
1Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreports

Hybrid classical-quantum linear
solver using noisy intermediate-
Scale Quantum machines
chih-chieh chen1*, Shiue-Yuan Shiau2, Ming-feng Wu1 & Yuh-Renn Wu 3*

We propose a realistic hybrid classical-quantum linear solver to solve systems of linear equations of a
specific type, and demonstrate its feasibility with Qiskit on IBM Q systems. This algorithm makes use of
quantum random walk that runs in o(N log(N)) time on a quantum circuit made of o(log(N)) qubits. The
input and output are classical data, and so can be easily accessed. It is robust against noise, and ready
for implementation in applications such as machine learning.

Algorithms that run on quantum computers hold promise to perform important computational tasks more effi-
ciently than what can ever be achieved on classical computers, most notably Grover’s search algorithm and Shor’s
integer factorization1. One computational task indispensable for many problems in science, engineering, mathe-
matics, finance, and machine learning, is solving systems of linear equations → =

→
x bA . Classical direct and iter-

ative algorithms take N()3 and N()2 time2,3. Interestingly, the Harrow-Hassidim-Lloyd (HHL) quantum
algorithm4–13, which is based on the quantum circuit model14, takes only N(log()) to solve a sparse ×N N sys-
tem of linear equations, while for dense systems it requires N N(log()) 11. Linear solvers and experimental
realizations that use quantum annealing and adiabatic quantum computing machines15–17 are also reported18–20.
Most recently, methods21,22 inspired by adiabatic quantum computing are proposed to be implemented on
circuit-based quantum computers. Whether substantial quantum speedup exists in these algorithms remains
unknown.

In practice, the applicability of quantum algorithms to classical systems are limited by the short coherence
time of noisy quantum hardware in the so-called Noisy Intermediate-Scale Quantum (NISQ) era23 and the diffi-
culty in executing the input and output of classical data. Other roadblocks toward practical implementation
include limited number of qubits, limited connectivity between qubits, and large error correction overhead. At
present, experiments demonstrating the HHL linear solver on circuit quantum computers are limited to ×2 2
matrices24–29, while linear solvers inspired by adiabatic quantum computing are limited to ×8 8 matrices21,22. For
quantum annealers, the state-of-the-art linear solvers can solve up to 12 12× matrices20.

In addition to the problems of limited available entangled qubits and short coherence time, the HHL-type
algorithms for the so-called Quantum Linear Systems Problem (QLSP) are designed to work only when input and
output are quantum states30. This condition imposes severe restriction to practical applications in the NISQ
era23,30,31. It has been shown that the HHL algorithm can not extract information about the norm of the solution
vector x→4. A state preparation algorithm for inputting a classical vector

→
b would take N() time30,32–34, with large

overhead for current hardware. In addition, quantum state tomography is required to read out the classical solu-
tion vector x→, which is a demanding task35,36, except for special cases like one-dimensional entangled qubits37.
Inputting the matrix A is also a challenge that may kill the quantum speedup1,24–29.

In this work, we propose a hybrid classical-quantum linear solver that uses circuit-based quantum computer
to perform quantum random walks. In contrast to the HHL-type linear solvers, the solution vector x→ and the
constant vector

→
b in this hybrid algorithm stay as classical data in the classical registers. Only the matrix A is

encoded in quantum registers. The idea is similar to that of variational quantum eigensolvers38–41, where quantum
speedup is exploited only for sampling exponentially large state Hilbert spaces, while the rest of computational

1Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu,
31057, Taiwan. 2Physics Division, National Center for Theoretical Sciences, Hsinchu, 30013, Taiwan. 3Graduate
Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University,
Taipei, 10617, Taiwan. *email: helloqworld2019@gmail.com; yrwu@ntu.edu.tw

open

https://doi.org/10.1038/s41598-019-52275-6
http://orcid.org/0000-0002-1457-3681
mailto:helloqworld2019@gmail.com
mailto:yrwu@ntu.edu.tw

2Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

task is done by classical computer. This makes it easy to perform data input and output: the
→
b vector can be arbi-

trary, and the components and the norm of the x→ vector can be easily accessed.
We consider matrices that are useful for Markov decision problems such as in reinforcement learning42. We

show that these matrices can be efficiently encoded by introducing the Hamming cube structure: a square matrix
of size N requires N(log()) quantum bits only. The quantum random walk algorithm we here propose takes
 N(log()) time to obtain one component of the x→ vector. We also show that in the quantum random walk algo-
rithm the matrices produced as a result of qubit-qubit correlation are inherently complex, which can be an advan-
tage for performing difficult tasks. For the same amount of time, the matrices the classical random walk algorithm
can solve are limited to factorisable ones only.

We have tested the quantum random walk algorithm using software development kit Qiskit on IBM Q sys-
tems43,44. Numerical results show that this linear solver works on ideal quantum computer, and most importantly,
also on noisy quantum computer having a short coherence time, provided the quantum circuit that encodes the
A matrix is not too long. The limitation due to machine errors is discussed.

Results
We consider a system of linear equations of real numbers → =

→
x bA , where A is a N N× matrix to be solved,

×N 1 vectors x→ and b
→

 are, respectively, the solution vector and a vector of constants. Without loss of generality,
we rewrite A as

γ= −A 1 P, (1)

where 1 is the identity matrix, and 0 1γ< < is a real number. We take P as a (stochastic) Markov-chain transi-
tion matrix, such that P 0I J, ≥ and ∑ =P 1J I J, , where PI J, refers to the P matrix element in the J-th column of the
I-th row. This type of linear systems appears in value estimation for reinforcement learning42,45,46, and radiosity
equation in computer graphics47. In reinforcement learning algorithms, given a fixed policy of the learning
agency, the vector →x is the value function that determines the long-term cumulative reward, and efficient estima-
tion of this function is key to successful learning42. Note that the matrix A given in Eq. (1) used as model
Hamiltonian matrix belongs to the so-called stoquastic Hamiltonians48,49.

To solve → =
→

x bA , we expand the solution vector as Neumann series, that is, x b bA 1 P()1 1γ→ =
→

= −
→

=− −

γ∑
→

=
∞ bPs

s s
0 . Let us define the I0 component of →x truncated up to γc terms as

x P P b
(2)

I
c

s

c
s

I I

N

I I I I I
()

0 , , 0

1

, ,
s

s s s0
1

0 1 1∑ ∑γ= … .
= ... =

−

−

This expression for xI
c()
0

 can be evaluated by random walks on a graph of N nodes, with the probability of going
from node I and node J of the graph given by the matrix element PI J, , which we set as symmetric (undirected),
namely =P PI J J I, , . An example of a four-node graph is shown in Fig. 1(a). By performing a series of random walks
starting from node I0, walking c steps according to the transition probability matrix P, and ending at some node
Ic, Eq. (2) can be readily calculated to get the xI

c()
0

 value, which is close to the solution xI0
 for some large c steps.

Truncating the series introduces an error ()cε γ∼ . So, for a given γ, the number of steps necessary to meet a
given tolerance ε is equal to c log(1/)/ log(1/)ε γ∼ .

The above procedure can be extended to general matrices A by setting A 1 B= − where =B P vI J I J I J, , , for real
matrix elements vI J, (see Methods 0.4). The calculation converges50,51 provided that the spectral radius ⁎ρ <B() 1
where the matrix B* is defined by ⁎B P vI J

B
P I J I J, , ,

2I J

I J

,
2

,
= = . The matrices we here consider is a special case where

γ=vI J, is a constant, and this simplification guarantees convergence of the calculation.

Figure 1. (a) Quantum (or classical) random walk on an undirected =N 4 graph. The transition probability of
going from node I to node J or vice versa is equal to PI J, , these elements forming a 4 4× matrix. (b) The four
nodes on this Hamming cube are labeled by integers (0, 1, 2, 3); they are encoded as four different states | 〉00 ,
| 〉01 , 10| 〉, 11| 〉, respectively.

https://doi.org/10.1038/s41598-019-52275-6

3Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

For classical Monte Carlo methods to compute Eq. (2), it takes N() time to calculate the cumulative distribu-
tion function that is used to determine the next walking step. So, these linear systems can be solved by classical
Monte Carlo methods within N()2 time52–56. Similar Monte Carlo methods have been extended to more general
matrices for applications in Green’s function Monte Carlo method for many-body physics57–59.

Encoding state spaces on Hamming cubes. As for material resources, in general it takes at least N()
classical bits to store a row of a stochastic transition matrix P (or A). However, for the classical and quantum
random walks we here consider, it is possible to reduce significantly the number of classical or quantum bits nec-
essary to encode the corresponding transition probability matrix P to N(log()) by introducing the Hamming
cube (HC) structure60. To do it, we first associate each graph node with a bit string. As shown in Fig. 1(b), the four
nodes of the N 4= graph are fully represented by two bits. Node states 0| 〉, 1| 〉, | 〉2 , and | 〉3 represent binary string
states | 〉00 , | 〉01 , 10| 〉, and | 〉11 , respectively. For a N-node graph, only N nlog ()2 = (to base 2) bits are needed to
encode the integers ∈ … −J N{0, 1, , 1}, each representing the n-bit binary string state, namely
J j j j, ,n 1 1 0| 〉 = | … 〉− , where j

 is 0 or 1.

Classical random walk. Before we introduce our quantum random walk algorithm, let us first consider
classical random walks.

To perform random walks on a N-node graph, we use a simple coin-flipping process with N(log()) time
steps. The -th bit flips with probability sin (/2)2 θ

 or does not flip with probability θcos (/2)2

, the total probability
being equal to 1. The transition probability matrix elements are given by

P cos
2

sin
2

,
(3)J J

classical
n i i

,
0

1
2

1
2∏

θ θ
=

′

=

− −

where the n-bit binary string state | 〉 = | … 〉−I i i i, , ,c n c1 1 0 is determined by | ′〉 = | 〉 ⊕ | 〉J I Jc c c, where ⊕ denotes the
bitwise exclusive or (XOR) operation, and the subscript c denotes classical states. The total number of θ| |

sin (/2)2 ,
given by d iclassical n

0
1= ∑ =

−

, is the Hamming weight of I c| 〉 , and so corresponds to the Hamming distance between
| ′〉J c and J c| 〉 states. This metric measures the number of steps that a walker needs to go from | 〉J c to | ′〉J c on the
Hamming cube.

For the four-node graph shown in Fig. 1, the transition probability matrix P for classical random walks reads

=

=

⊗

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

() () () () () () () ()
() () () () () ()

() () () ()
() ()

() ()
() ()

() ()
() ()

P

cos cos sin cos cos sin sin sin

cos cos sin sin cos sin

cos cos sin cos

cos cos

cos sin

sin cos

cos sin

sin cos
,

(4)

classical

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

1 1

1 1

0 0

0 0

where ⊗ denotes the Kronecker product. The lower triangular part of the matrix is omitted due to symmetry. This
simple case demonstrates a general feature for classical transition probability matrix Pclassical: the probability of
flipping both bits is simply a product of the probabilities of flipping the 0-th bit and the 1-th bit in arbitrary order.
For instance, θ θ= = =| 〉 | 〉 | 〉 | 〉 | 〉 | 〉P P P Psin (/2)sin (/2)classical classical classical classical

0,3 00 , 11
2

0
2

1 00 , 01 00 , 10 ; similarly for the other PI J
classical
, ’s. The

fact that Pclassical can be factorized into a Kronecker product of the matrices of each individual bit indicates that
each bit flips independently, as for a Markovian process.

Quantum random walk. We can simulate quantum walks61–67 on a N-node graph to obtain the solution
vector →x from Eq. (2). To do it, we use discrete-time coined quantum walk circuit68,69. The circuit for the
four-node graph in Fig. 1 is shown in Fig. 2. The first two qubits j0 and j1 are state registers that will be initialized
to encode the four-node graph, while the third qubit j2 is the coin register.

To derive the quantum transition probability matrix on a graph of N nodes, we consider the state space of the
+n(1)-qubit circuit as spanned by i i i i{ , , , }n n q1 1 0| 〉 ⊗ | … 〉◊ − with =n Nlog ()2 : the n(1)+ -th qubit registers the

coin state in| 〉◊, and the other n qubits encode the N-node graph. We take the convention that the rightmost bit is
i0. Given a n-bit string …−j j j(, , ,)n 1 1 0 , the initialized quantum state reads

j j j j j
J

0 , , , , ,
0 (5)

J n n q

q

0, 1 2 2 1 0ψ| 〉 = | 〉 ⊗ | … 〉

= | 〉 ⊗ | 〉 .
◊ − −

◊

Next we let the ψ| 〉J0, state evolve in random walk: in each walking step, we toss the coin by rotating the coin
qubit, and then flip a graph qubit by applying the CNOT gate. This process is repeated on all the n qubits in the
j j j j j, , , , ,n n q1 2 2 1 0| … 〉− −

 state, starting with the 0-th qubit. The corresponding evolution operator reads

https://doi.org/10.1038/s41598-019-52275-6

4Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

X U u(0 0 1 1 1) (() 1),
(6)k

n

q k k q
0

1

3 ∏= ′ | 〉 〈 | ⊗ + | 〉 〈 | ⊗ ⋅ ⊗
=

−

◊ ◊ ◊ ◊

where the prime (′) on the Π denotes that the =k 0 operator applies first to the right, followed by the =k 1 oper-
ator, and so on; the 1q operator is an identity map on the n-qubit state | 〉J q, Xk is a Pauli X gate (the Pauli matrix σx)
that acts on the k-th qubit, and U u()3 is a single-qubit rotation operator

U U
e

e e
u() (, ,)

cos
2

sin
2

sin
2

cos
2 (7)

i

i i
3 3

()
θ φ λ

θ θ

θ θ
= =

 −

λ

φ λ φ+

that acts on the coin qubit state. Note that the first parentheses in Eq. (6) represents a CNOT gate. It is important
to note that here we use one quantum coin only to decide on the Pauli X gate operation over all the n qubits, so the
order of qubit operations plays a role in the determination of the transition probability matrix P.

The first step is to project on J0,ψ| 〉, which leads to

 U i i j i j i ju() , , , ,
(8)

J
i i

n

i i n n n q0,
, , 0

1

0

1

3 , 1 1 1 1 1 0 0
n 1 0

1

∑ ∏ψ| 〉 = | 〉 ⊗ | ⊕ … ⊕ ⊕ 〉
... = =

−

− ◊ − −
−

−

with =−i 01 . By tracing out the coin degree of freedom, we obtain the reduced density matrix for the graph and
hence the probability matrix P J JTr []J J J J, 0 0

†ψ ψ= 〈 ′| | 〉〈 | | ′〉′ ◊ . The resulting quantum transition probability
matrix elements then read

∏

∏
θ θ

=

=

′
=

−

=

− − ⊕ ⊕

−

− −

P U u()

cos
2

sin
2

,
(9)

J J
quantum

n

i i

n i i i i

,
0

1

3 ,
2

0

1
2

1 ()
2

1

1 1

where | 〉 = | … 〉−I i i i, , ,q n q1 1 0 is determined by | ′〉 = | 〉 ⊕ | 〉J I Jq q q. For one quantum evolution, the complex
phase factors eiφ

 and λ
ei play no role. We will see later that these phases come into play in the case of multiple

evolutions q .
To understand the transition probability matrix produced by the quantum walk circuit (Fig. 2), let us again

consider the four-node graph in Fig. 1, where

() () () () () () () ()
() () () () () ()

() () () ()
() ()

P

cos cos sin sin cos sin sin cos

cos cos sin cos cos sin

cos cos sin sin

cos cos
(10)

quantum

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

=

.

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

θ θ

Figure 2. Discrete-time coined quantum walk circuit for the ×4 4 transition matrix given in Eq. (10). Qubits
j0 and j1 are state register qubits to represent the four-node graph in Fig. 1, first set as 0 before initialization,
while the qubit j2 is the coin register qubit. The measured registers c0 and c1 are fed back to initialize the next
iteration. The classical-step is repeated c times to obtain the Neumann expansion up to order c.

https://doi.org/10.1038/s41598-019-52275-6

5Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Unlike the above classical random walk, this matrix cannot be factorized into a Kronecker product of the
matrices of each individual qubit. The probability of one qubit flipping depends on the other, indicating that the
two qubits are correlated, or in quantum information theory entangled.

In comparison to Eq. (3) obtained from the classical random walk, we see that additional N(log()) XOR
operations are required for classical computer to obtain the same quantum transition probability matrix, as can
be seen from Eq. (9). In the case of =N 4, the classical and quantum transition probability matrices given by Eqs
(4) and (10) are related by a permutation ()0 1 2 3

0 3 2 1
. The quantum version of the Hamming distance between

| 〉J q and | ′〉J q is given by = ∑ ⊕=
−

−d i iquantum n
0
1

1

, which clearly shows the temporal correlation between the -th
and −(1) -th qubits. We attribute this correlation to the fact that only one quantum coin is used to decide on the
Pauli X gate over all the n qubits, thus creating some connection between qubits, and to the non-Markovian
nature of quantum walk dynamics70,71, in which the quantum circuit memorizes the qubit state

| 〉−i 1 when it is
walking in the direction that has the qubit state i| 〉

 in the Hamming cube.
It can be of interest to note that the circuit given in Eq. (6) is just one possible design leading to a particular

correlation between qubits. In general, there are numerous ways to rearrange the walking steps to obtain different
kinds of correlation, and it is possible to design the circuit for specific purposes. A simple way is to perform the
walking steps in Eq. (6) in a reverse order, operating the = −k n 1 operator to the right first, followed by the
k n 2= − operator, and so on. This leads to a different metric

d i iquantum n
0
1

1= ∑ ⊕=
−

+ with =i 0N . It turns out
that this dquantum corresponds to the Hamming distance in the Gray code representation.

The Gray code uses single-distance coding for integer sequence N0 1 1→ → → − , where adjacent inte-
gers differ by single bit flipping. In the case of the four-node graph in Fig. 1, the integers (0, 1, 2, 3) in the Gray
code representation correspond to the 00| 〉, | 〉01 , 11| 〉, 10| 〉 states, respectively. It is obvious that this Gray code
representation can be obtained from the natural binary code representation by a permutation ()0 1 2 3

0 1 3 2
. There

also exists a permutation that transforms Pclassical to Pquantum in the Gray code basis. The proof of this correspond-
ence for arbitrary N is given in Methods 0.1. Both the transform and inverse transform between the natural binary
code and Gray code representations take N(log()) operations using classical computer72. This again shows that
the quantum random walk algorithm gains N(log()) improvement over the classical one.

As the change of the Hamming distance for each walking step in the Gray code representation is d 1δ = , a
quantum walker in a geodesic of a Hamming cube automatically walks with the least action, that is, with the min-
imum change of the Hamming distance. This geodesic is a Hamiltonian path on hypercubes73.

It is possible to increase the level of correlation in the probability matrix by performing multiple quantum
evolutions, q , where q is the number of quantum walk evolutions. The probability matrix produced by two quan-
tum walk evolutions, 2 , is given by (see Methods 0.2 for derivation)

∑ ∑ δ= ′ ⊕ ⊕′
=

−
P f I J J I(,) ,

(11)
J J
quantum

k I
i k,

0

1

,

2

n 1

where, for = …−I i i(, ,)n 1 0 and K k k(, ,)n 1 0= …− ,

=

×
−

−

− − −

− −

f I K U U
U U
u u

u u
(,) [()] [()]

[()] [()] , (12)

n i i i k

n k k k

3 1 , 3 0 ,

3 1 , 3 0 ,0

n n n

n n

1 2 0 1

1 2 0

and

θ φ λ θ θ
= −

 .µ ν

µφ νλ µ ν
µ ν µ ν

+ −
− ⊕ ⊕

U e[(, ,)] (1) cos
2

sin
2 (13)

i
3 ,

[] (1)
1 ()

The fact that the summation over I in Eq. (11) runs over (2)n state configurations before the square is taken
points to the complicated mixing of negative signs and complex phases

φ ’s and

λ ’s. The sign problem makes it
difficult for pure classical Monte Carlo methods to simulate this transition.

In general, the dependence of the two-evolution quantum probability matrix on

θ ’s,

φ ’s and λ

’s, is not trivial.
Its explicit expression for the N 4= graph is given in Methods 0.3. The phases φ

’s and λ

’s enter into play for
graph sizes ≥N 8. On the other hand, the two-evolution probability matrix for classical random walk is given by

∏
θ θ θ θ

=

 +

′

=

− −

P cos
2

sin
2

2cos
2

sin
2

,
(14)J J

classical
n i i

,
0

1
4 4

1
2 2

which is still factorisable.

Numerical results. Figure 3 shows the performance of our hybrid quantum random walk algorithm on lin-
ear systems of dimension =N 256 and =N 1024. Their relative errors decrease with increasing sampling num-
ber. The relative error is defined as ε = | − | | |x x x/I

exact
I I

exact for the I-th component of the solution vector →x ,
where x exact→ is the exact result obtained with the NumPy package. To demonstrate, we use randomly generated
vectors

→
b and matrices A with a uniform distribution, b [1, 1]I ∈ − and θ π∈ [0,]

. We choose γ and c such that
the error introduced by the Neumann expansion is within −(10)4 . See Table 1 for the relevant parameters of the

https://doi.org/10.1038/s41598-019-52275-6

6Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

two matrices. The program is written and compiled with Qiskit version 0.7.2. The simulation results (upper fig-
ure) are obtained using QASM simulator43, while the quantum machine results (lower figure) are obtained using
IBM Q 20 Tokyo device or Poughkeepsie device74,75.

The curves obtained by the QASM simulator are results averaged over ten runs. Their relative errors decrease
as n1/ s , where ns is the number of random walk samplings. This n1/ s reduction is typical of Monte Carlo simu-
lations, because the hybrid quantum walk algorithm has essentially the same structure as classical Monte Carlo
methods. So, we do not gain any speedup in sampling number. Yet, this result substantiates the fact that our pro-
posed algorithm works on ideal quantum computers.

For real IBM Q quantum devices, the accuracy stops improving after a certain number of samplings (see the
plateau (blue dash-dotted curve) and oscillation (red dotted curve) in Fig. 3). This hardware limitation can be
estimated using an error formula Er0ε κ∼ × , where κ is the condition number for the matrix A and Er is the

Figure 3. Relative errors ε = | − | | |x x x/I
exact

I I
exact as a function of the sampling number ns for =N 256 and

N 1024= matrices. The relevant parameters and estimated errors for these two matrices can be found in
Table 1. Black solid lines represent the n1/ s error reduction expected for Monte Carlo calculations. (Upper
figure) Red dashed line and green dash-dotted line are the results computed by the QASM simulator. (Lower
figure) Blue dash-dotted line and red dotted line are data for the same matrices computed by the IBM Q 20
Tokyo machine or Poughkeepsie machine. Cyan and magenta horizontal dashed lines depict the estimated
errors.

N c q γ
Condition
number Estimated error ε0

64 6 2 0.3 1.457

128 6 2 0.3 1.599

256 6 1 0.3 1.857 0.1255

1024 10 1 0.5 2.973 0.2010

Table 1. Relevant parameters for the matrices A of various sizes used for numerical experiments. Estimated
error is defined in the text.

https://doi.org/10.1038/s41598-019-52275-6

7Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

readout error of real machines. The condition number κ gauges the ratio of the relative error in the solution vector
→x to the relative error in the A matrix3: some perturbation in the matrix, A Aδ+ , can cause an error in the solu-
tion vector, x xδ→ + →, such that x Aδ κ δ→ ∼ × . By taking Er as an estimate for Aδ , we obtain the above
error for the solution vector as ε δ κ= → ∼ ×x Er0 . The condition numbers given in Table 1 are computed by
using Eq. (9) to construct the A matrices. For the average readout error of IBM Q 20 Tokyo device, we use

= . × −E 6 76 10r
274. The estimated errors ε0 are given in Table 1. We see that the relative errors fall below the

respective errors, indicating that the precision limit is due to the readout error of the current NISQ hardware.
Note that the machines are calibrated several times during data collection, so the hardware error varies and the Er
value is only an estimate.

Figure 4 shows the results for linear systems of dimension =N 64 and N 128= , obtained by the QASM sim-
ulator that performs two quantum walk evolutions with uniformly distributed (, ,) [0,]θ φ λ π∈

. The relevant
parameters for these two matrices are given in Table 1. The results again evidence that the algorithm works well,
even in the presence of complex phases φ

’s and

λ ’s. Note that we here take (

θ , lφ , λl) as random variables to
demonstrate the efficiency of our algorithm, but in real applications, these variables must be provided by other
algorithms to generate a proper P matrix Fig. 4.

The communication latency between classical and quantum computer is the most time-consuming part, con-
taining cn()s communications. Fortunately, this number does not scale as N. For users with direct access to the
quantum processors, communication bottleneck should be less severe.

Discussion
A comparison of computational resources is given in Table 2. For hybrid quantum walk algorithm, we need

N1 log()+ qubits, q Nlog() CNOT gates, and q Nlog() U3 gates, where q is the number of evolutions. The initial-
ization takes log(N) X gates; but since they can be executed simultaneously, the initialization occupies one time
slot only. Totally q N1 2 log()+ time slots are required for one quantum walk evolution to obtain one component
of the solution vector x→. This can be an advantage when one is interested in partial information about x→. The
same amount of time slots can be similarly derived for the classical random walk algorithm. Yet, we stress that
these two algorithms deal with different transition probability matrices: factorisable matrices for classical random
walk, and more complex correlated matrices for quantum random walk. The qubit-qubit correlation built into the
correlated matrix can potentially be harnessed to perform complex tasks.

Other advantages of the algorithms we propose are:

 (i) By restricting the matrices A to those that can be encoded in Hamming cubes, we can sample both classical
and quantum random walk spaces that scale exponentially with the number of bits/qubits, and hence gain
space complexity.

 (ii) Classical Monte Carlo methods have time complexity of N() for general P matrices. For the matrices here
considered, our algorithms have N(log()) .

 (iii) It is easier to access input and output than the HHL-type algorithm.
 (iv) Random processes in a quantum computer are fundamental, and so are not plagued by various problems

associated with pseudo-random number generators76, like periods and unwanted correlations.
 (v) Our quantum algorithm can run on noisy quantum computers whose coherence time is short.

We propose a hybrid quantum algorithm suitable for NISQ quantum computers to solve systems of linear
equations. The solution vector x→ and constant vector b

→
 we consider here are classical data, so the input and

Figure 4. Relative errors x x x/I
exact

I I
exactε = | − | | | as a function of the sampling number ns for =N 64 and

N 128= matrices, obtained by performing two quantum walk evolutions, 2 . Black solid lines represent the
n1/ s error reduction expected for Monte Carlo calculations. Red dashed line and blue dotted line are the results

computed by the QASM simulator.

https://doi.org/10.1038/s41598-019-52275-6

8Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

readout can be executed easily. Numerical simulations using IBM Q systems support the feasibility of this algo-
rithm. We demonstrate that, by performing two quantum walk evolutions, the resulting probability matrix
become more correlated in the parameter space. As long as the quantum circuit in this framework produces
highly correlated probability matrix with a relatively short circuit depth, we can always gain quantum advantages
over classical circuits.

Methods
Gray code basis. The natural binary code = …− −B B B B B(, , , ,)n n1 2 1 0 is transformed to the Gray code
basis72 according to

= ⊕+g B B B() , (A1)i i i1

i n{0, , 1}∀ ∈ … − with B 0n = . The probability matrix in the Gray code basis is given by

∏

∏

θ

θ θ

=

=

′
=

−

=

− − ⊕ ⊕

+

+ +

P U ()

cos
2

sin
2 (A2)

J J
quantum

n

i i

n i i i i

,
0

1

3 ,
2

0

1
2

1 ()
2

1

1 1

with =i 0N .

Lemma 1 Let SN be the set of all possible n-bit strings … | ∈ ∀ ∈ … −− −S S S S S i n{(, , , ,) {0, 1} {0, 1, , 1}}n n i1 2 1 0
with =n Nlog2 , and π be a permutation of the set SN. If there exists a function f S: N such that for ∈ ×A N N ,

A f I() (A3)I J J, =⊕

I J S, N∀ ∈ , and if π is bitwise XOR homomorphic, then we have π=π π⊕A f I(())I J J(), () .

Proof 1 Since π is bitwise XOR homomorphic, Eq. (A.3) leads to

π
=

=
π π π π π⊕ ⊕A A

f I(()) (A4)
I J J I J J(), () () (), ()

I J S, N∀ ∈ .

Lemma 2 Let ∈B SN be represented by …−B B(, ,)n 1 0 . Let g S S: N N be a function that transforms from natural
bit string to Gray code according to = ⊕+g B B B()i i i1 , i n{0, 1, , 1}∀ ∈ … − with =B 0n . Then g is a bitwise
XOR homomorphism.

Proof 2 Let I J S, N∈ be represented by bit strings I I(, ,)n 1 0…− and …−J J(, ,)n 1 0 , respectively. Using

= ⊕
= ⊕

+

+

g I I I
g J J J
()
() (A5)

i i i

i i i

1

1

with = =I J 0n n , we get

Algorithm Time Space for A Input/Output

Classical Direct2,3 N()3 N()2 efficient for any → →
x bA, ,

Classical Iterative2,3 N()2 N()2 efficient for any → →
x bA, ,

Quantum HHL4 N(log()) N(log()) qubits norm x→ not available difficult for → →
x bA, ,

Classical MC45,53,55 (for one
component xI)

 N() N() efficient for any →
→

x b, limited A (stochastic P)

Classical RW on HC (for
one component xI)

N(log()) N(log()) efficient for any x b,→ →
 limited A (factorisable P)

Hybrid QW on HC (for
one component xI)

N(log()) N(log()) qubits efficient for any x b,→ →
 limited A (correlated P)

Table 2. Comparison of various algorithms for solving N × N linear systems → =
→

x bA , with respect to time
and space complexities, and Input/Output issues. Note that for classical Monte Carlo (MC) method, classical
random walk (RW) and hybrid quantum random walk (QW), the time complexities in the table are per
sampling time. It takes cn()s samplings to achieve the desired accuracy (see the text).

https://doi.org/10.1038/s41598-019-52275-6

9Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

⊕ = ⊕
= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕
= ⊕ .

+ +

+ +

g I g J g I g J
I I J J
I J I J

g I J

[() ()] () ()
() ()
() ()

() (A6)

i i i

i i i i

i i i i

i

1 1

1 1

∀ ∈ … −i n0, , 1.
Using Lemma 1 and Lemma 2, the following theorem is clear.

Theorem 1 There exists a permutation that maps the probability matrix produced by classical random walk to the
probability matrix given in Eq. (A.2) produced by the quantum random walk circuit in a reverse order, that is, in
Gray code basis.

Derivation of Eq. (11). We use the evolution operator given in Eq. (6),

 U X i iu[()] () ()
(B1)i i i

n

i i
i

n
, , , 0

1

3 , 1 1
n 1 0 1

1∑ ∏= | 〉 〈 |
... =

−

− ◊ − ◊
− −

−

to compute the two-evolution operator

 ∑ ∏ δ= | 〉 〈 | .
...
...

=

−
+

− ◊ − ◊
− −

− −

− − − −
 U U X i ku u[()] [()] () ()

(B2)
i i i

k k k

n

i i k k
i k

i k n
2

, , ,
, , ,

0

1

3 , 3 , , 1 1
n

n

n
1 0 1

1 0 1

1 1 1 1

Next we project the 2 operator on the ψ| 〉J0 state,

 U U i I K J

f I K i I K J

u u[()] [()]

(,) ,
(B3)

J
i i i

k k k

n

i i k k i k k n q

I K
n q

2
0

, , ,
, , ,

0

1

3 , 3 , , 0, 1

,
1

n

n

n
1 0 1

1 0 1

1 1 1 1 1∑ ∏

∑

ψ δ δ| 〉 = | 〉 | ⊕ ⊕ 〉

= | 〉 | ⊕ ⊕ 〉

...
...

=

−

− ◊

− ◊

− −

− −

− − − − −

where f I K(,) is given in Eq. (12) and

| ⊕ ⊕ 〉 = | ⊕ ⊕ … ⊕ ⊕ 〉 .− − −I K J i k j i k j, ,q n n n q1 1 1 0 0 0

We then project J
2

0ψ| 〉 on the final state | 〉 | ′〉◊k J q

∑

∑

ψ δ δ

δ

〈 ′| 〈 | | 〉 =

= ⊕ ′ ⊕

◊ ′ ⊕ ⊕−

−

J k f I K

f I I J J

(,)

(,) ,
(B4)

q J
I K

k i J I K J

I
k i

2
0

,
, ,

,

n

n

1

1

which leads to the probability matrix elements as

†

P J J

J k

f I J J I

Tr [()]

(,)
(B5)

J J J J

k
q J

k I
i k

,
2

0 0
2

2
0

2

0

1

,

2

n 1

∑

∑ ∑

ψ ψ

ψ

δ

= 〈 ′| | 〉〈 | | ′〉

= |〈 ′| 〈 | | 〉|

= ′ ⊕ ⊕ .

′ ◊

◊

=
−

Two-evolution quantum walk on N = 4 graph. The probability matrix elements ′PJ J
quantum

, for two quan-
tum evolutions 2 on the four-node graph read

θ θ θ θ θ

θ θ θ θ

= = =

= + + + +

+ −

P P P P
1
4

sin 1
8

(1 cos cos 4cos cos

cos cos sin sin), (C1)

00 11 22 33

2
0

2
1

2
0 1 0

2
1

2
0

2
1

2
0

P P 1
4

sin ,
(C2)01 23

2
1θ= =

θ= =P P 1
4

sin ,
(C3)02 13

2
1

https://doi.org/10.1038/s41598-019-52275-6

1 0Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

P P 1
4

(1 2cos cos cos)
(C4)03 12 1 0

2
1θ θ θ= = − + .

Surprisingly, in this case the matrix elements do not depend on the (,)0 1φ φ and λ λ(,)0 1 phases. However, the
matrix elements do depend on complex phases when N 8≥ , as can be numerically checked. Note that
P P P P(, , ,)01 02 23 13 depend on θ1 only: the destructive interference between configurations totally eliminates the θ0

dependence, which is difficult to do by simple classical random walks.

Solving for general matrices. Here we discuss the applicability of our quantum random walk algorithm to
general matrices50,51,77,78. Given an arbitrary matrix A, we can obtain = −B 1 A and B P vI J I J I J, , ,= . Then the
linear system x bA→ =

→
 can be solved by performing random walks according to the PI J, transition probabilities

and by multiplying the factor vI J, at each walking step, provided that the linear solver converges to a solution. In
classical random walk algorithms, it has been shown50 that the convergence of the linear solver depends on the
spectral radius ⁎B()ρ of the matrix B* where ⁎B B P P v/I J I J I J I J I J, ,

2
, , ,

2= = , that is, the necessary and sufficient condi-
tion for convergence is B() 1⁎ρ < . We expect a similar condition for quantum random walk algorithms. However,
one should consider the hybrid solver presented in this work as a special-purpose solver, in which the quantum
circuit is designed for a specific matrix problem. The quantum circuits demonstrated in this work show that there
are probability transition matrices that are easy to sample using quantum circuits but difficult using classical cir-
cuits. How to tailor a circuit design along with the relevant parameters suitable for the kind of application we are
looking for is beyond the scope of this work.

Received: 20 June 2019; Accepted: 14 October 2019;
Published: xx xx xxxx

References
 1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition. 10th edn. (Cambridge

University Press, New York, NY, USA, 2011).
 2. Golub, G. H. & Van Loan, C. F. Matrix Computations (3rd Ed.). (Johns Hopkins University Press, Baltimore, MD, USA, 1996).
 3. Saad, Y. Iterative Methods for Sparse Linear Systems. 2nd edn. (Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2003).
 4. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502, https://doi.

org/10.1103/PhysRevLett.103.150502 (2009).
 5. Clader, B. D., Jacobs, B. C. & Sprouse, C. R. Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 250504, https://

doi.org/10.1103/PhysRevLett.110.250504 (2013).
 6. Montanaro, A. & Pallister, S. Quantum algorithms and the finite element method. Phys. Rev. A 93, 032324, https://doi.org/10.1103/

PhysRevA.93.032324 (2016).
 7. Childs, A., Kothari, R. & Somma, R. Quantum algorithm for systems of linear equations with exponentially improved dependence

on precision. SIAM Journal on Computing 46, 1920–1950, https://doi.org/10.1137/16M1087072 (2017).
 8. Costa, P. C. S., Jordan, S. & Ostrander, A. Quantum algorithm for simulating the wave equation. Phys. Rev. A 99, 012323, https://doi.

org/10.1103/PhysRevA.99.012323 (2019).
 9. Berry, D. W., Childs, A. M., Ostrander, A. & Wang, G. Quantum algorithm for linear differential equations with exponentially

improved dependence on precision. Communications in Mathematical Physics 356, 1057–1081, https://doi.org/10.1007/s00220-017-
3002-y (2017).

 10. Dervovic, D. et al. Quantum linear systems algorithms: a primer. arXiv e-prints arXiv:1802.08227 (2018).
 11. Wossnig, L., Zhao, Z. & Prakash, A. Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120, 050502, https://doi.

org/10.1103/PhysRevLett.120.050502 (2018).
 12. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202, https://doi.org/10.1038/nature23474, 1611.09347 (2017).
 13. Ciliberto, C. et al. Quantum machine learning: a classical perspective. Proceedings of the Royal Society of London Series A 474,

20170551, https://doi.org/10.1098/rspa.2017.0551, 1707.08561 (2018).
 14. Deutsch, D. Quantum theory, the church–turing principle and the universal quantum computer. Proceedings of the Royal Society of

London. A. Mathematical and Physical Sciences 400, 97–117 (1985).
 15. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363, https://doi.

org/10.1103/PhysRevE.58.5355 (1998).
 16. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum Computation by Adiabatic Evolution. eprint arXiv:quant-ph/0001106

(2000).
 17. Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Review 50, 755–787,

https://doi.org/10.1137/080734479 (2008).
 18. O’Malley, D. & Vesselinov, V. V. Toq.jl: A high-level programming language for d-wave machines based on julia. In 2016 IEEE High

Performance Extreme Computing Conference (HPEC), 1–7, https://doi.org/10.1109/HPEC.2016.7761616 (2016).
 19. Borle, A. & Lomonaco, S. J. Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems. arXiv e-prints

arXiv:1809.07649 (2018).
 20. Chang, C. C., Gambhir, A., Humble, T. S. & Sota, S. Quantum annealing for systems of polynomial equations. Scientific Reports 9,

https://doi.org/10.1038/s41598-019-46729-0 (2019).
 21. Wen, J. et al. Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing. Phys.

Rev. A 99, 012320, https://doi.org/10.1103/PhysRevA.99.012320 (2019).
 22. Subaşı, Y. B. U., Somma, R. D. & Orsucci, D. Quantum algorithms for systems of linear equations inspired by adiabatic quantum

computing. Phys. Rev. Lett. 122, 060504, https://doi.org/10.1103/PhysRevLett.122.060504 (2019).
 23. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79, https://doi.org/10.22331/q-2018-08-06-79 (2018).
 24. Cao, Y., Daskin, A., Frankel, S. & Kais, S. Quantum circuit design for solving linear systems of equations. Molecular Physics 110,

1675–1680, https://doi.org/10.1080/00268976.2012.668289 (2012).
 25. Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501, https://doi.

org/10.1103/PhysRevLett.110.230501 (2013).
 26. Barz, S. et al. A two-qubit photonic quantum processor and its application to solving systems of linear equations. Scientific Reports

4, 6115, https://doi.org/10.1038/srep06115, 1302.1210 (2014).

https://doi.org/10.1038/s41598-019-52275-6
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1137/16M1087072
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.1038/nature23474
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1137/080734479
https://doi.org/10.1109/HPEC.2016.7761616
https://doi.org/10.1038/s41598-019-46729-0
https://doi.org/10.1103/PhysRevA.99.012320
https://doi.org/10.1103/PhysRevLett.122.060504
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1080/00268976.2012.668289
https://doi.org/10.1103/PhysRevLett.110.230501
https://doi.org/10.1103/PhysRevLett.110.230501
https://doi.org/10.1038/srep06115

1 1Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 27. Pan, J. et al. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89, 022313, https://
doi.org/10.1103/PhysRevA.89.022313 (2014).

 28. Zheng, Y. et al. Solving systems of linear equations with a superconducting quantum processor. Phys. Rev. Lett. 118, 210504, https://
doi.org/10.1103/PhysRevLett.118.210504 (2017).

 29. Lee, Y., Joo, J. & Lee, S. Hybrid quantum linear equation algorithm and its experimental test on ibm quantum experience. Scientific
reports 9, 4778 (2019).

 30. Aaronson, S. Read the fine print. Nature Physics 11, 291–293, https://doi.org/10.1038/nphys3272 (2015).
 31. Childs, A. M. Quantum algorithms: Equation solving by simulation. Nature Physics 5, 861, https://doi.org/10.1038/nphys1473

(2009).
 32. Möttönen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93,

130502, https://doi.org/10.1103/PhysRevLett.93.130502 (2004).
 33. Plesch, M. & Brukner, I. C. V. Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302, https://doi.

org/10.1103/PhysRevA.83.032302 (2011).
 34. Coles, P. J. et al. Quantum Algorithm Implementations for Beginners. arXiv e-prints arXiv:1804.03719 (2018).
 35. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312, https://doi.org/10.1103/

PhysRevA.64.052312 (2001).
 36. Suess, D., Rudnicki, Ł., Maciel, T. O. & Gross, D. Error regions in quantum state tomography: computational complexity caused by

geometry of quantum states. New Journal of Physics 19, 093013, https://doi.org/10.1088/1367-2630/aa7ce9 (2017).
 37. Cramer, M. et al. Efficient quantum state tomography. Nature Communications 1, 149, https://doi.org/10.1038/ncomms1147,

1101.4366 (2010).
 38. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nature Communications 5, 4213, https://doi.

org/10.1038/ncomms5213, 1304.3061 (2014).
 39. Wecker, D., Hastings, M. B. & Troyer, M. Progress towards practical quantum variational algorithms. Phys. Rev. A 92, 042303,

https://doi.org/10.1103/PhysRevA.92.042303 (2015).
 40. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New

Journal of Physics 18, 023023, https://doi.org/10.1088/1367-2630/18/2/023023, 1509.04279 (2016).
 41. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549,

242–246, https://doi.org/10.1038/nature23879, 1704.05018 (2017).
 42. Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning. 1st edn. (MIT Press, Cambridge, MA, USA, 1998).
 43. Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing, https://doi.org/10.5281/zenodo.2562110

(2019).
 44. IBM Q Experience, https://quantumexperience.ng.bluemix.net, Accessed: 12/01/2018 (2016).
 45. Barto, A. & Duff, M. Monte carlo matrix inversion and reinforcement learning. In Proceedings of the 6th International Conference on

Neural Information Processing Systems, NIPS’93, 687–694 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993).
 46. Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A. & Briegel, H. J. Quantum speedup for active learning agents. Phys.

Rev. X 4, 031002, https://doi.org/10.1103/PhysRevX.4.031002 (2014).
 47. Goral, C. M., Torrance, K. E., Greenberg, D. P. & Battaile, B. Modeling the interaction of light between diffuse surfaces. SIGGRAPH

Comput. Graph. 18, 213–222, https://doi.org/10.1145/964965.808601 (1984).
 48. Bravyi, S., Divincenzo, D. P., Oliveira, R. & Terhal, B. M. The complexity of stoquastic local hamiltonian problems. Quantum Info.

Comput. 8, 361–385 (2008).
 49. Bravyi, S. Monte carlo simulation of stoquastic hamiltonians. Quantum Info. Comput. 15, 1122–1140 (2015).
 50. Ji, H., Mascagni, M. & Li, Y. Convergence analysis of markov chain monte carlo linear solvers using ulam-von neumann algorithm.

SIAM Journal on Numerical Analysis 51, 2107–2122 (2013).
 51. Dimov, I. T. & McKee, S. Monte Carlo Methods for Applied Scientists (World Scientific Press, 2004).
 52. Metropolis, N. & Ulam, S. The monte carlo method. Journal of the American Statistical Association 44, 335–341, https://doi.org/10.

1080/01621459.1949.10483310, PMID: 18139350 (1949).
 53. Forsythe, G. E. & Leibler, R. A. Matrix inversion by a monte carlo method. Mathematics of Computation 4, 127–129 (1950).
 54. Wasow, W. R. A note on the inversion of matrices by random walks. Mathematical Tables and Other Aids to Computation 6, 78–81

(1952).
 55. Lu, F. & Schuurmans, D. Monte carlo matrix inversion policy evaluation. In Proceedings of the Nineteenth Conference on Uncertainty

in Artificial Intelligence, UAI’03, 386–393 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003).
 56. Branford, S. et al. Monte carlo methods for matrix computations on the grid. Future Generation Computer Systems 24, 605–612,

https://doi.org/10.1016/j.future.2007.07.006 (2008).
 57. Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569, https://doi.

org/10.1103/PhysRevLett.45.566 (1980).
 58. Negele, J. W. & Orland, H. Quantum many-particle physics (Addison-Wesley, 1988).
 59. Landau, D. & Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics. (Cambridge University Press, New York, NY, USA,

2005).
 60. Hamming, R. W. Error detecting and error correcting codes. The Bell System Technical Journal 29, 147–160, https://doi.

org/10.1002/j.1538-7305.1950.tb00463.x (1950).
 61. Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687–1690, https://doi.org/10.1103/

PhysRevA.48.1687 (1993).
 62. Childs, A. M., Farhi, E. & Gutmann, S. An example of the difference between quantum and classical random walks. eprint

arXiv:quant-ph/0103020 (2001).
 63. Aharonov, D., Ambainis, A., Kempe, J. & Vazirani, U. Quantum walks on graphs. In Proceedings of the Thirty-third Annual ACM

Symposium on Theory of Computing, STOC ’01, 50–59, https://doi.org/10.1145/380752.380758 (ACM, New York, NY, USA, 2001).
 64. Moore, C. & Russell, A. Quantum walks on the hypercube. In Rolim, J. D. P. & Vadhan, S. (eds) Randomization and Approximation

Techniques in Computer Science, 164–178 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002).
 65. Szegedy, M. Quantum speed-up of markov chain based algorithms. In Proceedings of the 45th Annual IEEE Symposium on

Foundations of Computer Science, FOCS ’04, 32–41, https://doi.org/10.1109/FOCS.2004.53 (IEEE Computer Society, Washington,
DC, USA, 2004).

 66. Kendon, V. M. A random walk approach to quantum algorithms. Philosophical Transactions of the Royal Society of London Series A
364, 3407–3422, https://doi.org/10.1098/rsta.2006.1901, quant-ph/0609035 (2006).

 67. Childs, A. Lecture notes on quantum algorithms (2017).
 68. Košk, J. & Bužek, V. Scattering model for quantum random walks on a hypercube. Phys. Rev. A 71, 012306, https://doi.org/10.1103/

PhysRevA.71.012306 (2005).
 69. Shikano, Y. & Katsura, H. Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122,

https://doi.org/10.1103/PhysRevE.82.031122 (2010).
 70. Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: Non-markovian dynamics in open quantum systems. Rev. Mod. Phys.

88, 021002, https://doi.org/10.1103/RevModPhys.88.021002 (2016).

https://doi.org/10.1038/s41598-019-52275-6
https://doi.org/10.1103/PhysRevA.89.022313
https://doi.org/10.1103/PhysRevA.89.022313
https://doi.org/10.1103/PhysRevLett.118.210504
https://doi.org/10.1103/PhysRevLett.118.210504
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/nphys1473
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1088/1367-2630/aa7ce9
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/nature23879
https://doi.org/10.5281/zenodo.2562110
https://quantumexperience.ng.bluemix.net
https://doi.org/10.1103/PhysRevX.4.031002
https://doi.org/10.1145/964965.808601
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1016/j.future.2007.07.006
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1145/380752.380758
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1098/rsta.2006.1901
https://doi.org/10.1103/PhysRevA.71.012306
https://doi.org/10.1103/PhysRevA.71.012306
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/RevModPhys.88.021002

1 2Scientific RepoRtS | (2019) 9:16251 | https://doi.org/10.1038/s41598-019-52275-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 71. de Vega, I. & Alonso, D. Dynamics of non-markovian open quantum systems. Rev. Mod. Phys. 89, 015001, https://doi.org/10.1103/
RevModPhys.89.015001 (2017).

 72. Knuth, D. E. The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer
Programming) (Addison-Wesley Professional, 2005).

 73. Gilbert, E. N. Gray codes and paths on the n-cube. The Bell System Technical Journal 37, 815–826, https://doi.
org/10.1002/j.1538-7305.1958.tb03887.x (1958).

 74. IBM Q devices and simulators, https://www.research.ibm.com/ibm-q/technology/devices/, Accessed: 2019-02-20 (2019).
 75. Cramming More Power Into a Quantum Device, https://www.ibm.com/blogs/research/2019/03/power-quantum-device/, Accessed:

2019-03-21 (2019).
 76. Srinivasan, A., Mascagni, M. & Ceperley, D. Testing parallel random number generators. Parallel Computing 29, 69–94, https://doi.

org/10.1016/S0167-8191(02)00163-1 (2003).
 77. Dimov, I., Dimov, T. & Gurov, T. A new iterative monte carlo approach for inverse matrix problem. Journal of Computational and

Applied Mathematics 92, 15–35, https://doi.org/10.1016/S0377-0427(98)00043-0 (1998).
 78. Halton, J. H. Sequential monte carlo techniques for the solution of linear systems. J. Sci. Comput. 9, 213–257, https://doi.org/10.1007/

BF01578388 (1994).

Acknowledgements
We thank Chia-Cheng Chang, Yu-Cheng Su, Rudy Raymond, and Tomah Sogabe for discussions. Access to IBM
Q systems is provided by IBM Q Hub at National Taiwan University. This work is supported in part by Ministry
of Science and Technology, Taiwan, under grant No. MOST 107-2627-E-002 -001 -MY3, MOST 106-2221-E-002
-164 -MY3, and MOST 108-2628-E-002 -010 -MY3.

Author contributions
C.-C.C. performed the calculations and simulations. S.-Y.S. provided theoretical support and revised the
manuscript. M.-F.W. provided technical support. Y.-R.W. accessed IBM Q systems. All authors discussed and
wrote the paper.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.-C.C. or Y.-R.W.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52275-6
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1002/j.1538-7305.1958.tb03887.x
https://doi.org/10.1002/j.1538-7305.1958.tb03887.x
https://www.research.ibm.com/ibm-q/technology/devices/
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/
https://doi.org/10.1016/S0167-8191(02)00163-1
https://doi.org/10.1016/S0167-8191(02)00163-1
https://doi.org/10.1016/S0377-0427(98)00043-0
https://doi.org/10.1007/BF01578388
https://doi.org/10.1007/BF01578388
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines
	Results
	Encoding state spaces on Hamming cubes.
	Classical random walk.
	Quantum random walk.
	Numerical results.

	Discussion
	Methods
	Gray code basis.
	Derivation of Eq. (11).
	Two-evolution quantum walk on N = 4 graph.
	Solving for general matrices.

	Acknowledgements
	Figure 1 (a) Quantum (or classical) random walk on an undirected graph.
	Figure 2 Discrete-time coined quantum walk circuit for the transition matrix given in Eq.
	Figure 3 Relative errors as a function of the sampling number ns for and matrices.
	Figure 4 Relative errors as a function of the sampling number ns for and matrices, obtained by performing two quantum walk evolutions, .
	Table 1 Relevant parameters for the matrices A of various sizes used for numerical experiments.
	Table 2 Comparison of various algorithms for solving N × N linear systems , with respect to time and space complexities, and Input/Output issues.

