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Abstract

In general, strategies for spatial navigation could employ one of two spatial reference
frames: egocentric or allocentric. Notwithstanding intuitive explanations, it remains unclear
however under what circumstances one strategy is chosen over another, and how neural
representations should be related to the chosen strategy. Here, we first use a deep rein-
forcement learning model to investigate whether a particular type of navigation strategy
arises spontaneously during spatial learning without imposing a bias onto the model. We
then examine the spatial representations that emerge in the network to support navigation.
To this end, we study two tasks that are ethologically valid for mammals—guidance, where
the agent has to navigate to a goal location fixed in allocentric space, and aiming, where the
agent navigates to a visible cue. We find that when both navigation strategies are available
to the agent, the solutions it develops for guidance and aiming are heavily biased towards
the allocentric or the egocentric strategy, respectively, as one might expect. Nevertheless,
the agent can learn both tasks using either type of strategy. Furthermore, we find that place-
cell-like allocentric representations emerge preferentially in guidance when using an allo-
centric strategy, whereas egocentric vector representations emerge when using an egocen-
tric strategy in aiming. We thus find that alongside the type of navigational strategy, the
nature of the task plays a pivotal role in the type of spatial representations that emerge.

Author summary

Most species rely on navigation in space to find water, food, and mates, as well as to return
home. When navigating, humans and animals can use one of two reference frames: one
based on stable landmarks in the external environment, such as moving due north and
then east, or one centered on oneself, such as moving forward and turning left. However,
it remains unclear how these reference frames are chosen and interact in navigation tasks,
as well as how they are supported by representations in the brain. We therefore modeled
two navigation tasks that would each benefit from using one of these reference frames,
and trained an artificial agent to learn to solve them through trial and error. Our results
show that when given the choice, the agent leveraged the appropriate reference frame to
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solve the task, but surprisingly could also use the other reference frame when constrained
to do so. We also show that the representations that emerge to enable the agent to solve
the tasks exist on a spectrum, and are more complex than commonly thought. These rep-
resentations reflect both the task and reference frame being used, and provide useful
insights for the design of experimental tasks to study the use of navigational strategies.

Introduction

Spatial navigation and its underlying neural mechanisms have been the subject of intense
research for several decades. Broadly speaking, spatial navigation can be achieved using strate-
gies that rely on one of two reference frames. An egocentric navigation strategy chooses
actions in a reference frame centered on the agent, e.g. turn left, then go forward. By contrast,
in an allocentric strategy, actions are referenced in the external space based on stable land-
marks in the environment, e.g. go north, then turn west [1, 2]. Much research has been dedi-
cated to the dissociation of the two strategies, since they are impacted differently by aging and
disease [3-6], and due to interest in uncovering parallel memory systems that support spatial
navigation [7]. In general, there are two ways to design tasks to behaviorally differentiate strat-
egy use. Some tasks, such as the classic T-maze can be solved by animals using either an ego-
centric or an allocentric strategy. The presence of distal and intramaze cues enables testing for
preferred strategy by manipulating these cues [8]. On the other hand, other tasks are expressly
designed to elicit the use of a specific strategy. Among the most well-known of these tasks is a
standard behavioral test of spatial memory—the Morris Water Maze and its dry variant, the
cheese board maze [9, 10]. Although this task is intended to evoke an allocentric strategy, there
is evidence that some animals can solve it using an egocentric view matching strategy, espe-
cially in the early stages of learning [11].

While the studies mentioned above are centered on the behavioral dissociation of the two
strategies, other studies focus on identifying the brain regions that support the use of these
strategies. Lesion studies in animals are frequently used to isolate brain areas responsible for
the use of either strategy. One of the most well-known findings is that impairing the rodent
hippocampus results in a deficit in the use of allocentric strategies in the Morris Water Maze
[12-14]. However, the neural substrates of egocentric navigation strategies have received less
attention, with the dorsal striatum [14, 15] and thalamus [16] being implicated. Interestingly,
the striatum has also been implicated in the use of allocentric strategies, and the hippocampus
in the use of egocentric strategies [14]. This shows that while these behavioral and lesion stud-
ies attempt to separate the use of the two strategies, in practice, they overlap, and real world
navigation is likely a combination of the two, switching between them as required. This
dynamic interplay between navigation strategies massively complicates their study.

A key question in neuroscience is how the use of allo- and egocentric strategies are related
to spatial representations in the brain. At first glance, it seems intuitive to postulate that ego-
and allocentric strategies are supported by ego- and allocentric neural representations, respec-
tively. For instance, the allocentric coding of spatial locations by place cells [17] might drive
allocentric navigation strategies and egocentric bearing-by-distance tuning to a visibly marked
goal [18] might drive egocentric navigation strategies. However, there are three major issues
with this view.

Firstly, both types of spatial representations are found in the hippocampus, which accord-
ing to numerous studies, including some cited above, is thought to be the locus of the allo-
centric cognitive map. Similarly, spatial representations in the surrounding areas of the
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hippocampus are mixed and include, for instance, allocentric grid cells [19] and border cells
[20] in medial entorhinal cortex as well as egocentric representations of boundaries and
objects in lateral entorhinal cortex [21]. These results suggest that the mapping of allo- and
egocentric strategies to allo- and egocentric neural representations might be less tight than
commonly postulated. Secondly, many neural recordings, such as those from place cells in the
hippocampus, come from experiments where animals are not actually engaged in a concrete
navigation task. Rather, they come from sessions where the animals are engaged in random
foraging, or from runs on linear tracks where they are over-trained. As a result, it is difficult, if
not impossible, to link the neural representations recorded from these experiments to the use
of concrete navigation strategies. The importance of the task is underscored by evidence that
spatial representations are modulated by elements of the task. In the Morris Water Maze, for
instance, place cells tend to be clustered around the goal location [22, 23]. Similarly, goal loca-
tion modulates spatial representation in bats, where cells in CA1 encode egocentric angles and
distance to the goal [24]. Other studies have shown that the hippocampus represents task-rele-
vant variables also in nonspatial domains [25, 26].

Finally, neural representations themselves are not as clearly categorized as ego- or allo-
centric as was once thought. While place cells have been thought to be largely invariant to
head direction of the animal, which is coded by a different set of head direction cells [27],
some recent studies in virtual reality and physical environment have also shown that a majority
of CA1 neurons are jointly modulated by spatial location and head direction [28, 29]. A poten-
tially more fruitful approach might be to acknowledge that for neural representations and
strategies, the distinction of allo- and egocentric is a gradual, and not a categorical property.

Here we begin to address some of the issues discussed above with our computational model
that uses deep reinforcement learning to solve two distinct behavioral tasks: guidance and aim-
ing [30] (Fig 1A) using allocentric and egocentric navigation strategies (Fig 1B). In guidance,
the agent must navigate to a fixed unmarked goal in its environment using stable landmarks to
guide its actions. In aiming, the goal is marked by a visible cue, which the agent approaches
during navigation. Our hypothesis is that these two tasks should evoke very different naviga-
tion strategies and show a distinct relationship to the spatial representations that emerge in the
agent.

Materials and methods
Tasks and simulation environments

All simulations were carried out in virtual environments using the CoBeL-RL (Closed-loop
simulator of complex behavior and learning based on reinforcement learning and deep neural
networks) modeling framework [31]. In the guidance task, the agent started from a random
location and had to navigate to a fixed, unmarked goal location within a square environment
of size 2.75m x 2.75m, unless otherwise specified. Distinct colors on the walls acted as distal
landmarks to aid in localization. In the aiming task, we used a red cylinder as a salient cue to
which the agent had to navigate within the same square environment used in the guidance
task. The goal location and the cue were moved to a new random location every 10 trials, and
the agent started every trial at a randomly chosen position. In both tasks, the agent received a
positive reward of +1 upon successfully reaching the goal location. In order to encourage the
agent to take shorter paths, we also assigned a negative reward of -1 for each step taken. When
the agent attempted to walk into a wall or corner, it simply remained in place and the action
was penalized with a -1 negative reward.

For both tasks, we trained the agent for a total of 4000 trials unless otherwise stated. A trial
terminated when the agent reached the goal location, or after 100 time-steps, whichever
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Fig 1. Tasks and navigation strategies. A, Schematic of the guidance task. The goal is unmarked, but fixed in space
and can be identified in relation to stable landmarks. B, Schematic of the aiming task. The goal position changes
frequently and is marked by a visual cue. C, Navigation strategies. Following the same sequence of actions using an
allocentric navigation strategy leads to the same final location irrespective of the starting heading direction. However,
when using an egocentric navigation strategy the same action sequence will lead to different final locations depending
on the initial heading direction.

https://doi.org/10.1371/journal.pcbi.1010320.g001

occurred first. The agent received as naturalistic input 48 x 12 pixel RGB images generated by
the virtual environment and had a 240 degree field of view in all simulations (Fig 2A).

Deep reinforcement learning model based on naturalistic visual inputs

We frame spatial navigation as a reinforcement learning problem (for a review of this
approach, see [32]. In reinforcement learning, the agent must learn by trial and error while
interacting with its environment. At each time step ¢, the agent finds itself in a current state s,
and chooses an action a,. We use an -greedy policy to select the action and handle the explo-
ration-exploitation trade-off. That is, at each time step, the agent chooses a random action
with probability € (¢ = 0.3 in all simulations), and otherwise chooses the action a; that yields
the highest value to the agent. The action causes feedback from the environment in the form of
a scalar reward r, to the agent and a transition to the next state s;,;.
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Fig 2. Schematic of the Deep-Q network. A, Visual inputs from the environment are processed by the CNN layers
and then to a fully connected layer with 50 units (green circles) from where the spatial representations are analysed and
classified. The output layer consists of allocentric (grey circles) and egocentric (red circles) action units in the full
model, and only ego- or allocentric units in the constrained models. B, Schematic of the allocentric action space. C,
Schematic of the egocentric action space.

https://doi.org/10.1371/journal.pcbi.1010320.9002

In reinforcement learning, the agent adapts its behavior to maximize the future cumulative
discounted reward. To this end, we adopted the Q-learning algorithm [33], where the agent
learns a state-value function Q(s, a), which is updated according to the following rule.

Qs a,) «— Qs a,) +afr, +7 maax Q(si1,a) — Q(s;,a,)] (1)

Traditional Q-learning maintains a table of state-action pairs along with the associated Q-
value. This however requires making some assumptions about how the environmental states
are encoded. In order to keep these assumptions about the input representations to a mini-
mum, we used naturalistic visual inputs as described above. Due to the large size of the state
space, it was necessary to use an artificial neural network as a function approximator (Fig 2A).
This also enables us to analyze how the visual input is processed to give rise to spatial represen-
tations. The network consisted of a convolutional neural network (CNN) [34] that had three
layers with 32, 64 and 64 filters respectively. Each filter had a size of 5 x 5. The CNN was fol-
lowed by a fully connected layer with 50 units. The output layer consisted of action units,
where each unit corresponded to an available action. We used rectified linear unit [35] as acti-
vation function throughout the network, except for the output layer, which used a linear acti-
vation function.

We used the Deep Q-Network (DQN) algorithm [36] to train the network. We applied dou-
ble-Q [37] and dueling network [38] modifications to stabilize the training. As with most deep
reinforcement learning algorithms, we used experience replay with a buffer size of 3000 experi-
ences to train the network. For all simulations we used a learning rate of o = 0.001 and
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discounting rate of y = 0.99. We also applied a dropout rate of 0.35 to the fully connected layer
in all simulations, unless otherwise specified.

Navigation strategies and action spaces

We used allo- and egocentric navigation strategies to solve both tasks. The strategies were real-
ized in practice using the agent’s action space. Because the action space defines the reference
frame in which navigation takes place, in our model, we view the strategy as being identical to
the action space used. While it is in principle possible to define strategy use differently, we
believe that equating it to the action space allows for a straightforward and direct interpreta-
tion of the results, as well as a clear separation of the strategy from the spatial representations
that underpin it.

The action space was the set of all actions available to the agent. In the allocentric action
space, the agent could either move by a fixed distance in one of six allocentric directions, or
rotate in place to one of six head directions defined in allocentric coordinates (e.g. face 90
degrees due North). Translations and heading directions were constrained such that the agent
moves on a hexagonal grid (Fig 2B). That means that the six different movement and heading
directions are aligned with the main axes of the grid, each 60 degrees apart, and one movement
takes the agent from current node to a neighboring node on the graph. Furthermore, the goal
is always placed on a node of the grid to ensure that it can always be reached by the agent
despite its motion. By contrast, in the egocentric action space, the agent could choose to move
forward from its current position by a fixed distance or turn in place by a fixed angle of 60
degrees either to the left or right of the current heading direction, similarly corresponding to
navigating on the same hexagonal grid (Fig 2C). The egocentric agent must thus successively
make three left or right turns to change its orientation by 180 degrees and turn around
completely.

In the full model, when both action spaces are available to the agent, there would be a mis-
match in the number of physical actions between the allocentric (12 actions) and egocentric
strategy (3 actions). To avoid potential biases due to this mismatch, we included four copies of
each egocentric action in the full model to equalize the number of available actions between
the two action spaces. During training, credit was assigned only to the particular copy of the
action that was chosen, not to all four copies of that action. We assessed whether this design
choice made learning in the egocentric agent noisier by comparing learning curves in both
tasks using either single or multiple copies of each action and found no discernible effects (S1
Fig). In the purely allocentric and egocentric variants of the model, where the action spaces do
not compete, only one copy of each action was available to the agent.

Analysis of spatial representations in the network

Once the agent had learned the tasks, we computed spatial activity maps for each unit in the
layer before the action selection layer (Fig 2A). The spatial activity maps were computed by
partitioning the environment into a 25 x 25 grid and recording the activation of the units at
each point on the grid and applying a Gaussian filter with a standard deviation of 2. This was
done for six different head directions. For the aiming task, we also computed activity maps by
placing the agent at the center of the environment and moving the goal cue on a 25 x 25 grid.
Six separate maps were computed this way for six different head directions. This enabled us to
identify the preferred field of activity of a unit relative to the position of the cue, much like a
receptive field.

Based on the spatial activity maps, we classified the units into place cells, egocentric vector
cells, head-direction modulated cells, and view-selective cells. To do so, we first identified
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whether the spatial activity map of a unit had a localized field (active in <50% of the environ-
ment) by finding the peak of activation and marking the area where the activation fell to

<15% of the peak. If the unit had a localized firing field whose field center did not change loca-
tion (within 5% of arena size) with head direction, it was identified as a place cell. If the unit
had a localized field whose center was always at a fixed distance and direction from where the
agent was facing, it was classified as an egocentric vector cell. We also identified direction-
dependent firing fields, which had localized firing fields that were modulated by head direc-
tion, as well as view-selective units that were only active in a single head direction or a subset
of head directions, corresponding to a particular view seen by the agent. If the cell showed nei-
ther localized nor directional firing fields, it was classified as “other” (S2 Fig).

For both aiming and guidance, we also tested the agent’s ability to generalize by using train-
ing and test sets. For guidance, the agent was trained using a subset of all possible start loca-
tions, and had to navigate to the goal from novel start locations in the test phase. In aiming,
the training set was composed of a subset of goal locations. The agent was then tested on novel
goal locations to gauge generalization. The training set consisted of 80% of all possible start
locations for guidance, and 80% of all possible cued goal locations for aiming. The remaining
20% unseen start and goal locations were used as test sets for guidance and aiming respectively.
The assignments were made randomly for each agent before training started.

A further set of environmental manipulations was designed to increase the task difficulty
specifically for the non-preferred strategy. For guidance, we used three different arena sizes:
the arena used in all regular simulations (2.75m x 2.75m) and two larger environments of size
4m x 4m and 5.5m X 5.5m. We hypothesized that the larger the environment is, the larger the
difference in difficulty of the task would be for the egocentric strategy compared to the allo-
centric strategy, because the views would differ more from one another in larger
environments.

In the aiming experiment, we gradually removed spatial information, which makes it
harder to navigate using the allocentric strategy. In the high spatial information case which
was used in all regular simulations, the environment had walls and point lights, which are both
sources of spatial information. In the medium spatial information case, we removed walls,
leaving only point lights as sources of spatial information. Finally, in the low spatial informa-
tion case, the environment had no walls or point lights, and was instead only lit by a uniform
distant light source.

Next, we used network manipulations to identify which units were critical to the perfor-
mance of the agent. In a test phase, we first disrupted one unit at a time selectively by injecting
noise into that unit. The noise was drawn from a normal distribution, scaled by the maximum
activation in the layer. We then tested the agent for 25 trials on its ability to find the goal. We
also disrupted populations of units classified by the type of spatial representation in a similar
manner.

Results

We defined two behavioral tasks (guidance and aiming) and two action spaces corresponding
to allocentric and egocentric navigation strategies. Our deep reinforcement learning model
learned to solve both tasks using only high-dimensional naturalistic visual inputs.

Choice of navigation strategy emerges from task demand

We first trained an agent with both action spaces, i.e. navigation strategies, without any con-
straints to determine whether a preferred strategy emerged naturally for each task. The agent
learned both tasks efficiently (Fig 3A). The agent had the option of acting in accordance with
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Fig 3. Task demands drive choice of navigation strategy and emerging spatial representations in the full model. A
Example trajectories before and after learning in the full model for guidance and aiming. At the end of training, agents
have learned to take direct paths to the goal. Trajectories are smoothed for visualization. B, A clear preference for allo-
and egocentric actions emerge for guidance and aiming in the full model, respectively. Dark lines represent means over

15 simulations. Shaded regions represent the standard deviations.

https://doi.org/10.1371/journal.pchi.1010320.g003

an egocentric or allocentric strategy, i.e., the agent could choose to use only egocentric or allo-
centric actions, respectively. Alternatively, the agent could choose to use a mixture of actions.
We found that, when solving the aiming task, the agent preferentially chose actions in an ego-
centric reference frame, whereas when solving the guidance task, the agent preferentially chose
actions in an allocentric reference frame (Fig 3B). As mentioned in the Introduction, an allo-
centric reference frame is intuitively more useful for guidance, because it involves navigating
to a fixed location in space based on stable landmarks. In this setting, every configuration of
landmarks can be assigned to an allocentric location within the environment. The egocentric
strategy, on the other hand, is better suited to aiming due to the lack of a relationship of stable
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landmarks to the goal position, which is instead marked by a cue whose position changes from
session to session. In this situation, a parsimonious strategy would be to base navigation deci-
sions on the position of the cue with respect to oneself [39]. Our result suggests that for a given
spatial navigation task, there is a preferred navigation strategy that is better matched to the
task’s computational demands.

Spatial representations are modulated by task in addition to navigation
strategy

We next examined the spatial representations underlying the strategy in each task by plotting
spatial activation maps for each unit in the layer preceding the output layer. We found that ste-
reotypical spatial representations (place-like and vectorial) were present in both guidance and
aiming. When the agent solved guidance, place cell-like representations emerged (Fig 4A), and
covered the whole environment (Fig 4B). When the agent solved aiming, egocentric vector-
like representations emerged (Fig 4C). In both tasks, we also found a number of head direction
modulated cells, consistent with experimental results [18, 28, 29, 40]. We also found that the
place cells tended to cluster around the goal location (Fig 4B) similar to what has been
observed experimentally [22, 23]. In addition to place and vector cells, we also observed a
number of other types of responses including head-direction modulated cells, and those that
were active only in a subset of viewing angles (Fig 5) in the full model.

Having established that there is a preferred navigation strategy for each task and having
examined the emerging spatial representations, we next analyzed how tight the relationship
between task, navigation strategy, and spatial representation is. To do so, we constrained our
model to use either the preferred or nonpreferred strategy alone to learn both tasks, and exam-
ined the differences in learning performance and the emerging spatial representations. In
guidance, the learning curves were similar using either strategy, but there was a small differ-
ence in the asymptotic performance, with the agent performing slightly better using an allo-
centric strategy (Fig 6A). In aiming, the egocentric strategy learned the task much more
quickly than the allocentric strategy (Fig 6A). It stands to reason that using the egocentric
strategy is more efficient to learn aiming, because it requires learning a set of stimulus-
response pairs for each specific view. By contrast, using an allocentric strategy requires com-
bining different egocentric views corresponding to a single spatial location and using that
knowledge to navigate [41]. This relative ease of using an egocentric strategy must be balanced
with the appropriateness of using an egocentric or allocentric strategy for a given task, based
on the type of information that is available in the environment. Indeed, allocentric memory
deficits have been observed in subjects with mild cognitive impairment (MCI). For instance,
Weniger et al [42] studied subjects’ navigational abilities in a virtual reality park and maze, and
found that participants with MCI were impaired in their ability to navigate in both environ-
ments as compared to controls. They also found that patients with MCI were strongly
impaired in their performance on neuropsychological tests of allocentric memory. While the
navigation deficits in the park seem to be associated with this impaired allocentric memory,
the deficits in the maze are harder to interpret, since many participants were unable to even
find a navigation strategy in this environment, again underscoring the importance of finding
an appropriate strategy for a given task.

Next, we investigated the spatial representations that emerged during training in the con-
strained models. If they were modulated by the navigation strategy alone, the representations
should remain relatively stable across tasks, if the same strategy was used to solve them. If, on
the other hand, spatial representations were modulated by task alone, they should be similar
for different solutions of the task, regardless of the strategy. We found that navigation strategy
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Fig 4. Stereotypical spatial representations emerging in the guidance and aiming tasks. A, Sample place cell-like
responses in guidance using an allocentric strategy. Larger firing field maps show head-direction averaged responses of
the unit, and the six adjacent smaller maps show the corresponding response for individual head directions spaced 60
degrees apart. B, Place fields cover the entire arena, but tend to cluster around the goal location. Left, location of place
field centers in the arena. Right, corresponding normalized sum of firing rate maps of all place-like cells. The entropy
of the distribution corresponding to the place cell coverage is H = 9.035 (for a uniform distribution H = 9.288) C,
Sample vector-like representations in the aiming task using an egocentric strategy from our model, showing tuning to
both the egocentric direction (ECD) and distance to the cue that marks the goal. D, Left, Two sample vector-like
representations in the aiming task using an egocentric strategy from our model. Right, experimentally observed
representations of ECD in mice navigating to cue lights in the environment (reproduced with permission from [18]).

https://doi.org/10.1371/journal.pcbi.1010320.9004

alone did not account for spatial representations (Fig 6B). When using an allocentric strategy
to learn guidance, the agent developed stereotypical place cell-like responses, however, the
same strategy lead to few allocentric responses when learning aiming. Likewise, when using an
egocentric strategy to learn aiming, egocentric vector-like responses constitute the majority of
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outcome of each is represented by a circle. Error bars represent the standard deviation.

https://doi.org/10.1371/journal.pcbi.1010320.9005

spatial representations, when using the same strategy, but vector-like responses did not not
persist when learning guidance. Conversely, task alone did not account for spatial representa-
tions either (Fig 6B). Learning aiming with an allocentric strategy yielded far fewer egocentric
responses than with an egocentric strategy, and solving guidance with an egocentric strategy
yielded no place-cell-like responses. Hence, our simulations revealed that neither navigation
strategy nor task demands alone determine the evolution of spatial representations, but rather
a combination of the two (Fig 6B).

Another significant aspect of allocentric place-cell-like responses in the model is their rela-
tively slow emergence during learning in comparison to egocentric responses. We hypothesize
that this is because different egocentric views must be associated with the same spatial location
in order for an allocentric representation to be generated and that this process requires a larger
number of learning trials than learning view-dependent behaviors. We also see a significant
number of head-direction modulated responses and view-selective responses across all task-
strategy combinations, consistent with experimental recordings [28, 29, 40].

Spatial representations contribute to generalization of learned behavior

If the agent is able to solve the guidance task without allocentric place-like representations and
even the learning speeds are similar (Fig 6A), why do the allocentric strategy and representa-
tions emerge preferentially for the guidance task in the full model? It seems unlikely that these
effects are driven by the slightly better asymptotic performance of the allocentric strategy.
Instead, we hypothesize that the agent using the egocentric strategy essentially memorizes a
sequence of actions based on sensory snapshots for different egocentric perspectives. This is
inefficient for navigating in a stable, unchanging environment and does not lend itself well to
generalization. We therefore test generalization in both guidance and aiming. In order to test
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https://doi.org/10.1371/journal.pcbi.1010320.9g006

generalization in guidance, the agent was trained using a subset of all possible start locations,
and had to navigate to the same unmarked goal from novel start locations in the test phase.
For testing generalization in aiming, the agent was trained on a subset of cued goal locations
and had to navigate to novel goal locations in the test phase. Furthermore, we hypothesize the
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disadvantage of the egocentric strategy should become more pronounced as the size of the
arena increases, since action sequences that have to be memorized become longer, and the
chances of reaching the goal purely by chance are reduced. On the other hand, since the allo-
centric strategy leads to learning a more general solution and allow the agent to navigate more
flexibly from different starting points to the goal in the guidance task. Interestingly, learning
during training is not affected much by arena size for either strategy (Fig 7A). However, the
generalization performance for the egocentric strategy indeed deteriorates more than for the
allocentric strategy as the arena size increases (Fig 7B). Our results suggest that learning alone
is not a reliable marker for strategy use, and examining generalization performance might be
necessary to effectively determine if the strategy being used is allocentric or egocentric.

Conversely, we hypothesize that in aiming the allocentric strategy can memorize the action
sequence to a visual cue based on location-response associations. Therefore, we expected that
if aiming was tested with novel goal locations that had not been presented during training,
generalization would be inferior for the allocentric strategy compared the egocentric strategy.
Furthermore, if we progressively removed distal spatial information, making it more difficult
for the agent to localize itself using landmarks, the allocentric strategy would have a harder
time learning the task and generalize even less. Indeed, learning and generalization perfor-
mance show a sharp decline in the allocentric strategy as spatial information is removed in our
computational simulations (Fig 7B and 7D). By contrast, since the egocentric strategy learns a
more general approach based on vector-based representations of the goal, learning perfor-
mance is independent of distal spatial information (Fig 7C). Strikingly, the egocentric strategy
actually generalizes better when less spatial information is present in the environment (Fig
7D). This could be due to less confounding information in the visual input leading to the
emergence of better representations of the informative cue.

Finally, another method for testing the generalization hypothesis is to study how regulariza-
tion, in the form of dropout, affects the proportion of place-cell-like responses in the network
in the guidance task. In machine learning, dropout is a method where a certain fraction of
units, the dropout rate, is chosen at random and inactivated during a learning trial. That is, the
dropped units neither participate in generating the network output, nor in the subsequent
error-driven learning. Increasing the dropout rate forces the network to look for more general
solutions. In our model of guidance, we found that it increases the number of place-cell-like
representations in our simulations, the most were found in a network with 50% dropout (Fig
7E). Learning became unstable at higher dropout rates. This is similar to findings from other
computational models that show that regularization is crucial to the emergence of stereotypical
spatial representations [43, 44]. We however do not observe a similar effect for vector-like rep-
resentations in aiming, where the proportion of these units remains stable with changing drop-
out. We hypothesize that this is due to a ceiling effect caused by the fact that a large number of
vector-like representations are already present even at zero dropout rates, presumably because
these representations are critical to solving aiming with an egocentric action space.

In conclusion, our results confirm that using the preferred strategy for each task results in
more general solutions to the task, which have greater flexibility when task parameters change.

Causal influence of spatial representations on navigation behavior

Having gained a better understanding of the important role that place-like cells and egocentric
vector cells play in solving guidance and aiming, respectively, we next set out to study the
causal role that the different cell types play in driving behavior. Specifically, we asked whether
the stereotypical spatial representations indeed play a special role in the navigation task, and
what, if any role the other types of spatial representations play. To this end, we selectively
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https://doi.org/10.1371/journal.pchi.1010320.9g007

disrupted different types of units in the network by injecting varying levels of noise. We did
this in one of two ways. First, we injected noise into one unit at a time, and measured the per-
formance of the agent in a test phase. Second, we injected noise into entire populations of the
same kind of units, for instance, we injected noise into all place-cell-like units at the same time
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(for details, see Methods). As expected, the more noise is introduced into the network the
more the performance of the agent deteriorates.

In allocentric guidance, disrupting place-cell-like units, either individually or as a popula-
tion, has the greatest effect on the agent’s performance (Fig 8). Thus, each individual place cell
is important for allocentric navigation and serves as a basis for the agent to localize itself. In
aiming, disrupting single units regardless of which type has a catastrophic effect on
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performance (Fig 8A). So, individual vector cells are crucial for performance, but not more so
than other unit types. This effect could be due to an overlap in function between vector cells,
head direction modulated cells, and view selective cells, as they are all egocentric in nature. A
similar trend is observed while disrupting populations in aiming (Fig 8B).

In conclusion, while place-like units appear to play a relatively more important role in task
performance than other unit types in guidance, they do not support behavior in isolation, and
multiple unit types play an important role in task performance in aiming.

Discussion

In our computational model, we looked at navigation through the lens of deep reinforcement
learning and studied the interplay of task, navigation strategy, and spatial representations. We
defined two ethologically valid tasks for mammals, namely, guidance and aiming, and used
our model to learn them using allocentric and egocentric strategies. This allowed us to estab-
lish a preferred strategy for each task, which aligns with experimental results [45]. Strikingly,
we find that when constrained to do so, our model is able to learn either task using the nonpre-
ferred strategy as well. We computed spatial activation maps for the units in the model and
found that our model develops both allocentric place-cell-like representations and egocentric
vector like representations. We found that the emergence of specific types of representations
depends on the task as well as the navigation strategy. We found that although the model can
learn both tasks using the nonpreferred strategy, using the preferred strategy confers the bene-
fit of better generalization. Our model predicts that in tasks where it is possible to use stable
landmarks to navigate, animals that primarily use an allocentric strategy would develop more
place cells as compared to animals that base their actions on an egocentric strategy, and would
also be able to generalize better.

Relationship to coordinate transformations in the brain

To use an allocentric cognitive map, the brain must implement coordinate transformations,
because perceptual inputs are inherently egocentric, changing with eye, head and body posi-
tion, and motor outputs are also egocentric in nature [46, 47]. Hence, these egocentric
inputs must first be transformed into the allocentric reference frame that the map employs,
and then back to egocentric coordinates for motor commands. In our model, the visual
inputs are indeed egocentric in nature, albeit somewhat simplified compared to navigating
animals, because we do not model independent eye and head movements. In the cases
where allocentric representations emerge in the model, there is an implicit coordinate trans-
formation on the input side, because the model aggregates the different egocentric views at
a single location into an allocentric representation of that location. By contrast, there are no
coordinate transformations on the output pathway of our model. Even though we call the
outputs of our model “actions”, they are not motor commands, but rather higher-level
navigation decisions, which have to be converted into motor commands by a downstream
system. When using the allocentric “action space”, such a downstream system would have
to explicitly or implicitly implement coordinate transformations. However, even the ego-
centric actions outputted by our model have to be translated by a downstream system

into motor commands. This is because ultimately all navigation decisions have to be trans-
formed into the coordinates of the relevant muscles for movement. This means that the
same higher level navigation decisions may require very different coordinate transforma-
tions based on the current posture and navigation method (“turn left” on a bicycle vs. while
walking).
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Implications for experimentally studying spatial navigation strategies

Many studies have shown that allocentric representations and navigation strategy are more
susceptible to disruption by aging and disease compared to egocentric strategy use [3-6]. For
example, older humans perform worse in spatial cognition tasks in real world [48, 49] and vir-
tual environments [50, 51]. Decline in allocentric strategy use in preclinical Alzheimer’s dis-
ease [52, 53], as well as in other pathologies have also been observed [54-56]. Thus, properly
distinguishing the use of these strategies in behavioral experiments is of paramount
importance.

Why is the allocentric strategy more vulnerable to disruption by age and disease? It is possi-
ble that the allocentric strategy is cognitively more demanding, thus general cognitive decline
associated with age is more likely to affect the allocentric strategy first. This is also reflected in
our model in the fact that the agent generally takes longer to learn the allocentric strategy than
the egocentric strategy.

It has also been suggested that traditional measures for determining the navigation strategy
use are insufficient, and more fine-grained behavioral measures are needed [57]. Furthermore,
seemingly allocentric tasks can also be solved using an egocentric view-matching strategy [11].
This is evident in our model as well, since we find that both tasks can be solved using either
navigation strategy. Thus, as Rogers et al [57] suggest, a simple analysis of the behavior on the
learned task might not be sufficient to determine strategy use. Our results suggest that in addi-
tion to developing more fine-grained behavioral analyses, testing for generalization perfor-
mance can help in pinpointing strategy use. Thus, when designing behavioral experiments that
aim to dissociate the use of allocentric and egocentric strategies, it is important to design
probe trials that not only test for cue use, but also for generalization. In support of our predic-
tion, Rinaldi et al [58] found that generalization and strategy use are correlated in a cross-maze
task.

Do allocentric and egocentric representations overlap in the brain?

Much debate surrounds whether allocentric and egocentric representations exist in parallel
and separate neural systems, either interacting to support behavior (interacting model), inde-
pendently supporting behavior without interaction (non-interacting model), or are largely
overlapping, with purely allocentric and purely egocentric representations at opposite ends of
a spectrum (overlapping model) (for a discussion of these models, see [39]. Another school of
thought holds that the brain contains only egocentric reference frames, and that allocentric ref-
erence frames are simply a combination of several egocentric ones or the result of coordinate
transformations [41].

Even though we analyzed and classified spatial representations in an abstract reinforcement
model, we believe that these representations can be mapped to those in the brain. Nevertheless,
we refrain from assigning concrete neural substrates to the different representations that arise
in our model, because these representations are also distributed in the brain. Here, we high-
light some neural representations that share similar properties with the representations emer-
gent in our model. Firstly, place-like-units in our model correspond to the allocentric place
cells that are found in the hippocampus [59]. Similar place-like units have also been found in
the anterior cingulate cortex [60], subiculum [61], and entorhinal cortex [61, 62]. The head
direction modulated cells in our model show localized firing fields, but are sensitive to head
direction, like place cells in CA1 that are modulated by the head direction of the animal [28,
29]. Units in the hippocampus of Egyptian fruit bats and big brown bats show conjunctive sen-
sitivity to location and head direction when the bats are engaged in crawling behavior [63],
similar to the units that were classified as “partially active” in our model. These units also show
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similarities to hippocampal cells in macaques which are selective to the monkey’s heading
direction and position [64]. Finally, the vector-like representations share properties with the
egocentric cue direction cells discovered by [18] in the parietal cortex while engaged in an aim-
ing task.

Our model supports a theory of overlapping neural representations that form a continuum,
since purely allocentric or purely egocentric representations never emerge in isolation in our
model. Rather, both tasks invoke a mixture of the two types of representations, with the pre-
dominance of one or the other type mediated by strategy use. Indeed, we can artificially
manipulate the tasks to tune the level of predominance, but most ethologically valid situations
probably engage both representations and strategies to varying degrees.

Our conclusion might seem at odds with the long-standing suggestion that the hippocam-
pus is the neural substrate of the allocentric cognitive map [9, 13, 17, 59]. However, there is
now increasing evidence that shows that egocentric representations are also present in the hip-
pocampus and other regions of the medial temporal lobe [18, 24, 29]. It is also worth pointing
out that place cell recordings from the hippocampus on linear tracks and star mazes are pre-
dominantly unidirectional in nature [40, 65], which could imply an egocentric aspect to these
representations as well. These findings are consistent with our results that suggest that the use
of an egocentric reference frame and egocentric representations are ubiquitous compared to
their allocentric counterparts. This is evidenced by the fact that our model can use the egocen-
tric strategy to learn both tasks well, and egocentric representations arise in all task-strategy
combinations, while allocentric representations emerge only in the particular combination of
guidance and allocentric strategy use.

In a similar vein, our work also adds some perspective to the place vs. response literature
(reviewed in [66]). Response based navigation is inherently egocentric in nature and typically
develops with repeated experiences of the same route [67-70]. The dorsal striatum and specifi-
cally the caudate nucleus have been implicated in the development of these habitual responses
[69]. While the tasks used in these dissociation studies indeed evoke the use of an allocentric
or egocentric reference frame and can pinpoint the corresponding neural basis, there is an
added layer of complexity because these reference frames are also being used at distinct
levels—a more abstract, cognitive level associated with the place strategy, and the rote, habitual
level associated with the response strategy. We believe that our study brings attention to the
relatively understudied use of the egocentric reference frame in higher-level navigation plan-
ning and decisions, which might still depend on the hippocampus, thus leading to conflicting
experimental evidence. This might explain why, for relatively simpler tasks, hippocampal ani-
mals are still able to use egocentric navigation strategies, but for more complex tasks, lesions to
the hippocampus seem to affect both strategies [14]. Experimental results are also consistent
with the suggestion that while regions at the lower, specialised levels of the navigation system
are likely modular, such as the coordinate transformation system in the retrosplenial cortex
[47] and habitual responses in the dorsal striatum [69], there may be less modularity in the
higher, more general levels than previously assumed. We liken our model to an abstract
higher-level navigation system which would need to be flexible and lend itself well to generali-
zation, including being able to use and represent both frames of reference depending on
the task.

Reinforcement learning as a model for navigation

Reinforcement learning provides a natural framework for understanding navigation, since
they are both goal-driven and must deal with uncertainty while balancing using known routes
with exploring novel ones. Reinforcement learning also integrates sensory inputs from the
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environment, behavior, and rewards into a single closed loop, and thereby models their inter-
actions. Deep reinforcement learning makes it possible to process naturalistic visual inputs
and analyze spatial representations that emerge in the network. As a result of these features
many previous computational models have used reinforcement learning to model spatial navi-
gation, e.g. previous models of path integration [43, 44].

Some models have mapped allocentric (or place-based) and egocentric (or response-based)
strategies to model-based and model-free reinforcement learning algorithms, respectively [71,
72]. There is some experimental evidence supporting the mapping of these RL algorithms to
the place vs. response dichotomy in rodents [73] and in humans, the hippocampus has been
linked to model-based planning [74]. While these models approach approach the issue of how
RL algorithms could be mapped on to a cognitive vs. behavioral navigation system, our model
provides a complementary approach that looks at how different reference frames could be
used at the cognitive level, and learns to navigate with either strategy using a simple model-
free algorithm.

It is important to note that a major difference between deep RL agents and mammals learn-
ing to navigate is the typical time required to learn a navigation task. While rodents and other
mammals are typically capable of learning these tasks within a few blocks of trials, RL agents,
such as ours, require hundreds to thousands of training episodes depending on task complex-
ity. Consequently, we do not necessarily propose that these strategies are learned or spatial rep-
resentations emerge on a task-by-task basis in animals, but rather that these aspects are
learned over longer time scales, whether developmental or evolutionary, and then tuned on a
task-by-task basis.

Using model-free reinforcement learning helps provide an intuition about the computa-
tional demands of a task and the representations required to solve the task. For instance, why
do stereotypical representations emerge in our model? Since the output action units in our
model represent the Q-values of each of the actions, the preceding layer where we analyse the
representations aids in the computation of this Q-value. Under an optimal policy, the Q-values
for state-action pairs in guidance should depend on the action and the spatial location, but not
on head direction. A simple way to achieve this outcome would be to insert the place-cell-like
representations in the penultimate layer.

In conclusion, we have shown that the relationship between task, navigation strategy and
spatial representations is more complex than previously thought. Both task and strategy played
a critical role in shaping the spatial representations in our reinforcement learning model, and
these representations determined the ability of our model to generalize to novel situations.
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