision problems such as in reinforcement learning42. We 

show that these matrices can be efficiently encoded by introducing the Hamming cube structure: a square matrix 
of size N requires N(log( ))  quantum bits only. The quantum random walk algorithm we here propose takes 
 N(log( )) time to obtain one component of the x→ vector. We also show that in the quantum random walk algo-
rithm the matrices produced as a result of qubit-qubit correlation are inherently complex, which can be an advan-
tage for performing difficult tasks. For the same amount of time, the matrices the classical random walk algorithm 
can solve are limited to factorisable ones only.

We have tested the quantum random walk algorithm using software development kit Qiskit on IBM Q sys-
tems43,44. Numerical results show that this linear solver works on ideal quantum computer, and most importantly, 
also on noisy quantum computer having a short coherence time, provided the quantum circuit that encodes the 
A matrix is not too long. The limitation due to machine errors is discussed.

Results
We consider a system of linear equations of real numbers → =

→
x bA , where A is a N N×  matrix to be solved, 

×N 1 vectors x→ and b
→

 are, respectively, the solution vector and a vector of constants. Without loss of generality, 
we rewrite A as

γ= −A 1 P, (1)

where 1 is the identity matrix, and 0 1γ< <  is a real number. We take P as a (stochastic) Markov-chain transi-
tion matrix, such that P 0I J, ≥  and ∑ =P 1J I J, , where PI J,  refers to the P matrix element in the J-th column of the 
I-th row. This type of linear systems appears in value estimation for reinforcement learning42,45,46, and radiosity 
equation in computer graphics47. In reinforcement learning algorithms, given a fixed policy of the learning 
agency, the vector →x  is the value function that determines the long-term cumulative reward, and efficient estima-
tion of this function is key to successful learning42. Note that the matrix A given in Eq. (1) used as model 
Hamiltonian matrix belongs to the so-called stoquastic Hamiltonians48,49.

To solve → =
→

x bA , we expand the solution vector as Neumann series, that is, x b bA 1 P( )1 1γ→ =
→

= −
→

=− −

γ∑
→

=
∞ bPs

s s
0 . Let us define the I0 component of →x  truncated up to γc terms as
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This expression for xI
c( )
0

 can be evaluated by random walks on a graph of N nodes, with the probability of going 
from node I and node J of the graph given by the matrix element PI J, , which we set as symmetric (undirected), 
namely =P PI J J I, , . An example of a four-node graph is shown in Fig. 1(a). By performing a series of random walks 
starting from node I0, walking c steps according to the transition probability matrix P, and ending at some node 
Ic, Eq. (2) can be readily calculated to get the xI

c( )
0

 value, which is close to the solution xI0
 for some large c steps. 

Truncating the series introduces an error ( )cε γ∼ . So, for a given γ, the number of steps necessary to meet a 
given tolerance ε is equal to c log(1/ )/ log(1/ )ε γ∼ .

The above procedure can be extended to general matrices A by setting A 1 B= −  where =B P vI J I J I J, , ,  for real 
matrix elements vI J,  (see Methods 0.4). The calculation converges50,51 provided that the spectral radius ⁎ρ <B( ) 1 
where the matrix B* is defined by ⁎B P vI J

B
P I J I J, , ,

2I J

I J

,
2

,
= = . The matrices we here consider is a special case where 

γ=vI J,  is a constant, and this simplification guarantees convergence of the calculation.

Figure 1. (a) Quantum (or classical) random walk on an undirected =N 4 graph. The transition probability of 
going from node I  to node J or vice versa is equal to PI J, , these elements forming a 4 4×  matrix. (b) The four 
nodes on this Hamming cube are labeled by integers (0, 1, 2, 3); they are encoded as four different states | 〉00 , 
| 〉01 , 10| 〉, 11| 〉, respectively.
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For classical Monte Carlo methods to compute Eq. (2), it takes N( )  time to calculate the cumulative distribu-
tion function that is used to determine the next walking step. So, these linear systems can be solved by classical 
Monte Carlo methods within N( )2  time52–56. Similar Monte Carlo methods have been extended to more general 
matrices for applications in Green’s function Monte Carlo method for many-body physics57–59.

Encoding state spaces on Hamming cubes. As for material resources, in general it takes at least N( )  
classical bits to store a row of a stochastic transition matrix P (or A). However, for the classical and quantum 
random walks we here consider, it is possible to reduce significantly the number of classical or quantum bits nec-
essary to encode the corresponding transition probability matrix P to N(log( ))  by introducing the Hamming 
cube (HC) structure60. To do it, we first associate each graph node with a bit string. As shown in Fig. 1(b), the four 
nodes of the N 4=  graph are fully represented by two bits. Node states 0| 〉, 1| 〉, | 〉2 , and | 〉3  represent binary string 
states | 〉00 , | 〉01 , 10| 〉, and | 〉11 , respectively. For a N-node graph, only N nlog ( )2 =  (to base 2) bits are needed to 
encode the integers ∈ … −J N{0, 1, , 1}, each representing the n-bit binary string state, namely 
J j j j, ,n 1 1 0| 〉 = | … 〉− , where j



 is 0 or 1.

Classical random walk. Before we introduce our quantum random walk algorithm, let us first consider 
classical random walks.

To perform random walks on a N-node graph, we use a simple coin-flipping process with  N(log( )) time 
steps. The -th bit flips with probability sin ( /2)2 θ



 or does not flip with probability θcos ( /2)2


, the total probability 
being equal to 1. The transition probability matrix elements are given by
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where the n-bit binary string state | 〉 = | … 〉−I i i i, , ,c n c1 1 0  is determined by | ′〉 = | 〉 ⊕ | 〉J I Jc c c, where ⊕ denotes the 
bitwise exclusive or (XOR) operation, and the subscript c denotes classical states. The total number of θ| |



sin ( /2)2 , 
given by d iclassical n

0
1= ∑ =

−




, is the Hamming weight of I c| 〉 , and so corresponds to the Hamming distance between 
| ′〉J c and J c| 〉  states. This metric measures the number of steps that a walker needs to go from | 〉J c to | ′〉J c on the 
Hamming cube.

For the four-node graph shown in Fig. 1, the transition probability matrix P for classical random walks reads
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where ⊗ denotes the Kronecker product. The lower triangular part of the matrix is omitted due to symmetry. This 
simple case demonstrates a general feature for classical transition probability matrix Pclassical: the probability of 
flipping both bits is simply a product of the probabilities of flipping the 0-th bit and the 1-th bit in arbitrary order. 
For instance, θ θ= = =| 〉 | 〉 | 〉 | 〉 | 〉 | 〉P P P Psin ( /2)sin ( /2)classical classical classical classical

0,3 00 , 11
2

0
2

1 00 , 01 00 , 10 ; similarly for the other PI J
classical
, ’s. The 

fact that Pclassical can be factorized into a Kronecker product of the matrices of each individual bit indicates that 
each bit flips independently, as for a Markovian process.

Quantum random walk. We can simulate quantum walks61–67 on a N-node graph to obtain the solution 
vector →x  from Eq. (2). To do it, we use discrete-time coined quantum walk circuit68,69. The circuit for the 
four-node graph in Fig. 1 is shown in Fig. 2. The first two qubits j0 and j1 are state registers that will be initialized 
to encode the four-node graph, while the third qubit j2 is the coin register.

To derive the quantum transition probability matrix on a graph of N nodes, we consider the state space of the 
+n( 1)-qubit circuit as spanned by i i i i{ , , , }n n q1 1 0| 〉 ⊗ | … 〉◊ −  with =n Nlog ( )2 : the n( 1)+ -th qubit registers the 

coin state in| 〉◊, and the other n qubits encode the N-node graph. We take the convention that the rightmost bit is 
i0. Given a n-bit string …−j j j( , , , )n 1 1 0 , the initialized quantum state reads

j j j j j
J

0 , , , , ,
0 (5)

J n n q

q

0, 1 2 2 1 0ψ| 〉 = | 〉 ⊗ | … 〉

= | 〉 ⊗ | 〉 .
◊ − −

◊

Next we let the ψ| 〉J0,  state evolve in random walk: in each walking step, we toss the coin by rotating the coin 
qubit, and then flip a graph qubit by applying the CNOT gate. This process is repeated on all the n qubits in the 
j j j j j, , , , ,n n q1 2 2 1 0| … 〉− −

 state, starting with the 0-th qubit. The corresponding evolution operator reads
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where the prime (′) on the Π denotes that the =k 0 operator applies first to the right, followed by the =k 1 oper-
ator, and so on; the 1q operator is an identity map on the n-qubit state | 〉J q, Xk is a Pauli X gate (the Pauli matrix σx) 
that acts on the k-th qubit, and U u( )3  is a single-qubit rotation operator
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that acts on the coin qubit state. Note that the first parentheses in Eq. (6) represents a CNOT gate. It is important 
to note that here we use one quantum coin only to decide on the Pauli X gate operation over all the n qubits, so the 
order of qubit operations plays a role in the determination of the transition probability matrix P.

The first step is to project   on J0,ψ| 〉, which leads to
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with =−i 01 . By tracing out the coin degree of freedom, we obtain the reduced density matrix for the graph and 
hence the probability matrix P J JTr [ ]J J J J, 0 0

†ψ ψ= 〈 ′| | 〉〈 | | ′〉′ ◊   . The resulting quantum transition probability 
matrix elements then read
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where | 〉 = | … 〉−I i i i, , ,q n q1 1 0  is determined by | ′〉 = | 〉 ⊕ | 〉J I Jq q q. For one   quantum evolution, the complex 
phase factors eiφ

 and λ
ei  play no role. We will see later that these phases come into play in the case of multiple 

evolutions q .
To understand the transition probability matrix produced by the quantum walk circuit (Fig. 2), let us again 

consider the four-node graph in Fig. 1, where
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Figure 2. Discrete-time coined quantum walk circuit for the ×4 4 transition matrix given in Eq. (10). Qubits 
j0 and j1 are state register qubits to represent the four-node graph in Fig. 1, first set as 0 before initialization, 
while the qubit j2 is the coin register qubit. The measured registers c0 and c1 are fed back to initialize the next 
iteration. The classical-step is repeated c times to obtain the Neumann expansion up to order c.
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Unlike the above classical random walk, this matrix cannot be factorized into a Kronecker product of the 
matrices of each individual qubit. The probability of one qubit flipping depends on the other, indicating that the 
two qubits are correlated, or in quantum information theory entangled.

In comparison to Eq. (3) obtained from the classical random walk, we see that additional  N(log( )) XOR 
operations are required for classical computer to obtain the same quantum transition probability matrix, as can 
be seen from Eq. (9). In the case of =N 4, the classical and quantum transition probability matrices given by Eqs 
(4) and (10) are related by a permutation ( )0 1 2 3

0 3 2 1
. The quantum version of the Hamming distance between 

| 〉J q and | ′〉J q is given by = ∑ ⊕=
−

−d i iquantum n
0
1

1


 

, which clearly shows the temporal correlation between the -th 
and −( 1) -th qubits. We attribute this correlation to the fact that only one quantum coin is used to decide on the 
Pauli X gate over all the n qubits, thus creating some connection between qubits, and to the non-Markovian 
nature of quantum walk dynamics70,71, in which the quantum circuit memorizes the qubit state 



| 〉−i 1  when it is 
walking in the direction that has the qubit state i| 〉



 in the Hamming cube.
It can be of interest to note that the circuit given in Eq. (6) is just one possible design leading to a particular 

correlation between qubits. In general, there are numerous ways to rearrange the walking steps to obtain different 
kinds of correlation, and it is possible to design the circuit for specific purposes. A simple way is to perform the 
walking steps in Eq. (6) in a reverse order, operating the = −k n 1 operator to the right first, followed by the 
k n 2= −  operator, and so on. This leads to a different metric 


 

d i iquantum n
0
1

1= ∑ ⊕=
−

+  with =i 0N . It turns out 
that this dquantum corresponds to the Hamming distance in the Gray code representation.

The Gray code uses single-distance coding for integer sequence  N0 1 1→ → → − , where adjacent inte-
gers differ by single bit flipping. In the case of the four-node graph in Fig. 1, the integers (0, 1, 2, 3) in the Gray 
code representation correspond to the 00| 〉, | 〉01 , 11| 〉, 10| 〉 states, respectively. It is obvious that this Gray code 
representation can be obtained from the natural binary code representation by a permutation ( )0 1 2 3

0 1 3 2
. There 

also exists a permutation that transforms Pclassical to Pquantum in the Gray code basis. The proof of this correspond-
ence for arbitrary N is given in Methods 0.1. Both the transform and inverse transform between the natural binary 
code and Gray code representations take N(log( ))  operations using classical computer72. This again shows that 
the quantum random walk algorithm gains N(log( ))  improvement over the classical one.

As the change of the Hamming distance for each walking step in the Gray code representation is d 1δ = , a 
quantum walker in a geodesic of a Hamming cube automatically walks with the least action, that is, with the min-
imum change of the Hamming distance. This geodesic is a Hamiltonian path on hypercubes73.

It is possible to increase the level of correlation in the probability matrix by performing multiple quantum 
evolutions, q , where q is the number of quantum walk evolutions. The probability matrix produced by two quan-
tum walk evolutions, 2 , is given by (see Methods 0.2 for derivation)
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The fact that the summation over I in Eq. (11) runs over (2 )n  state configurations before the square is taken 
points to the complicated mixing of negative signs and complex phases 



φ ’s and 


λ ’s. The sign problem makes it 
difficult for pure classical Monte Carlo methods to simulate this transition.

In general, the dependence of the two-evolution quantum probability matrix on 


θ ’s, 


φ ’s and λ


’s, is not trivial. 
Its explicit expression for the N 4=  graph is given in Methods 0.3. The phases φ



’s and λ


’s enter into play for 
graph sizes ≥N 8. On the other hand, the two-evolution probability matrix for classical random walk is given by

∏
θ θ θ θ
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which is still factorisable.

Numerical results. Figure 3 shows the performance of our hybrid quantum random walk algorithm on lin-
ear systems of dimension =N 256 and =N 1024. Their relative errors decrease with increasing sampling num-
ber. The relative error is defined as ε = | − | | |x x x/I

exact
I I

exact  for the I-th component of the solution vector →x , 
where x exact→  is the exact result obtained with the NumPy package. To demonstrate, we use randomly generated 
vectors 

→
b  and matrices A with a uniform distribution, b [ 1, 1]I ∈ −  and θ π∈ [0, ]



. We choose γ and c such that 
the error introduced by the Neumann expansion is within  −(10 )4 . See Table 1 for the relevant parameters of the 
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two matrices. The program is written and compiled with Qiskit version 0.7.2. The simulation results (upper fig-
ure) are obtained using QASM simulator43, while the quantum machine results (lower figure) are obtained using 
IBM Q 20 Tokyo device or Poughkeepsie device74,75.

The curves obtained by the QASM simulator are results averaged over ten runs. Their relative errors decrease 
as n1/ s , where ns is the number of random walk samplings. This n1/ s  reduction is typical of Monte Carlo simu-
lations, because the hybrid quantum walk algorithm has essentially the same structure as classical Monte Carlo 
methods. So, we do not gain any speedup in sampling number. Yet, this result substantiates the fact that our pro-
posed algorithm works on ideal quantum computers.

For real IBM Q quantum devices, the accuracy stops improving after a certain number of samplings (see the 
plateau (blue dash-dotted curve) and oscillation (red dotted curve) in Fig. 3). This hardware limitation can be 
estimated using an error formula Er0ε κ∼ × , where κ is the condition number for the matrix A and Er is the 

Figure 3. Relative errors ε = | − | | |x x x/I
exact

I I
exact  as a function of the sampling number ns for =N 256 and 

N 1024=  matrices. The relevant parameters and estimated errors for these two matrices can be found in 
Table 1. Black solid lines represent the n1/ s  error reduction expected for Monte Carlo calculations. (Upper 
figure) Red dashed line and green dash-dotted line are the results computed by the QASM simulator. (Lower 
figure) Blue dash-dotted line and red dotted line are data for the same matrices computed by the IBM Q 20 
Tokyo machine or Poughkeepsie machine. Cyan and magenta horizontal dashed lines depict the estimated 
errors.

N c q γ
Condition 
number Estimated error ε0

64 6 2 0.3 1.457

128 6 2 0.3 1.599

256 6 1 0.3 1.857 0.1255

1024 10 1 0.5 2.973 0.2010

Table 1. Relevant parameters for the matrices A of various sizes used for numerical experiments. Estimated 
error is defined in the text.
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readout error of real machines. The condition number κ gauges the ratio of the relative error in the solution vector 
→x  to the relative error in the A matrix3: some perturbation in the matrix, A Aδ+ , can cause an error in the solu-
tion vector, x xδ→ + →, such that x Aδ κ δ→ ∼ × . By taking Er as an estimate for Aδ , we obtain the above 
error for the solution vector as ε δ κ= → ∼ ×x Er0 . The condition numbers given in Table 1 are computed by 
using Eq. (9) to construct the A matrices. For the average readout error of IBM Q 20 Tokyo device, we use 

= . × −E 6 76 10r
274. The estimated errors ε0 are given in Table 1. We see that the relative errors fall below the 

respective errors, indicating that the precision limit is due to the readout error of the current NISQ hardware. 
Note that the machines are calibrated several times during data collection, so the hardware error varies and the Er 
value is only an estimate.

Figure 4 shows the results for linear systems of dimension =N 64 and N 128= , obtained by the QASM sim-
ulator that performs two quantum walk evolutions with uniformly distributed ( , , ) [0, ]θ φ λ π∈

  

. The relevant 
parameters for these two matrices are given in Table 1. The results again evidence that the algorithm works well, 
even in the presence of complex phases φ



’s and 


λ ’s. Note that we here take (


θ , lφ , λl) as random variables to 
demonstrate the efficiency of our algorithm, but in real applications, these variables must be provided by other 
algorithms to generate a proper P matrix Fig. 4.

The communication latency between classical and quantum computer is the most time-consuming part, con-
taining cn( )s  communications. Fortunately, this number does not scale as N. For users with direct access to the 
quantum processors, communication bottleneck should be less severe.

Discussion
A comparison of computational resources is given in Table 2. For hybrid quantum walk algorithm, we need 

N1 log( )+  qubits, q Nlog( ) CNOT gates, and q Nlog( ) U3 gates, where q is the number of evolutions. The initial-
ization takes log(N) X gates; but since they can be executed simultaneously, the initialization occupies one time 
slot only. Totally q N1 2 log( )+  time slots are required for one quantum walk evolution to obtain one component 
of the solution vector x→. This can be an advantage when one is interested in partial information about x→. The 
same amount of time slots can be similarly derived for the classical random walk algorithm. Yet, we stress that 
these two algorithms deal with different transition probability matrices: factorisable matrices for classical random 
walk, and more complex correlated matrices for quantum random walk. The qubit-qubit correlation built into the 
correlated matrix can potentially be harnessed to perform complex tasks.

Other advantages of the algorithms we propose are:

 (i) By restricting the matrices A to those that can be encoded in Hamming cubes, we can sample both classical 
and quantum random walk spaces that scale exponentially with the number of bits/qubits, and hence gain 
space complexity.

 (ii) Classical Monte Carlo methods have time complexity of N( )  for general P matrices. For the matrices here 
considered, our algorithms have N(log( )) .

 (iii) It is easier to access input and output than the HHL-type algorithm.
 (iv) Random processes in a quantum computer are fundamental, and so are not plagued by various problems 

associated with pseudo-random number generators76, like periods and unwanted correlations.
 (v) Our quantum algorithm can run on noisy quantum computers whose coherence time is short.

We propose a hybrid quantum algorithm suitable for NISQ quantum computers to solve systems of linear 
equations. The solution vector x→ and constant vector b

→
 we consider here are classical data, so the input and 

Figure 4. Relative errors x x x/I
exact

I I
exactε = | − | | | as a function of the sampling number ns for =N 64 and 

N 128=  matrices, obtained by performing two quantum walk evolutions, 2 . Black solid lines represent the 
n1/ s  error reduction expected for Monte Carlo calculations. Red dashed line and blue dotted line are the results 

computed by the QASM simulator.
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readout can be executed easily. Numerical simulations using IBM Q systems support the feasibility of this algo-
rithm. We demonstrate that, by performing two quantum walk evolutions, the resulting probability matrix 
become more correlated in the parameter space. As long as the quantum circuit in this framework produces 
highly correlated probability matrix with a relatively short circuit depth, we can always gain quantum advantages 
over classical circuits.

Methods
Gray code basis. The natural binary code = …− −B B B B B( , , , , )n n1 2 1 0  is transformed to the Gray code 
basis72 according to

= ⊕+g B B B( ) , (A1)i i i1

i n{0, , 1}∀ ∈ … −  with B 0n = . The probability matrix in the Gray code basis is given by

∏

∏

θ

θ θ

=

=
















′
=

−

=

− − ⊕ ⊕

+

+ +

P U ( )

cos
2

sin
2 (A2)

J J
quantum

n

i i

n i i i i

,
0

1

3 ,
2

0

1
2

1 ( )
2

1

1 1







 

 

   

with =i 0N .

Lemma 1 Let SN be the set of all possible n-bit strings … | ∈ ∀ ∈ … −− −S S S S S i n{( , , , , ) {0, 1} {0, 1, , 1}}n n i1 2 1 0  
with =n Nlog2 , and π be a permutation of the set SN. If there exists a function f S: N   such that for ∈ ×A N N ,

A f I( ) (A3)I J J, =⊕

I J S, N∀ ∈ , and if π is bitwise XOR homomorphic, then we have π=π π⊕A f I( ( ))I J J( ), ( ) .

Proof 1 Since π is bitwise XOR homomorphic, Eq. (A.3) leads to

π
=

=
π π π π π⊕ ⊕A A

f I( ( )) (A4)
I J J I J J( ), ( ) ( ) ( ), ( )

I J S, N∀ ∈ .

Lemma 2 Let ∈B SN  be represented by …−B B( , , )n 1 0 . Let g S S: N N  be a function that transforms from natural 
bit string to Gray code according to = ⊕+g B B B( )i i i1 , i n{0, 1, , 1}∀ ∈ … −  with =B 0n . Then g is a bitwise 
XOR homomorphism.

Proof 2 Let I J S, N∈  be represented by bit strings I I( , , )n 1 0…−  and …−J J( , , )n 1 0 , respectively. Using

= ⊕
= ⊕

+

+

g I I I
g J J J
( )
( ) (A5)

i i i

i i i

1

1

with = =I J 0n n , we get

Algorithm Time Space for A Input/Output

Classical Direct2,3  N( )3 N( )2 efficient for any → →
x bA, ,

Classical Iterative2,3 N( )2 N( )2 efficient for any → →
x bA, ,

Quantum HHL4 N(log( )) N(log( ))  qubits norm x→  not available difficult for → →
x bA, ,

Classical MC45,53,55 (for one 
component xI)

 N( )  N( ) efficient for any →
→

x b,  limited A (stochastic P)

Classical RW on HC (for 
one component xI)

N(log( )) N(log( )) efficient for any x b,→ →
 limited A (factorisable P)

Hybrid QW on HC (for 
one component xI)

N(log( )) N(log( ))  qubits efficient for any x b,→ →
 limited A (correlated P)

Table 2. Comparison of various algorithms for solving N × N linear systems → =
→

x bA , with respect to time 
and space complexities, and Input/Output issues. Note that for classical Monte Carlo (MC) method, classical 
random walk (RW) and hybrid quantum random walk (QW), the time complexities in the table are per 
sampling time. It takes  cn( )s  samplings to achieve the desired accuracy (see the text).
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⊕ = ⊕
= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕
= ⊕ .

+ +

+ +

g I g J g I g J
I I J J
I J I J

g I J

[ ( ) ( )] ( ) ( )
( ) ( )
( ) ( )

( ) (A6)

i i i

i i i i

i i i i

i

1 1

1 1

∀ ∈ … −i n0, , 1.
Using Lemma 1 and Lemma 2, the following theorem is clear.

Theorem 1 There exists a permutation that maps the probability matrix produced by classical random walk to the 
probability matrix given in Eq. (A.2) produced by the quantum random walk circuit in a reverse order, that is, in 
Gray code basis.

Derivation of Eq. (11). We use the evolution operator given in Eq. (6),
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Next we project the 2  operator on the ψ| 〉J0  state,
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where f I K( , ) is given in Eq. (12) and

| ⊕ ⊕ 〉 = | ⊕ ⊕ … ⊕ ⊕ 〉 .− − −I K J i k j i k j, ,q n n n q1 1 1 0 0 0
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which leads to the probability matrix elements as
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Two-evolution quantum walk on N = 4 graph. The probability matrix elements ′PJ J
quantum

,  for two quan-
tum evolutions  2 on the four-node graph read

θ θ θ θ θ

θ θ θ θ
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= + + + +
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P P 1
4

(1 2cos cos cos )
(C4)03 12 1 0

2
1θ θ θ= = − + .

Surprisingly, in this case the matrix elements do not depend on the ( , )0 1φ φ  and λ λ( , )0 1  phases. However, the 
matrix elements do depend on complex phases when N 8≥ , as can be numerically checked. Note that 
P P P P( , , , )01 02 23 13  depend on θ1 only: the destructive interference between configurations totally eliminates the θ0 

dependence, which is difficult to do by simple classical random walks.

Solving for general matrices. Here we discuss the applicability of our quantum random walk algorithm to 
general matrices50,51,77,78. Given an arbitrary matrix A, we can obtain = −B 1 A and B P vI J I J I J, , ,= . Then the 
linear system x bA→ =

→
 can be solved by performing random walks according to the PI J,  transition probabilities 

and by multiplying the factor vI J,  at each walking step, provided that the linear solver converges to a solution. In 
classical random walk algorithms, it has been shown50 that the convergence of the linear solver depends on the 
spectral radius ⁎B( )ρ  of the matrix B* where ⁎B B P P v/I J I J I J I J I J, ,

2
, , ,

2= = , that is, the necessary and sufficient condi-
tion for convergence is B( ) 1⁎ρ < . We expect a similar condition for quantum random walk algorithms. However, 
one should consider the hybrid solver presented in this work as a special-purpose solver, in which the quantum 
circuit is designed for a specific matrix problem. The quantum circuits demonstrated in this work show that there 
are probability transition matrices that are easy to sample using quantum circuits but difficult using classical cir-
cuits. How to tailor a circuit design along with the relevant parameters suitable for the kind of application we are 
looking for is beyond the scope of this work.
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