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Abstract

Comparative phylogenetic studies offer a powerful approach to study the evolution of complex traits. Although much
effort has been devoted to the evolution of the genome and to organismal phenotypes, until now relatively little work has
been done on the evolution of the metabolome, despite the fact that it is composed of the basic structural and functional
building blocks of all organisms. Here we explore variation in metabolite levels across 50 My of evolution in the genus
Drosophila, employing a common garden design to measure the metabolome within and among 11 species of Drosophila.
We find that both sex and age have dramatic and evolutionarily conserved effects on the metabolome. We also find
substantial evidence that many metabolite pairs covary after phylogenetic correction, and that such metabolome
coevolution is modular. Some of these modules are enriched for specific biochemical pathways and show different
evolutionary trajectories, with some showing signs of stabilizing selection. Both observations suggest that functional
relationships may ultimately cause such modularity. These coevolutionary patterns also differ between sexes and are
affected by age. We explore the relevance of modular evolution to fitness by associating modules with lifespan variation
measured in the same common garden. We find several modules associated with lifespan, particularly in the metabolome
of older flies. Oxaloacetate levels in older females appear to coevolve with lifespan, and a lifespan-associated module in
older females suggests that metabolic associations could underlie 50 My of lifespan evolution.
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Introduction
The development of high-dimensional “omics” methods has
had a dramatic impact on the nature of comparative studies.
First, genome data enable researchers to derive accurate,
high-resolution phylogenies to probe the evolution of gene
families and the genomic signatures of selection (e.g., Whitkus
et al. 1992; Clark et al. 2007). Second, transcriptomics, prote-
omics, and metabolomics allow for the study of adaptation at
the molecular level with a breadth not previously possible
(e.g., von Mering et al. 2003; Spirin et al. 2006; Bedford and
Hartl 2009; Brawand et al. 2011; Gordon and Ruvinsky 2012;
Martin and Fraser 2018; Cope et al. 2020). Metabolomic
methods are able to measure the levels of hundreds to thou-
sands of metabolite features with a high level of accuracy
(Jones et al. 2012). Given the central role that the metabo-
lome plays in organismal structure and function, and the fact
that it integrates upstream genetic and environmental varia-
tion, it is surprising how little is known about the evolution of
metabolite abundance (Flowers et al. 2007; Noda-Garcia et al.
2018).

There are just a handful of comparative studies of the
animal metabolome (Khaitovich et al. 2008; Fu et al. 2011;
Park et al. 2012; Blekhman et al. 2014; Bozek et al. 2014, 2017;
Ma et al. 2015). Comparative studies are often confounded by
lineage-specific environments, phylogenetic nonindepend-
ence, and measurement error in estimating species-level phe-
notypes. Lineage-specific environments are particularly
relevant in metabolomics studies as environment, genotype,
sex, age, and tissue/organ can each have dramatic effects on
metabolome profiles (Steuer 2006; Hoffman et al. 2014; Li
et al. 2017; Khrameeva et al. 2018; Wilinski et al. 2019).
Comparative analysis is also affected by phylogenetic non-
independence, although methods to handle phylogenetic
confounding, including within systems-level data, are well
established (Felsenstein 2008; Dunn et al. 2018). We address
these issues using a common garden design, with multiple
strains per species, and phylogenetic correction using a stan-
dard approach (Felsenstein 2008).

There is abundant evidence that gene expression within
species is modular, where groups of genes covary in their
expression, sharing many more such covarying partners
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within the group (module), than with genes in other groups
(Hartwell et al. 1999; Wagner et al. 2007). Patterns of covari-
ation are of great interest as they are widley assumed to reveal
functional associations (Ge et al. 2001). In contrast to within
species coexpression, phylogenetic patterns of coexpression
and modularity are less explored. There is a substantial liter-
ature describing comparative analyses of modularity in mor-
phology (Klingenberg 2014), but relatively limited
comparative analyses of covariation and modularity in gene
content (von Mering et al. 2003) or in gene expression (von
Mering et al. 2003; Fraser et al. 2004; Innocenti and
Chenoweth 2013; Martin and Fraser 2018; Cope et al. 2020).

The covariation of cellular traits across species may indi-
cate evolution in pathway activity, functional interactions, or
of development. Theories of biochemical pathway evolution
are focused in large part on the evolution of metabolic
enzymes, perhaps owing to the relative scarcity of systems-
level data on metabolite abundance (Noda-Garcia et al. 2018).
Measuring the divergence and covariation among the metab-
olome can provide such insight. For instance, comparisons of
the tissue-level metabolome in just four mammal species
highlighted the divergence of the human brain metabolome
as a putative hallmark of human evolution (Fu et al. 2011;
Bozek et al. 2014, 2015). Thus, the metabolome may be
reshaped in coordination with evolutionary change in organ
systems and other organismal phenotypes. All of these pos-
sibilities provide a strong rationale for taking a systems-level
approach to understand the evolutionary context of natural
variation.

The fruit fly genus Drosophila offers a powerful model to
examine evolutionary dynamics of metabolic pathways.
Although studies of the classic model species Drosophila mel-
anogaster predominate, evolutionary biologists have long ap-
preciated the potential of this diverse clade, with both classic
and contemporary studies in Drosophila pseudoobscura (e.g.,
Dobzhansky 1946), the Hawaiian Drosophila (Carson and
Kaneshiro 1976), and cactophilic Drosophila species
(Markow et al. 1983), among many others (Kambysel and
Heed 1971; Schnebel and Grossfield 1983; Partridge et al.
1987; Coyne and Orr 1989; Kellermann et al. 2009).
Drosophila have also played a central role in advances in ge-
nomics, including comparative work among fully sequenced
genomes of numerous species (Ballard 2000; Bai et al. 2007;
Clark et al. 2007; Stark et al. 2007).

Here, we measure a panel of metabolites across the genus
Drosophila in both sexes at two ages. We find that patterns of
variation in the metabolome are largely consistent with phy-
logenetic relatedness. Comparing two modes of evolution, we
find that the simple Brownian motion (BM) model of evolu-
tion is a good fit to overall metabolome divergence, though
sex and age are significant and conserved contributors to
variation. The metabolome also shows evidence of modular
coevolution, where groups of metabolites vary in concert
across the phylogeny. Interestingly, the patterns of covariation
are somewhat specific to each sex and age, highlighting the
dynamic nature of metabolomic variation, its potential to
explain variation in phenotype over sex and age, as well as
the importance of common garden design in comparative

studies. We then examine the variation within modules and
find they show distinct patterns of evolution, including some
that appear to be under stabilizing selection. Consistent with
the idea that the evolution of pathway activity may explain
metabolite coevolution, we find that some modules are
enriched for specific biological pathways. Additionally, we
find evidence for the coevolution of lifespan with metabolite
modules, which suggests that lifespan evolution has a con-
served molecular basis across a 50-My phylogeny. Our hope is
that this work might inspire further explorations so that we
can begin to understand how, over hundreds of millions of
years, evolution has shaped systems of functional and struc-
tural building blocks that make up all of life.

Results
We raised one to three wild-type strains from each of 11
species of Drosophila in a common environment and col-
lected age-matched samples of each sex at 5 days (young)
and 31 days (old) after eclosion. Strain-specific mean lifespans
in these experiments ranged from 20.1 to 85.7 days with a
grand mean across all species of 50.5 days (supplementary fig.
S8, Supplementary Material online). Targeted LC-MS/MS
metabolome profiles of whole flies were measured at each
age and in each sex, along with additional untargeted LC-
TOF-MS profiling of young flies, with up to three replicates
per strain, sex, age, and species. Our metabolomic data sets
comprised a panel of 97 targeted metabolites and an untar-
geted data set with 4,419 features detected in at least one
sample. Metabolomic analysis often includes missing values
due to the absence of a metabolite in a sample or to limits
of detection. All 97 targeted metabolites were detected
in all samples, and the untargeted panel detected 590 features
present in all or almost all samples, imputing 228 features
that were absent in only one sample. Missingness, a measure
of the number of missing values within a sample, lacked
any evidence of phylogenetic signal (K¼ 0.13, P¼ 0.90),
and was associated with signal intensity (F1,4416 ¼ 578.8,
P¼ 2.78 � 10�120), suggesting that many missing values
are likely to represent features that fall below the limit of
detection.

Phylogenetic and Selection Signatures in the
Metabolome
For targeted metabolome profiles, the first and second prin-
cipal components (PC1 and PC2) together explain 30.1% of
the variance and, by visual inspection, capture latent variation
by age and sex, respectively (fig. 1A). Along with the age and
sex-related variation, we explored the influence of phylogeny
on the multivariate metabolome by plotting the PCs in a
phylogenetic context, and by measuring their phylogenetic
signal. Visual inspection of PC1 and PC2 as well as statistical
tests suggest phylogenetic signal in each PC for young flies,
but not necessarily for older flies (fig. 1B and table 1). We also
found that metabolome-derived phylogenies showed signifi-
cant concordance with the genome-based phylogeny, where
branch scores, the sum of the squares of the difference be-
tween each branch in the true and deduced trees, ranged
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from 0.131 to 0.178 for each sex, age, or detection method-
ology (Kuhner and Felsenstein 1994; Kumar et al. 2017). In all
cases, the scores were significantly closer to the real phylogeny
than were permutations of the genome phylogeny (P� 0.017,
supplementary table S1, Supplementary Material online).

Having established a strong phylogenetic signature in the
metabolome, we then sought to determine the mode of
metabolome evolution. We compared two relatively simple
models of evolution, the BM and the Ornstein–Uhlenbeck
(OU) models. The BM model posits that traits diverge linearly

with respect to time in a direction that is independent of the
current trait values, whereas the OU model extends the BM
model with the addition of a parameter representing stabi-
lizing selection and thus can model limits on the extent of
divergence (Cressler et al. 2015). We find that the BM model is
a better fit than the OU model to the divergence of the
metabolome, where the r2 of the BM fit ranged from 0.16
to 0.27 across both ages and sexes, and in each case DAIC
analysis favored BM (supplementary fig. S2, Supplementary
Material online). Additionally, we fit a linear model,

A

B

C

FIG. 1. Evolution of the Drosophila Metabolome. (A) Samples from each strain at each age (young 5 days, or old 31 days) and sex are plotted along
principal components 1 (PC1) and 2 (PC2) of the mean-centered and scaled log-abundance of 97 targeted metabolites. Each sample is mapped by
lines to the centroid of its respective sex and age group. The colored legend at bottom right refers to the sex and age groups in each figure. (B) The
mean of PC1 (left) or PC2 (right) of each species is plotted along the phylogeny (Kumar et al., 2017). (C) The pairwise metabolome distance
between all samples within each age and sex is plotted over the divergence time between species pairs. Intraspecies sample distances are plotted
over time¼ 0. The metabolome distance was calculated as the average squared difference of the log-metabolite abundance for the 97 targeted
metabolites between all pairs of samples. The lines in (C) represent the fit to an ordinary least squares linear model: metabolome divergence �
divergence time within each group and are equivalent to the BM model of trait evolution.
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equivalent to BM with all data and tested for effects of age,
sex, or their interaction on the metabolome distance and the
rate of divergence. The metabolome distance was greater
(bage¼0.063, P¼ 0.022), and the divergence rate higher (btime

� age ¼ 1.80 � 10�3, P¼ 0.012) in the metabolome of older
flies (fig. 1C).

Evidence of Modular Coevolution in the Drosophila
Metabolome
We explored the possibility that the levels of metabolites
coevolve by measuring the pairwise covariance among phy-
logenetically independent contrast scores (PICs, Materials
and Methods). PICs remove the confounding effect of phy-
logeny while preserving the correlations that may exist be-
tween traits as they diverge at each node in a phylogeny
(Felsenstein 2008), and have been applied to multivariate
comparative morphometric data in similar ways
(Klingenberg 2014). We find substantial covariance between
PICs of metabolite levels in samples of each age and sex. In
comparison with randomized data, where species labels are
permuted such that the relationships within species are pre-
served, the original data show a much higher frequency of
highly positive and negative pairwise correlations among the
PICs of metabolites than expected by chance (supplementary
fig. S3, Supplementary Material online). Clustering of pairwise
PIC correlations among the metabolites indicated a high de-
gree modularity (fig. 2). We evaluate the significance of the
modularity in these networks by measuring edge between-
ness community detection (Girvan and Newman 2002), and
comparing them to rewired networks of the same degree
distribution. In each sex and age group, the real network is
significantly modular (P< 0.001).

To define the metabolites within each module, we used
weighted gene correlation analysis (WGCNA), which led to
over 88% of the 97 targeted metabolites being placed in a
module, with five to six modules in each sex and age group
(fig. 2 and supplementary fig. S4, Supplementary Material
online). The metabolite members of modules in each sex
and age are somewhat distinct, where for example, two
metabolites might be members of module A in young males,
and be members of two different modules in older males,

though pairwise comparison between sex and age groups
revealed from two to four modules with significant intersec-
tions in each comparison (Fisher’s exact test, P< 0.05, sup-
plementary fig. S5 and table S2, Supplementary Material
online).

Rather than metabolite levels evolving under direct selec-
tion, we hypothesized that the modularity in metabolite co-
evolution reflects selection acting more directly on biological
pathways (Hartwell et al. 1999; Wagner et al. 2007; Noda-
Garcia et al. 2018). In support of this hypothesis, we made
two observations. First, we tested the hypothesis that selec-
tion may operate at the level of metabolomic module. We
compared the fit of the OU and BM models on the diver-
gence of metabolites within each module (Cressler et al.
2015). Across the 23 modules, we find that eight are better
fit by the OU model, suggesting that some modules are evolv-
ing under stabilizing selection (supplementary table S3 and
fig. S6, Supplementary Material online). Second, we found by
enrichment analysis that the metabolites within five of the
modules are more connected to subgraphs of the KEGG
database than we would expect by chance (Picart-Armada
et al. 2018), with at least one KEGG pathway in each of these
five modules showing such enrichment (FDR� 0.2, supple-
mentary table S5, Supplementary Material online). Thus,
there is evidence of extensive modularity in the metabolome
at the phylogenetic level, and the patterns of covariation are
consistent with adaptive coevolution of metabolites that may
share biological function.

Sex and Age Affect Interspecific Metabolome
Variation
To examine the effects of sex and age on the metabolome in a
phylogenetic context, we use a Bayesian mixed model
(Materials and Methods). Among the targeted metabolites,
we found 44 of 97 metabolites with significant sex effects, 38
with age effects, and 2 with sex-by-age interactions
(FDR< 0.05, fig. 3). Analysis of 590 untargeted features at
young age found effects of sex for 228 metabolite features
at FDR< 0.05. Thus, we find evidence that a substantial por-
tion of the metabolome varies with sex and age in ways that
have persisted over at least 50 My.

Along with the conserved effects of sex, we also find evi-
dence for evolution in sexual dimorphism within the metab-
olome. At a multivariate level, measuring the distance along
PC1 and PC2 for each sex within each species, we see
that the nine species of the Sophophora subgenus separate
with the female samples having consistently higher PC values
than the males, whereas in the two species of the Drosophila
subgenus, the male and female samples remain clustered
along this axis (supplementary fig. S7, Supplementary
Material online).

Lifespan and the Metabolome Coevolve
Lastly, we analyzed the lifespan of the 26 strains with an
average of 95.3 flies for each sex and strain (630 SD,
n¼ 16–133, supplementary fig. S8, Supplementary Material
online). To identify metabolites and modules that covary with
lifespan, we took two approaches. First, regression of PICs of

Table 1. Phylogenetic Signal in the Drosophila Metabolome.
Phylogenetic Signal in the First Two Metabolome PCs at Each Sex
and Age (Group) Was Measured, Either as Pagel’s k or Blomberg’s K,
and Tested by the Likelihood Ratio Test, or by 1 � 105 Simulations,
Respectively.

PC Group Pagel’s k Blomberg’s K

1 Young female 0.890* 1.378**
1 Young male 0.754* 0.861*
1 Old female 0.586 0.586
1 Old male 0.313 0.529
2 Young female 1.062** 2.031**
2 Young male 0.977 1.123*
2 Old female 0.773 0.983
2 Old male 0.000 0.387

*P< 0.05,
**P< 0.005.
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lifespan on each targeted metabolite identified an association
between lifespan and oxaloacetate (FDR¼ 0.007, P< 1 �
10�4, fig. 4C). The PICs of several other metabolites were
significant at less conservative FDR (fig. 4 and supplementary
table S6, Supplementary Material online). We also regressed
lifespan PICs on the eigenmodules within each sex and age
and identified module D in the older male metabolome as-
sociated with lifespan PICs (r2 ¼ 0.80, FDR¼ 0.01, table 2),
and module B in the older female metabolome at a
more modest FDR of 0.2 (r2¼ 0.52, table 2). Although neither
of these modules was enriched for KEGG pathways after
FDR correction, KEGG pathways whose enrichment had a
nominal P< 0.05 are shown in supplementary table S5,
Supplementary Material online.

Discussion

Evolution of the Drosophila Metabolome
Here, we examine the Drosophila metabolome and its asso-
ciations with sex, age, and lifespan across 11 species. We find
strong phylogenetic signal, with both Blomberg’s K and
Pagel’s k (Revell et al. 2008) significant in the metabolome
of younger flies (table 1), and concordant with the genome-
based phylogeny (figs. 1B and supplementary fig. S1,
Supplementary Material online). Surprisingly, we see little ev-
idence of selection acting to constrain divergence in overall
metabolome variation (fig. 1C). However, there is considerable
evidence for selection acting on metabolite levels when we
analyze variation within coevolving modules (supplementary

table S3 and fig. S6, Supplementary Material online). Some of
the coevolutionary modules enrich biological pathways, and
modules in the older male and female metabolome associate
with evolution in lifespan.

Before we discuss each of these points below, there are
several possible caveats to keep in mind. First, to control for
effects of environment, we have used a common garden de-
sign. However, it is perhaps inevitable that what is a viable
environment for all species in the study might be far from
ideal for some species. Second, although this study explores
variation within as well as between species, we are capturing a
very small snapshot of within-species variation, with only
three strains per species. Moreover, the individual strains
used are likely to be inbred, which could have a strong impact
on phenotypic variation in general, and sexual dimorphism
more specifically (Connallon and Clark 2014; Yassin et al.
2016; Ruzicka et al. 2019). Third, with only 11 species, we
lack the power to fully explore the full evolutionary range
of the metabolome, lifespan, and sexual dimorphism
(Cressler et al. 2015) within Drosophila, let alone more
broadly. Finally, using whole body samples likely obscures
natural variation that manifests in organs, tissues, or cell
types—variation that might ultimately drive phenotypic var-
iation (Chintapalli et al. 2013).

The linear metabolome-wide divergence pattern that we
see suggests that the Drosophila metabolome is not broadly
constrained by stabilizing selection. The linearity we see con-
trasts with the plateau that some (Bedford and Hartl 2009;
Ma et al. 2018), but not all (Khaitovich et al. 2004), have

young female young male

|cor|

old female old male

A
modules

B

D
C

E
F
grey

FIG. 2. Modular Evolution of the Metabolome. Heatmaps showing the pairwise absolute correlation between PICs for the 97 metabolites in each
sex and age group (young 5 days, or old 31 days). The modules identified by WGCNA are shown on the left axis and partitions are included in the
heatmap corresponding to these modules. Metabolites not fitting the criteria for modularity are in the “gray” category. Hierarchical clustering was
done in WGCNA (Materials and Methods) and is shown in supplementary figure S4, Supplementary Material online.
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observed in transcriptome divergence among the Drosophila.
There may be some difference in the nature of metabolome
evolution compared with the transcriptome, and our results
are similar to an analysis of metabolome divergence in

primates (Bozek et al. 2014). Although the whole metabo-
lome may lack evidence of selective constraint, we also con-
sider if selection acts on subsets of the metabolome
differently and/or with varying strength. Our observation of

A

B

FIG. 3. Metabolite Variation by Sex and Age. (A) The effects (b) of sex, age, or their interaction on metabolite levels in Drosophila estimated in a
phylogenetic mixed model. For sex, metabolites that are more abundant in males have a positive b. The effects are clustered by metabolite (row).
(B) The number of metabolites effected by sex, age, or their interaction (n¼ 97, FDR� 0.05).
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better fits for the OU model to the divergence of some
modules is consistent with this idea. Selection that affects
subsets of the metabolome is an expectation of metabolic
adaptation and the evolution of biochemical pathways
(Hartwell et al. 1999; Flowers et al. 2007; Wagner et al. 2007;
Wagner 2009).

Several theories predict that covarying or coevolving traits
will tend to include components of functional modules, either
in development, cellular interactions, or other biological pro-
cesses (Cheverud 1984; Hartwell et al. 1999; Wagner et al. 2007;
Wagner and Zhang 2011; Collet et al. 2018). To our knowledge,
this is the first study to examine the coevolution of the metab-
olome. Most studies of modularity in the evolution of endo-
phenotypes have compared gene content, where the
evolutionary persistence of homologs is an indication of evo-
lutionary conservation (von Mering et al. 2003; Snel and
Huynen 2004; Li et al. 2014). Comparative analyses of gene
coexpression have also detected modular structure, either in

the genes encoding interacting proteins, or among members of
biological pathways (Martin and Fraser 2018; Cope et al. 2020),
and others find conservation of within-species gene coexpres-
sion across taxa (Stuart et al. 2003; Oldham et al. 2006). There is
evidence that gene coexpression within Drosophila species can
predict the axes of variation between Drosophila species
(Innocenti and Chenoweth 2013). However, Martin and
Fraser (2018) find no evidence that genes that covary across
environmental or genetic backgrounds within species also co-
vary over evolutionary time. These results indicate that such
analyses are complementary ways to gain insight into patterns
of endophenotypic covariation (Dunn et al. 2018), and ulti-
mately, both approaches may shed light on the functional
interrelations among genes, their products, and organismal
phenotypes. Similar to comparative analysis of gene coexpres-
sion, our study sought to identify covariation in metabolite
levels across the Drosophila to shed light on the nature of
evolutionary change in this phylogeny.

B

A C

D

FIG. 4. Lifespan and Metabolite Coevolution. Mean lifespans of females (A) and males (B) from 11 Drosophila species are mapped on the phylogeny
and a color scale is added based on estimated rates of continuous trait evolution. Means are from 16 to 378 individuals from each of 1–3 strains per
species per sex. At each sex and age, PICs of mean lifespan for each species were regressed on PICs for 97 targeted metabolites using major axis
regression forced through the origin. Plots of the regression for the three lowest P values from females (C) and males (D) of each age group, and the
FDR of each association is show inside the plots. The regression data for all metabolites are shown in supplementary table S6, Supplementary
Material online.
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Effects of Sex on Metabolome Profiles
In addition to the modular nature of covariation in metab-
olite levels, we also find two interesting patterns of sex-
specific variation. These include sex differences in coevolu-
tionary patterns among metabolites (fig. 1B), and the dif-
ference in metabolome sexual dimorphism between the
Sophophora and Drosophila subgenera (supplementary
fig. S7, Supplementary Material online). Given that metab-
olites are the building blocks of downstream traits, the
relative lack of dimorphism in these metabolomic principal
components for the Sophophora subgenus might reflect a
downstream trait or set of traits that are sexually mono-
morphic in this lineage but not the other. Further work will
be needed to determine what that might be. There are
several examples of evolved sexual dimorphism in organis-
mal traits in the Drosophila (Kopp et al. 2000; Luo et al.
2019), and our results suggest that LC-MS techniques could
provide mechanistic insights into such evolutionary
change. In using principal components to identify dimor-
phic phenotypes, we are biased toward detecting the larg-
est sources of latent variation and so we do not suggest
that sexual dimorphism is not present in the metabolome
of the Sophophora. We also note that in sampling whole
flies for metabolomics analysis, at least for some metabo-
lites we are likely detecting variation that reflects sex differ-
ences in reproductive structures of the abdomen. We took
care to sample only virgins in our analysis to avoid the more
profound effects of egg development in inseminated
females; however, a future analysis of tissues without obvi-
ous sexual dimorphism would allow us to investigate sexual
dimorphism in the metabolome while minimizing the in-
fluence of structural morphology.

Age, Lifespan, and the Metabolome
The evolutionary forces shaping phenotypic variation across
the lifespan are central to theories of aging (Medawar 1946;
Williams 1957; Hamilton 1966). We find that the metabolite
composition of coevolutionary modules differs by age (sup-
plementary fig. S5, Supplementary Material online), implying
that metabolites that are within a coevolving module in the
context of a young Drosophila might be a part of a separate
coevolutionary module in older Drosophila. We emphasize
that selection is most likely acting on the biological pathways,
even on the activity of single enzymes, and not the level of
individual metabolites per se, so it is not surprising to see
metabolites whose levels reflect different evolutionary pat-
terns in flies at different ages. Interestingly, we see evidence
of coevolution of lifespan and metabolic modules in the older
metabolome of both sexes, whereas we fail to detect such
association in the younger metabolome (table 2).

We also find larger between-species divergence in the whole
metabolome of old flies when compared with that of young flies
(fig 1C). This pattern mirrors the increase in metabolome diver-
gence with age observed within each species seen in mammals
(Ivanisevic et al. 2016; Dansereau et al. 2019), and is consistent
with predictions from evolutionary theory that age-related ge-
netic variation should increase with age (Charlesworth and
Hughes 1996; Moorad and Promislow 2009).

Most of what we know about the molecular mechanisms
of aging is derived from lab studies of inbred lines in single
species. In recent years, comparative studies have begun to
probe evidence for genes and metabolites associated with
inter-specific variation in lifespan (Ma et al. 2015, 2018; Cui
et al. 2019; Kowalczyk et al. 2020). Previous work across
a broad mammalian phylogeny identified metabolites

Table 2. Associations between Metabolite Coevolutionary Modules and PICs of Mean Lifespan at Each Age and Sex (Group), Major Axis
Regression through the Origin Was Used to Test the Association between PICs of Mean Lifespan and the Eigenmodules of the Metabolite PICs.

Group Module r sq P value FDR

Young female E 0.204 0.1637 1
Young female D 0.123 0.2902 1
Young female C 0.091 0.3678 1
Young female A 0 0.9962 1
Young female B 0 0.9502 1
Old female B 0.52 0.0186 0.2
Old female F 0.227 0.1641 0.9
Old female E 0.142 0.2824 1
Old female A 0.06 0.4944 1
Old female C 0.023 0.6751 1
Old female D 0.004 0.8706 1
Young male C 0.391 0.0395 0.47
Young male B 0.184 0.1877 0.96
Young male D 0.149 0.2405 0.96
Young male A 0.075 0.4167 1
Young male E 0.022 0.6606 1
Young male F 0.015 0.7189 1
Old male D 0.798 0.0005 0.01
Old male E 0.412 0.0454 0.27
Old male C 0.177 0.2262 0.68
Old male B 0.046 0.5528 1
Old male A 0.042 0.5707 1
Old male F 0.005 0.8444 1

Note.—The model r-squared (r sq) and P value (P value) are shown, and multiple comparisons were FDR corrected (FDR).
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associated with lifespan, albeit among samples from dissimilar
environments and with lifespans estimated in other studies
(Ma et al. 2015). Our work is the first to use metabolomic
approaches to study correlates of lifespan in a common gar-
den design, where animal rearing is done together in a con-
trolled environment and samples are taken from the same
population in which lifespan is measured.

Here we detect metabolites that coevolve with lifespan,
suggesting the potential of metabolomics to identify
longevity-regulating pathways that are conserved across spe-
cies. A similar comparative analysis of lifespan and the tran-
scriptome in 14 Drosophila species identified few individual
genes of strong effect, but provided evidence that sets of
genes with marginally significant coevolutionary association
with lifespan might be enriched for a small number of bio-
logical pathways (Ma et al. 2018). Ad hoc comparison of the
lifespan-associated pathways identified by Ma et al. (2018)
and those identified here finds little evidence of overlap,
indicating either that the study designs were different
enough to obscure commonality that might exist between
the metabolome and transcriptome, or possibly that lifespan
coevolves with sets of coexpressed genes and metabolites
that are somehow involved in nonoverlapping processes.
Regardless, the coevolution of metabolite modules and life-
span supports the theory that lifespan variation in diverse
species is influenced at least in part by common biological
pathways. Our results in no way exclude the possibility that
species-specific mechanisms also shape the evolution of life
history traits (Martin et al. 1996; Partridge and Gems 2002).

We see clues to conserved mechanisms of lifespan regu-
lation in the relative enrichment of KEGG pathways (sup-
plementary table S5, Supplementary Material online). With
the caveat that FDR correction indicates that none of the
pathways are enriched, in the metabolome of older females,
the pathway dme04213, annotated as a “longevity regulating
pathway—multiple species” reaches an empirical P value of
0.0093 (FDR¼ 0.911) and includes insulin-like signaling,
mTOR signaling, and superoxide dismutase expression (sup-
plementary table S5, Supplementary Material online). In ad-
dition to the modular analysis, lifespan associates with
oxaloacetate in the older female metabolome. There is no
direct connection between oxaloacetate and lifespan in
Drosophila that we are aware of. However, oxaloacetate is
part of the TCA cycle which has previously been implicated
in lifespan variation in D. melanogaster (Talbert et al. 2015;
Jin et al. 2020). Interestingly, oxaloacetate supplementation
extends the lifespan of Caenorhabditis elegans (Williams
et al. 2009). The association of lifespan variation and oxalo-
acetate levels, and a module that enriches known lifespan
regulating pathways in various species, suggest that lifespan
evolution may have common underlying mechanisms that
are reflected in the metabolome.

Conclusion
Overall, we have shown that evolution in Drosophila co-
occurs with interconnected effects on the metabolome. We
find both broadly conserved effects of sex and age, as well as

dynamic and phylogenetically independent correlated evolu-
tionary change. The modular nature of coevolution among
the metabolites measured here points not only to the indi-
vidual metabolites, but also the broader biological processes,
that underlie evolution of organismal phenotypes.

The metabolome describes the basic structural and func-
tional building blocks of all organisms on the planet. In this
light, it is surprising how little is known about the patterns
and process that underlie its evolution over billions of years.
The work we present here, althyough focused on questions
related to the evolution of aging, is also an effort to stimulate
a much deeper and broader exploration of metabolome
evolution.

Materials and Methods

Species and Strains
This study included 11 species of Drosophila: D. melanogaster,
D. simulans, D. sechellia, D. ananassae, D. erecta, D. yakuba,
D. willistoni, D. pseudoobscura, D. persimilis, D. mojavensis, and
D. virilis. We obtained all species from the Drosophila Species
Stock Center then at the University of California San Diego,
except for D. mojavensis lines, which were provided as a gift
from Luciano Matzkin (University of Arizona). We obtained
three wild-type lines from each species with the exception of
D. yakuba and D. erecta, for which we obtained one wild-type
strain (supplementary table S7, Supplementary Material on-
line). This design enabled us to study intra- and interspecies
variation in metabolite levels and lifespan.

Media and Fly Culture
To limit the effect of diet on metabolome profiles, all lines
were reared on the same diet, banana medium, consisting of
14% peeled banana, 4% molasses, 4.75% corn syrup, 2.75%
Brewer’s yeast, 1% methylparaben, and 3% ethanol, solidified
in 1.4% agar. For survival assays and metabolomics, flies were
placed on banana medium in bottles and allowed to mate
and lay eggs for 48 h at 24 �C and 50–60% RH, after which
adults were removed, and offspring were allowed to develop.
We collected virgin males and females into vials with banana
medium under light CO2 anesthesia within 8 h of eclosion,
except D. virilis, which was collected within 12 h of eclosion.

Metabolomics Assay and Data Normalization
Targeted Metabolomics
For targeted metabolomic analysis, Drosophila were reared
under the conditions described above, and three flies from
each sex/strain combination at 5 and 31 days of age were
flash frozen and stored at �80 �C. One to three samples
were collected per sex for each species at each age, for a
total of 93 targeted LC-MS/MS samples. Metabolites were
extracted by homogenizing samples in 200 ml HPLC water
(Sigma) using a TissueLyser II (Qiagen) for 6 min at 25 Hz at
4 �C. We then added 800 ml methanol and incubated for
30 min on dry ice. The suspension was homogenized again
for 10 min at 25 Hz, then spun at 14,000 rcf for 10 min at 4
�C. The supernatant was transferred to a new tube and
dried in a Speed-Vac at 30 �C.
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LC-MS/MS experiments were performed on an Agilent
1260 LC (Agilent Technologies, Santa Clara, CA)-AB Sciex
QTrap 5500 mass spectrometer (AB Sciex, Toronto, ON,
Canada) system at the University of Washington Northwest
Metabolomics Research Center (UWNMRC). Each sample
was injected twice, 10ml for analysis using negative ionization
mode and 2ml for analysis using positive ionization mode.
Both chromatographic separations were performed in hydro-
philic interaction chromatography (HILIC) mode on two
Waters XBridge BEH Amide columns (150 � 2.1 mm,
2.5mm particle size, Waters Corporation, Milford, MA) con-
nected in parallel. The flow rate was 0.300 ml/min, autosam-
pler temperature was kept at 4 �C, and the column
compartment was set at 40 �C. The mobile phase was com-
posed of Solvents A (5 mM ammonium acetate in 90% H2O/
10% acetonitrile þ 0.2% acetic acid) and B (5 mM ammo-
nium acetate in 90%acetonitrile/10% H2O þ 0.2% acetic
acid). After the initial 2 min isocratic elution of 90% B, the
percentage of Solvent B decreased to 50% at t¼ 5 min. The
composition of Solvent B maintained at 50% for 4 min
(t¼ 9 min), and then the percentage of B gradually went
back to 90%, to prepare for the next injection. Targeted
data acquisition was performed in multiple reaction moni-
toring (MRM) mode. The LC-MS system was controlled by
Analyst 1.5 software (AB Sciex). The extracted MRM peaks
were integrated using MultiQuant 2.1 software (AB Sciex).
Samples were spiked with 13C internal standards, and two
types of LC-MS/MS quality control (QC) samples were run at
11 evenly spaced intervals throughout the run to track po-
tential drift in the assay. One QC sample was a pool of 10 fly
samples, and the other was a sample of human serum. The
CV for these QCs was 8.2% and 7.7%, respectively. Detailed
LC-MS methods and data are available on www.metabolo-
micsworkbench.org doi: 10.21228/M8J11K.

Untargeted Metabolomics
Flies were raised as above and at 5 days old, 1–3 biological
replicates of 10 flies from each strain and sex were flash frozen
in 1.5-ml tubes in liquid N2 and stored at�80 �C. This gave a
total of 168 samples, with 3 replicates for 53 of the 58 strain
and sex combinations. Metabolite extraction was identical to
the procedure for targeted LC-MS-MS described above.
Untargeted analysis was completed using an Agilent 1200
SL LC-6520 Quadrupole-Time of Flight (TOF)-MS system
(Agilent Technologies) at the UWNMRC. The separation con-
ditions for the LC-TOF-MS experiments were the same as
those for the LC-MS/MS described above. The ESI voltage
was 3.8 kV, and the m/z scan range was 60–1,000. The LC-
TOF-MS data were extracted using Agilent MassHunter
Qualitative Analysis (version B.07.00), Quantitative Analysis
(version B.07.01), and Mass Profiler Professional (MPP, version
B.13.00) software. The absolute intensity threshold for the LC-
TOF-MS data extraction was 1,000, and the mass accuracy
limit was set to 10 ppm. Missingness was assigned to peaks
below 4,500 counts per second. Detailed methods and
data are available at www.metabolomicsworkbench.org doi:
10.21228/M8J11K.

All statistical analyses were conducted in R version 4.0.3 (R
Core Team 2018) unless otherwise stated. The targeted and
untargeted metabolome data were analyzed separately. All
targeted metabolites and untargeted features were loge-nor-
malized and the data from each sample were centered by
subtracting the sample mean. For the untargeted LC-TOF-
MS, the positive and negative mode data were combined,
giving 4,419 features. Only 362 features were detected in every
strain (n¼ 1–3 for each sex). In the 228 features with a single
missing observation among all strains, missing values were
imputed by ten nearest-neighbor imputation, resulting in
590 complete features. Principal components analysis (PCA)
was performed using prcomp on the sample centered and
scaled log abundance of 590 untargeted metabolite features,
and on the 97 targeted metabolites.

Drosophila Phylogeny
We use the topology, branch lengths, and estimated diver-
gence time of the consensus tree available at http://www.
timetree.org/ (accessed January 2021; Kumar et al. 2017).
The Newick format is available in Supplementary Material
online .

Phylogenetic Signal and Multivariate Clustering
To measure the phylogenetic signal in the metabolomic pro-
file, we estimated Pagel’s k and Blomberg’s K, using the phy-
losig function within the phytools R package (Revell
2012). We used the strain-level data (n¼ 1–3) to estimate the
standard error of the species-level means and used these
errors as a measure of intraspecies variance (Ives et al. 2007;
Revell 2012). For the two species with only a single strain,
D. erecta and D. yakuba, we used the maximum standard
error among the remaining species as the standard error.
The significance of K was determined by 105 randomizations,
and of k using the likelihood ratio test.

For hierarchical clustering of the metabolome, we sepa-
rately analyze the sexes and, for the targeted data, both ages
as well. In all cases, the species means (n¼ 1–3) of each me-
tabolite feature were used. We constructed trees using the
complete linkage method of hierarchical clustering in R and
evaluated node support by bootstrapping 1,000 times. We
also compare each tree to the genome-based phylogeny by
the branch score method (Kuhner and Felsenstein 1994) with
the dist.topo function of the ape R package, using rel-
ative branch lengths of the phylogenies which were calculated
by dividing branch lengths of each tree by the respective total
branch lengths (Kuhner and Felsenstein 1994). We used a
permutation approach to test the significance of each com-
parison by calculating the branch scores of 105 randomized
phylogenies, made using the rtree function of the ape
package, in comparison to the real phylogeny.

Modeling Metabolome Evolution
We modeled the divergence of the metabolome using a sim-
ilar method used for divergence in the transcriptome
(Bedford and Hartl 2009; Ma et al. 2018), by measuring the
metabolome distance (y) as the squared difference between
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each loge-metabolite among pairs of strains from the same
age and sex. We first fit a linear model, analogous to the BM
model, and to evaluate the effect of sex and age—young or
old as a categorical variable—on the rate of metabolome-
wide divergence:

y � aþ d2xþ bage þ bsex þ bx� age þ bx� sex

þ bx� age�sex þ e;

(1)

where y is the metabolome distance, a is the intercept, d2 is
analogous to the force of mutation/drift in the BM model, x
is the evolutionary divergence time, e is the residual error, and
the separate bvalues represent the main or interaction effects
of each model term, which were tested for significance by
ANOVA.

For model comparison, the following BM model was fit by
maximum likelihood using the nlreg R package:

y ¼ aþ d2x; (2)

where d2, the slope, is analogous to the force of mutation/
drift; and a is the intercept. For the OU model we used the
formula of Ma et al. (2018):

y ¼ d2

2a
1� e�2axð Þ: (3)

The selection (a) and drift (d2) parameters were estimated
using maximum likelihood. Because the OU model is unde-
fined where divergence time (t) is zero, the intraspecies var-
iance, we excluded data from t¼ 0 while fitting both BM and
OU. The BM and OU models were compared using the
Akaike information criterion (AIC).

Metabolome Coevolution and Modularity
The evolutionary relationship between metabolites was mea-
sured as the Pearson correlation among PICs for each metab-
olite pair. Within each sex and age group, PICs were estimated
for each metabolite using the pic.ortho function in the
ape package using multiple measurements per species
(Felsenstein 2008). We compared the distribution of correla-
tions between PICs to the distributions among 100 permu-
tations of the species labels, which maintained the
relationships between metabolites within each species, and
effectively randomized the trait values across the phylogeny.
We measured modularity by first defining networks of
coevolving metabolites, where edges correspond to metabo-
lite pairs whose PICs correlated at r> 0.7, and then identified
modules using the edge.betweeness.community
function in the iGraph package (Girvan and Newman
2002; Csardi and Nepusz 2006). Modularity was measured
using the modularity function and was then compared
with 1,000 rewired networks with the same degree distribu-
tion, and empirical P values were calculated.

To identify coevolutionary modules, we used the WGCNA
package to find covarying PICs within each sex and age
group (Langfelder and Horvath 2008). A topological overlap
matrix for network construction was made using the

TOMsimilarity function on a matrix of pairwise
Pearson correlations between all metabolite PICs raised to
the power of 7. Modules were identified by the
cutreeDynamic function using a deepSplit of 3 and a
minimum module size of 8. The first principal component
of the PICs of each module (eigenmodule) was used as
module-level vector in regression models.

Enrichment Analysis
The 97 targeted metabolites measured here are distributed
broadly over many metabolic pathways and thus we lack
power to detect enrichment of the majority of individual
pathways using hypergeometric testing. Instead, we used
the network diffusion-based analysis in the FELLA package
to evaluate enrichment within the D. melanogaster KEGG
Release 97.0: 128 pathways, 165 modules, 749 enzymes,
5,417 reactions, and 3,961 compounds (Kanehisa and Goto
2000; Picart-Armada et al. 2018). To evaluate the significance
of the enrichment, we ran 105 iterations where the significant
metabolites were permuted over the full set of 97 metabolites.
We used this analysis to evaluate both metabolites with
effects of sex, age, or their interaction, as well as the enrich-
ment among metabolites of each coevolving module in each
sex and age. Multiple comparisons within each node type
(pathway or KEGG module) were corrected using the
Benjamini–Hochberg FDR method (Benjamini and
Hochberg 1995).

Mixed Model Analysis
To determine the effects of sex and age on individual metab-
olites, we used the MCMCglmm package to analyze a phylo-
genetic mixed model, with sex and age and their interaction
as fixed effects, and random effects of species and strain
(Hadfield 2010):

Metabolite � bsex þ bage þ bsex � age þ Species

þ Strainþ R�1 þ e ; (4)

where b are the fixed effects of sex and age and their inter-
action, and R�1, the inverse of the phylogenetic correlation
matrix, was calculated using the Drosophila phylogeny, after
resolving the D. virilus, D. mojavensis, and D. willistoni poly-
tomy at the root by adding 1� 10�4 My to all edges, which
adds a trivial distance to the D. willistoni edge. Errors were
assumed to be Gaussian, priors were set at V¼ 1 and �¼0.02,
and �5 � 105 iterations were run to estimate posterior
effects.

Lifespan Analysis
At the time of virgin collection (see Media and Fly Culture),
approximately 20 flies of each sex/genotype were placed in
individual vials (2–7 replicates, mean¼ 4.8). Flies were trans-
ferred onto new food three times over a 7-day period before
the start of the longevity assay. Deaths during this period were
not recorded as they may simply be due to extrinsic mortality
from handling. On the seventh day, flies were transferred into
randomized vials and the vials were censused three times per
week thereafter while transferring flies to fresh food vials. Data
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were recorded using the dLife software (Linford et al. 2013),
and recording continued until all flies in all vials were dead.
There were no censorship events during the experiments, so
mean lifespan for each strain was simply the arithmetic mean
of age at death for all individuals in that strain.

Coevolution between lifespan and metabolites was evalu-
ated by major axis regression forced through the origin in the
smatr package, where PICs of lifespan were regressed either
on PICs of individual metabolites, or on the eigenmodules of
the coevolutionary modules identified previously (see
Metabolome Coevolution and Modularity). The metabolome
at the two ages was compared with the same mean lifespan
for that strain and sex. Therefore, multiple comparisons were
handled by controlling FDR for tests of all predictors at both
ages; n¼ 194 metabolites for the univariate analysis, and
n¼ 10–11 eigenmodules for multivariate analysis.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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