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Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective,

sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interac-

tions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investi-

gated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and

imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed

from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30

post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical,

thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls,

with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-

modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength

and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigen-

vector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity.

We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may

be unfavourable to brain wide communication in the early post-injury period.
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Abbreviations: AFNI ¼ analysis of functional neuroimages; ANTs ¼ advanced normalization tools; BOLD ¼ blood oxygenation
level dependent; CC ¼ clustering coefficient; CCI ¼ controlled cortical impact; CPL ¼ characteristic path length; DMN ¼ default
mode network; fMRI ¼ functional magnetic resonance imaging; FPCN ¼frontoparietal control network; FSL ¼ linear registration
tool (FLIRT);FSL ¼ FMRIB software library; NHC ¼ non-hub connectors; NHK ¼ non-hub kinless; PCNN3D ¼ three-dimensional
pulsed coupled neural networks; RF ¼ radiofrequency; PC ¼ participation coefficient; P ¼ peripheral; ROI ¼ region of interest; TBI
¼ traumatic brain injury; TE ¼ echo time; TR ¼ repetition time; TurboRARE ¼ Turbo Rapid Acquisition with Refocused Echoes;
UP ¼ ultra-peripheral

Introduction
Traumatic brain injury (TBI) is a leading cause of emer-

gency department visits, long-term disability and acciden-

tal deaths in the USA.1 Among different types of

moderate-to-severe brain injury, penetrative concussive

cortical injury can cause permanent structural and func-

tional deficits in brain areas that regulate cognitive, sen-

sorimotor and affective functions.2–5 The severity of

cognitive impairment and/or neuropsychiatric sequelae of

focal cortical injury may be linked to the degree of spa-

tial damage caused at and beyond the TBI epicentre.6

Degeneration of axons and dendrites can occur beyond

the TBI foci and produce impairments in brain wide com-

munication across cortical and subcortical regions.6–9

The large-scale neurobiological changes that occur with

TBI have been investigated using resting state functional

magnetic resonance imaging (fMRI) and graph theory-based
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analysis of functional connectivity.10,11 Disruption of func-

tional connectivity between subdivisions of the caudate and

putamen and distributed cortical regions, including the an-

terior cingulate, was observed to be associated with cogni-

tive impairments in a cohort of 42 TBI patients compared

to age-matched control participants.12 Structural connectiv-

ity-based network matrices in 52 TBI patients, 21 of which

sustained microbleeds, were shown to have a reduction in

nodes with high betweenness and eigenvector centrality in

caudate and anterior cingulate cortex.13 These nodes are

highly influential within networks, constituting routes of

high traffic or communication between distant regions of

the cortex. Cognitive processing was closely linked to the

degree of disconnection in network hubs, perhaps because

of a reduced number of influential nodes following diffuse

axonal injury.13 A comprehensive longitudinal blast-related

TBI study reported significant modular organizational

changes.14 Functional connectivity can be parcellated into

groups or modules with greater rates of within-group con-

nectivity than between-group node interactions. This modu-

lar pattern is thought to be a fundamental organizational

aspect of neural activity in the brain of various species and

may be important in the segregation of functions across dis-

tributed networks. The number of between-module connec-

tions, as quantified by the participation coefficient, is

reduced with blast injury and this has important implica-

tions for cognitive function and the binding of multiple

sources of sensory, affective and memory information.

The above neuroimaging studies in human subjects em-

phasize the promise of graph theory measures as func-

tional TBI biomarkers. Comparable methods in animal

models of TBI allow investigation of neurobiological

mechanisms linked to network metric changes. Repetitive

closed head injury disrupts functional connectivity be-

tween midbrain, hippocampal and cerebellar regions and

produced hyperconnectivity in olfactory regions and other

areas of the rat brain,15 and caused widespread changes

in tissue apparent diffusion coefficient values.16 Niskanen

et al.17 provided evidence of post-concussive functional

recovery of BOLD signal responses to forepaw electrical

stimulation in primary somatosensory (S1) cortex by Day

56 in a lateral fluid percussive injury rat model. Rats sus-

taining lateral fluid percussive injury were also shown to

have reduced cortical functional connectivity at four

months post-injury.18 In a series of studies using the con-

trolled cortical impact (CCI) model in rats, Harris et al.19

demonstrated contralesional increases in cortical excitabil-

ity, c-Fos expression and BOLD signal responses to fore-

paw electrical stimulation. Interestingly, the S1 cortical

hyperexcitability was observed as early as 2 days post-in-

jury using electrophysiological methods but at later time

points with fMRI data collected at 7 T.19 Consistent with

these findings, further functional connectomic assessments

by Harris et al.20 demonstrated increased network

strength and topological reorganization involving interac-

tions between strongly and weakly connected regions.

The objective of this study was to investigate functional

connectivity changes in a rat CCI model at 2- and 30-

days post-injury. We hypothesized that graph theory

assessments on functional connectivity networks offer

quantitative parameters that track aspects of pathological

progression and functional recovery. We further expect

that this analytical approach can help uncover novel

effects of focal cortical penetrating TBI and how it reor-

ganizes local and brain wide nodal functional interac-

tions. Our results indicate that at 2 days post-injury

cortical regions contralateral to the CCI epicentre show a

significant increase in node strength along with a global

increase in modularity, with low and high centrality

nodes largely distributed in different modules.

Participation in cross-modular connectivity was also

reduced on Day 2, however, this recovered to control lev-

els by Day 30 post-CCI.

Materials and methods

Subjects

Female and male Sprague–Dawley rats (220–300 g) were

obtained from Charles River Laboratories (Raleigh, NC,

USA). Rats were housed in sex-matched pairs in a tem-

perature and humidity-controlled vivarium with a 12 h

light cycle (lights on at 0700 h) and food and water pro-

vided ad libitum. Rats were randomly assigned to one of

two experimental conditions: controls (15 male and 8 fe-

male rats) and CCI (19 male and 12 female rats). A sub-

group of CCI rats were imaged 2 days post-injury (16

male and 7 female rats) and another group (3 male and

5 female rats) at 30 days. All procedures received prior

approval from the Institutional Animal Care and Use

Committee of the University of Florida and followed all

applicable NIH guidelines.

Controlled cortical impact

The CCI procedure was carried out using a Leica Impact

One device (Leica Microsystems Inc.). Anaesthetic levels

were induced with 4% isoflurane gas mixed in 100%

oxygen and maintained under 2% isoflurane for the rest

of the procedure. Body temperature was regulated to

37�C using a thermal pad while rats were prepared for

surgery on a stereotaxic frame. A parasagittal craniec-

tomy [centre at anteroposterior, �4.0 mm; L, þ2.8 mm

from lambda] 5 mm in diameter was performed to expose

the brain and allow impactor tip access to the cortical

surface. The impactor had a 4-mm flat-face tip. CCI at a

depth of 1.5 mm at 4 m/s and a dwell time of 240 ms

was carried out. All injuries occurred in the right hemi-

sphere. The surgical area was sutured, and recovery was

monitored by tail pinch and righting reflexes. Control

rats were naı̈ve and received no sham surgical

procedures.
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Magnetic resonance imaging

MRI was carried out as previously reported.21 Images

were collected in an 11.1 T MRI scanner (Magnex

Scientific Ltd, Oxford, UK) with a Resonance Research

Inc. gradient set (RRI BFG-240/120-S6, maximum gradi-

ent strength of 1000 mT/m at 325 Amps and a 200 ms

risetime; RRI, Billerica, MA) and controlled by a Bruker

Paravision 6.01 console (Bruker BioSpin, Billerica, MA).

A custom-made 2.5 cm � 3.5 cm quadrature radiofre-

quency (RF) surface transmit/receive coil tuned to

470.7 MHz (1H resonance) was used for B1 excitation

and signal detection (RF engineering lab, Advanced

Magnetic Resonance Imaging and Spectroscopy Facility,

Gainesville, FL).

Rats were scanned under a continuous flow of 1.5%

isoflurane (delivered at 0.5 L/min mixed with medical

grade air containing 70% N2 and 30% O2). Respiratory

rates were monitored continuously, and body temperature

was maintained at 36–37�C using a warm water recircu-

lation system (SA Instruments, Inc., Stony Brook, NY).

For each rat, we acquired a 10-min high-resolution T2-

weighted anatomical scan followed by a 10-min function-

al magnetic resonance imaging (fMRI) scan. A T2-

weighted Turbo Rapid Acquisition with Refocused

Echoes (TurboRARE) sequence was acquired with the fol-

lowing parameters: effective echo time (TE) ¼ 41 ms,

repetition time (TR) ¼ 4 s, RARE factor ¼ 16, number

of averages ¼ 12, field of view of 24 mm � 18 mm and

0.9 mm thick slice, and a data matrix of 256 � 192 and

25 interleaved ascending coronal (axial) slices covering

the entire brain from the rostral-most extent of the anter-

ior frontal cortical surface, caudally towards the upper

brainstem and cerebellum. Functional images were col-

lected using a single-shot spin-echo echo planar imaging

sequence with the following parameters: TE ¼ 15 ms, TR

¼ 2 s, 300 repetitions, field of view ¼ 24 � 18 mm and

0.9 mm thick slice, and a data matrix of 64 � 48 with

25 interleaved ascending coronal slices in the same space

as the T2 anatomical. Respiratory rates, isoflurane con-

centration, body temperature, lighting and room condi-

tions were kept constant across subjects.

Image pre-processing and atlas
registration

The image pre-processing steps applied in this study are

illustrated in the schematic in Fig. 1. Anatomical and

functional scan masks outlining rat brain boundaries

were generated in MATLAB using Three-Dimensional

Pulsed Coupled Neural Networks (PCNN3D).22 Resting

state processing was carried out using software tools in

Analysis of Functional NeuroImages (AFNI),23 FSL24 and

Advanced Normalization Tools (ANTs).25 First, we used

3dDespike in AFNI to remove time series spikes and

3dvolreg for image volume alignment. Pre-processed scans

were cropped and a high-pass temporal filter (>0.009 Hz)

was used (3dTproject) to remove slow variations (tem-

poral drift) in the fMRI signal. Independent component

analysis decomposition was then applied to pre-processed

scans to assess noise components in each subjects’ native

space prior to spatial smoothing and registration. The

resulting components were assessed, and in most cases all

components contained noise-related signal along brain

edges, in ventricular voxels, and large vessel regions.

These components were suppressed using a soft (‘non-ag-

gressive’) regression approach, as implemented in FMRIB

Software Library (FSL 6.0.3) using fsl_regfilt.24 A low-

pass filter (<0.12 Hz) and spatial smoothing (0.6 mm

FWHM) was then applied to the fMRI scans.

Pre-processed anatomical and fMRI scans were aligned

to a parcellated rat brain template.26 Anatomical scans

were cropped and N4 bias field correction27 was applied

to remove B1 RF field inhomogeneities and reduce field

of view intensity variations.26 The extracted brain maps

were then linearly registered to the rat template using

FSL linear registration tool (FLIRT),24 using a correlation

ratio search cost, full 180-degree search terms, 12 degrees

of freedom and trilinear interpolation. The linear registra-

tion output was then nonlinearly warped to the template

space using ANTs (antsIntroduction.sh script). The result-

ing deformation field images were used to generate

Jacobian determinant maps to evaluate subject-to-atlas

registration quality and quantify the effects of regional

structural differences of CCI rats compared to controls.

Average log-normalized Jacobian maps are shown in

Fig. 2. Anatomical-to-atlas linear and nonlinear trans-

formation matrices were applied to fMRI scans at a later

stage.

Brain extraction using a mask (see above) was first

applied to fMRI scans and the cropped scans were then

aligned to their respective higher resolution anatomical

scans. Timeseries functional images were split into 300

individual volumes and the first in the series was linearly

aligned to the anatomical scan using FLIRT (same

parameters as above, except 6 degrees of freedom was

used in this step). ANTs (antsRegistrationSyNQuick.sh

script) were used to warp the lower resolution functional

images to their structural (using a single stage step de-

formable b-spline syn with a 26-step b-spline distance).

Linear and nonlinear warping matrices for fMRI-to-ana-

tomical alignment were applied to individual scans in the

time series, then the merged 4-D functional timeseries

were moved to the atlas space using the prior anatomic-

al-to-template transformation matrices.

Parcellation-based node placement
and resting state signal extraction

We updated a previous set of 144 node parcellations21 to

include an additional 18 region of interest (ROI) masks

covering voxels in the CCI region and the contralateral

hemisphere (Fig. 3A). These included 4 ROIs covering

the primary visual cortex (Lesion ROI1, 3–5 in Fig. 3A),
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one in the dorsal hippocampus centred on the dentate

gyrus layer (Lesion ROI2), the rostral and caudal retro-

splenial cortex (Lesion ROI9 and ROI6, respectively) and

the barrel field and trunk regions of the primary somato-

sensory cortex (Lesion ROI7 and ROI8, respectively).

Thus, a total of 162 region of interest (ROI) masks, div-

ided into 81 left and 81 right ROIs, were included in our

analyses. Individual ROI masks were generated using a

previously published rat brain parcellation.26 ROI seed

generation was as previously reported21 and coordinates

were used for 3D network visualizations in BrainNet

viewer in MATLAB.28 The principal eigenvector times-

eries vector was extracted from pre-processed fMRI scans

with the assistance of ROI mask overlays. This generated

162 individual ROI text files per subject that contained

L2-normalized resting state signals as a vector of 300

data points. The timeseries files were used in cross-corre-

lations and in calculations of Pearson r coefficients for

every pairwise combinations of ROIs (1dCorrelate in

AFNI). The resulting number of pairwise correlations was

Figure 1 Image processing and analysis workflow used in the present study. Upper left (top to bottom) shows anatomical scan to

atlas registration steps. Upper right shows resting state fMRI pre-processing steps and signal extraction based on 1 mm diameter spherical

seeds. Bottom panels (left to right) show symmetric matrices of pairwise correlations of fMRI signals from 81 bilateral regions of interest (162

ROI total). Networks are visualized using atlas-based ROI coordinates in a three-dimensional translucent rat brain shell with vertex sizes

represented by spheres and weighed by node strength, and edges as lines weighed by correlation coefficients. Schematic of measures of

network and nodal integration, segregation, and centrality that were derived from constructed weighted matrices.
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12 879 per subject (after removing 162 self-correlations).

Correlation coefficients were imported to MATLAB and

Fisher’s transform applied to ensure a normal distribution

of z-values prior to analyses.

Analysis of functional network

graph properties

Details of network analysis and formal descriptions of

graph metrics are published.21 Briefly, weighted matrices

were analysed with Brain Connectivity Toolbox29 and

MATLAB. Global graph metrics were calculated for edge

density thresholds ranging from 2 to 40%. Node-specific

network measures were calculated at a 10% threshold.

Node strength was assessed at the individual node level

and globally at the graph level to investigate how CCI

affected functional connectivity strength. Node strength is

the sum of edge weights per node. The average node

strength for all edge connected nodes is the network

strength.

A probabilistic approach for community detection was

applied to calculate a modularity statistic (Q), which

indexes the rate of intra-group connections versus connec-

tions due to chance.30 The procedure starts with a ran-

dom grouping of nodes and iteratively moving nodes into

groups which maximize the value of Q. The final number

of modules and node assignments to each group (e.g.

community affiliation assignments) was taken as the me-

dian of 1000 iterations of the modularity maximization

procedure.21 The number of communities per rat, popula-

tion size of each community and mean participation coef-

ficient, eigenvector and betweenness centrality of the top

four-most populated communities were assessed.

The participation coefficient was used to assess within-

module nodes with different levels of participation in

connections with nodes in other modules. The calculated

participation coefficient (PC) values were classified

according to published node cartographic assignments:

PC< 0.05 are ultra-peripheral (UP), 0.05< PC< 0.62 are

peripheral (PC) nodes, 0.62< PC< 0.80 are non-hub con-

nectors and PC> 0.80 are non-hub kinless.31 The

Figure 2 Nonlinear registration to a reference T2-weighted scan revealed cortical and subcortical thalamic structural

differences in controlled cortical impact (CCI) rats relative to controls. Top row shows log-normalized Jacobian maps scaled

between �2 and þ1 (blue to red; narrowing and expansive differences, respectively). Jacobian maps represent the average of each

experimental group for controls (n¼ 23), CCI Day 2 (n¼ 23) Day 30 (n¼ 8) post-injury. Bottom rows show axial view of cortical parcellation

highlighting brain areas impacted by CCI. Also shown are four representative anatomical scan of CCI rats acquired at 2- and 30-days post-

injury.
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presence of highly influential nodes and nodes at the

intersection between shortest paths was determined

through calculations of betweenness and eigenvector cen-

trality. Nodes with high betweenness centrality are pre-

sent along many shortest paths between any pair of

nodes in a network.32 Nodes with high eigenvector scores

are connected to other high centrality nodes and are con-

sidered highly influential within a network.33

We next analysed the tendency of assortative versus

dissortative mixing of nodes.34 The assortativity index is

a Pearson correlation coefficient comparing node strength

values between pairs of edge-connected nodes. Positive r-

values indicate connectivity between pairs of nodes with

similar strengths (e.g. high strength nodes pairs with high

and low with low), while negative r-values indicate cross-

pairings between low and high strength nodes. We also

generated and analysed weighted rich club coefficient

curves (Uw) at an edge density of 10%.35 Nodes belong-

ing to a rich club subnetwork have an above-chance ten-

dency to tightly connect with each other and share the

bulk of connections within the network.35,36 The ap-

proach creates subgraphs containing nodes with strength

Figure 3 Nodes in cortical regions contralateral to the controlled cortical impact (CCI) site show a significant increase in

connectivity strength at Days 2 and 30 post-injury. (A) A representative T2 anatomical scans highlighting the extent of cortical injury

with CCI in the right hemisphere. Lesion ROIs were generated in CCI regions to capture resting state signals from the injury site and

homologous contralateral representations. (B) 3D functional connectome maps at 10% edge density for control and CCI rats imaged 2- and

30-days post-injury. Scale bars are edge weights. (C) Overall graph strength did not different between groups. Data are mean 6 standard

error at 10% edge density. (D) Minimum spanning tree for same networks in B, illustrating strongest weighted pairwise correlations. (E)

Network statistical maps comparing nodal strength and edge weights between CCI Day 2 or Day 30 and controls (randomization test, 10 000

permutations; blue nodes have P< 0.05 and Cohen’s d� 0.08, orange nodes are non-significant, and grey lines P< 0.05).
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values at a predetermined degree value, k. For each k-

level subgraph, Uw is calculated as the ratio of the sum

of edge weights that connect nodes of degree k or higher

(W>k) to the total possible number of summed weights36:

Uw rð Þ ¼ W > k
PE> r

l¼1 wrank
1

To assess network integration and efficiency, we ana-

lysed the clustering coefficient (CC; an index of the num-

ber of connected neighbours of a node),37 characteristic

path length (CPL; the lowest average number of edges

between node pairs) and the small world coefficient

(which is >1 for efficient small world networks).38

Global efficiency was determined as the average inverse

of CPL. Edges were randomly swapped 10 times to gen-

erate randomized graphs, preserving original degree and

strength distributions.29,39 Small world index was then

calculated as the ratio of lambda to gamma coefficients,

where lambda is the ratio of real to random network

CC, and gamma is the ratio of real to random network

CPL.40

Functional connectivity network
visualizations

Functional connectivity networks were visualized in

BrainNet viewer.28 Center coordinates for each ROI were

generated based on parcellations on a previously pub-

lished rat brain template.26 A 3D whole brain surface

mesh file of the rat brain template (in *.byu format) was

generated using an image binarization command in FSL

(fslmaths)24 and mesh construction tools in ITKSNAP.41

Several 3D brain maps were generated. A first series of

connectivity strength maps were produced with the size

of nodes (spheres) weighted by node strength and the

edges (lines connecting node pairs) weighted by the

Pearson coefficient between pairs of nodes (non-thresh-

olded to show all edges at 10% density). Additional

maps were generated with node and edge colours repre-

senting the module assignment (e.g. community affiliation

vector) and node size weighted by eigenvector centrality

scores or participation coefficient values.

Statistical analysis

Statistical analyses and data plotting were carried using

MATLAB and GraphPad Prism 9. Two-tailed permuta-

tion tests (10 000 randomized inter-group data point

swaps) were used to compare data from controls to each

of the CCI groups.42,43 Significant differences between

groups were considered for P-values < 0.05 and an effect

size equal to or greater than 0.8 (large to very large ef-

fect size range).44 For nodal metrics and pairwise edge

comparisons, false discovery rate (FDR) adjustments to

P-values were carried out using the Benjamini–Hochberg

linear step-up procedure.45 We should note, however,

that network metrics, particularly across individual spa-

tially distributed nodes, can be highly correlated due to

the physical proximity between certain nodes in the brain

and because of inherent correlative structure produced by

the Pearson r-values used as edge weights. Familywise

and even FDR P-value corrections in spatial/anatomical

data points that rely on correlated measures (e.g. shared

signal components across multiple regional data points)

can thus significantly reduce power. Thus, FDR adjusted

P-values are reported along with uncorrected permutation

test P-values and effect sizes, although the latter two cri-

teria for significance are used here. For global graph met-

rics, P-values for repeated tests over different edge-density

thresholds were adjusted using a Bonferroni–Holm (BH)

procedure.46,47

Data availability

All raw or processed image data sets are available upon

request to the corresponding author. Acknowledgement

of the funding support for the study leading to the collec-

tion of the MRI data and reference to the original pub-

lished study will be requested.

Results

Structural differences between
control and CCI rats

Brain structural differences between control and CCI rats

were observed, even after non-linear warping of each

anatomical scan to a reference anatomical template.

Figure 2 (top) shows group-averaged normalized (log)

Jacobian transformation images of control and CCI Day

2 and Day 30 rats. Tissue volumetric stretching (expan-

sion) changes relative to the template are noted in yel-

low-to-red intensity colours and shrinking (contractions)

in light-to-dark blue. On average, the control group

shows expansion of the cortical mantle along with mod-

est increases in callosal white matter and underlying sub-

cortical (thalamic) areas. The intensity of the observed

structural increases differed in CCI rats, particularly at

Day 2 post-injury. CCI Day 2 rats had on average, less

cortical expansion and greater subcortical expansion,

with some contraction of white matter structure (sple-

nium of the corpus callosum). Structural differences be-

tween CCI Day 2 and controls were less intense in CCI

Day 30 rats (Fig. 2, top).

Figure 2 (bottom) shows representative anatomical

images of four CCI rats on Day 2s and 30, which were

registered to the anatomical template. The CCI epicentre

sustained significant localized cortical damage across sub-

jects on Day 2, which appeared to expand below the cor-

tex to underlying white matter and ventrally towards

ipsilateral dorsal hippocampal and thalamic areas, similar

to previously reported in histological assessments.48 The
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structural differences between the control and CCI groups

were partly, but not completely, corrected by the symmet-

ric normalization warping. Areas outside the CCI epi-

centre, including contralateral structures, appeared well

aligned to the template and its accompanying

parcellation.

Contralesional increases in node
strength were observed on Days 2
and 30 post-CCI

Figure 3B shows 3D functional connectome maps of

control (n¼ 23) and CCI groups (Day 2 n¼ 23 and Day

30 n¼ 8). Compared to controls, individual nodes on the

contralateral hemisphere to the CCI site had greater

mean node strength values on both Days 2 and 30.

Visualization of this effect is enhanced in minimum span-

ning tree maps in Fig. 3D. In addition, reductions in

node strength were observed at the ipsilateral CCI area

on Day 30. When averaged across the entire brain, the

local differences in node strength were not significantly

different at a network-wide level (Fig. 3C). However,

differences between control and CCI groups were sup-

ported by two-tailed permutation t-tests (Fig. 3E). In

Fig. 3E, blue spheres indicate areas of significant

differences in node strength between CCI and control

rats (P< 0.05, Cohen’s d� 0.8). These areas of significant

differences compared to control group were largely pre-

sent in contra-lateral cortex on Day 2 but included ipsi-

lateral structures on Day 30 post-CCI. Differences in

edges were also investigated between control and CCI

groups and these are highlighted as grey connections be-

tween nodes in Fig. 3E (P< 0.05, Cohen’s d� 0.8). We

observed a higher density of significantly different edge

weights between control and CCI 30 than in Day 2 CCI

rats.

Node strength values were compared between control

and CCI groups at an edge density threshold of 10%

(Fig. 4). On Day 2, CCI rats had greater node strength

than controls in the contralateral secondary visual cortex

(t¼�3.0, P¼ 0.003, FDR¼ 0.08, d¼�0.89), ventral subic-

ulum (t¼�2.8, P¼ 0.006, FDR¼ 0.07, d¼�0.82), globus

pallidus (t¼�3.0, P¼ 0.003, FDR¼ 0.13, d¼�0.89), ven-

troposterolateral thalamic nucleus (t¼�3.0, P¼ 0.004,

FDR¼ 0.06, d¼�0.87) and lesion nodes 4 and 5

(t¼�3.2, P¼ 0.002, FDR¼ 0.16, d¼�0.94 and t¼�3.0,

P¼ 0.003, FDR¼ 0.07, d¼�0.89, respectively), which

correspond to different subregions of the primary visual

cortex (Fig. 4A and C). On Day 2, CCI rats had lower

node strength than controls in ipsilateral lateral orbital

Figure 4 Left hemisphere regions contralateral to the CCI location show increases in node strength at Day 2 post-injury,

and ipsilateral nodes reductions in node strength. (A) Node strength differences in several cortical and thalamic regions on Day 2

post-injury. (B) Effect sizes for the differences between control and Day 2 CCI are shown in the bottom graph. (C) Node strength differences

in several cortical and thalamic regions on Day 30 post-injury. (D) Effect sizes for the differences between control and Day 30 CCI are shown

in the bottom graph. Significant difference between control and CCI Day 2* or Day 30**, P< 0.05 (permutation test) and Cohen’s d� 0.80.

Data in bar plots in the top row are mean 6 standard error at 10% edge density. BF, barrel field; CA2, hippocampal CA2 area; GP, globus

pallidus; L, left; Lorb, lateral orbital cortex; LD, laterodorsal; Les1–5, lesion areas 1–5; OlfTub, olfactory tubercle; preMM, pre-mammillary

nucleus; PAG, periaqueductal grey; R, right; SSC1, primary somatosensory cortex; Sh, shoulder; Thal, thalamus; VIS2, secondary visual cortex;

VIS1, primary visual cortex; VSUB, ventral subiculum; VPL, ventroposterolateral; VM, ventromedial.
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cortex (t¼ 2.8, P¼ 0.006, FDR¼ 0.08, d¼ 0.82), olfactory

tubercle (t¼ 2.7, P¼ 0.007, FDR¼ 0.07, d¼ 0.80) and

laterodorsal thalamic nucleus (t¼ 2.8, P¼ 0.005,

FDR¼ 0.08, d¼ 0.84) (Fig. 4A and C).

On Day 30, CCI rats had greater node strength than

controls in contralateral primary somatosensory cortex bar-

rel field (t¼�2.3, P¼ 0.04, FDR¼ 0.30, d¼�0.97) and

shoulder/limb regions (t¼�2.7, P¼ 0.02, FDR¼ 0.28,

d¼�1.51), primary visual cortex (t¼�2.4, P¼ 0.03,

FDR¼ 0.26, d¼�1.17) and lesion node 5, which corres-

pond to a different subregion of primary visual cortex

(t¼�2.6, P¼ 0.02, FDR¼ 0.27, d¼�1.27). Increased

node strength was also observed in ipsilateral premammil-

lary nucleus (t¼�2.2, P¼ 0.046, FDR¼ 0.30, d¼�1.03)

(Fig. 4B and D). On Day 30, CCI rats had lower node

strength than controls in ipsilateral primary visual cortex

(t¼ 3.2, P¼ 0.007, FDR¼ 0.43, d¼ 0.94), hippocampal

CA2 (t¼ 2.6, P¼ 0.02, FDR¼ 0.25, d¼ 0.93), periaqueduc-

tal grey (t¼ 3.5, P¼ 0.003, FDR¼ 0.46, d¼ 0.92), latero-

dorsal thalamic nucleus (t¼ 3.2, P¼ 0.007, FDR¼ 0.30,

d¼ 0.94), ventromedial thalamic nucleus (t¼ 2.9, P¼ 0.01,

FDR¼ 0.34, d¼ 0.87), ventroposterolateral thalamus

(t¼ 2.8, P¼ 0.02, FDR¼ 0.31, d¼ 0.82) and lesion nodes

1 and 5, which correspond to different subregions of the

primary visual cortex (t¼ 2.8, P¼ 0.02, FDR¼ 0.34,

d¼ 0.90; t¼ 2.3, P¼ 0.04, FDR¼ 0.29, d¼ 0.80) (Fig. 4A

and C). In summary, on Day 2 post-injury there are mostly

contralateral increases in node strength, whereas both

contralateral increases and ipsilateral decreases are observed

on Day 30.

Increased modularity and

segregation of ‘hub-like’ nodes at

2 days post-injury

In addition to examining the strength of connectivity be-

tween individual nodes, we investigated the organization

of functional connectivity in control and CCI groups

(Fig. 5). We observed a significantly greater modularity

index in CCI Day 2 rats versus controls. This increase

was significantly different relative to control group for

edge density values of 6–40% (t¼�2.7 to �4.0,

P¼ 0.009–0.00001, BH¼ 0.03–0.002, d¼�0.79 to

�1.17). No differences in modularity were observed be-

tween controls and CCI rats imaged 30 days post-injury

(Fig. 5A). In addition, no differences between the groups

were observed in the size of the largest module

(Fig. 5B). However, the total number of detected mod-

ules was lower in CCI Day 2 rats compared to the con-

trol group (Fig. 5C). This was significant for edge

density threshold values of 12% (t¼ 2.7, P¼ 0.009,

BH¼ 0.14, d¼ 0.80), 14% (t¼ 2.8, P¼ 0.005, BH¼ 0.01,

d¼ 0.83), 18% (t¼ 2.8, P¼ 0.007, BH¼ 0.12, d¼ 0.81),

20% (t¼ 3.6, P¼ 0.0005, BH¼ 0.01, d¼ 1.06) and 24%

(t¼ 2.9, P¼ 0.004, BH¼ 0.08, d¼ 0.84).

Figure 5D shows 3D connectome maps with node

sizes scaled by eigenvector centrality scores (edge density

10%). In CCI Day 2 rats, nodes in the contralateral cor-

tex had the highest eigenvector centrality values (light

blue) compared to nodes in the same anatomical location

in control rats, whereas bilaterally located nodes in front-

al cortical and basal forebrain areas (red nodes) had the

lowest. In CCI Day 30 rats, nodes in the ipsilateral cor-

tex had the lowest eigenvector centrality values, whereas

nodes in frontal cortical and basal forebrain areas were

similar to controls. We examined the mean eigenvector

centrality values for all nodes contained in each module

(Fig. 5E). No differences between control and TBI

groups were observed in eigenvector centrality scores

across the different modules. We next examined the

mean eigenvector and betweenness centrality values for

all nodes forming part of the ipsi- and contralateral le-

sion sites (Figs. 3A and 5F–I). Contralesional nodes had

significantly higher eigenvector scores in CCI Day 2 rats

compared to controls (t¼�2.5, P¼ 0.02, d¼�0.72)

(Fig. 5F). CCI Day 30 rats showed a similar but non-

significant trend in the contralesional cortex (t¼�1.7,

P¼ 0.08, d¼�0.74). On Day 30 post-CCI, rats had

lower ipsilateral cortex eigenvector scores compared to

controls (t¼ 2.96, P¼ 0.02, d¼ 1.01) (Fig. 5F).

Eigenvector centrality scores trended lower in CCI Day 2

rats compared to control rats although this did not reach

statistical significance. No differences in betweenness cen-

trality were observed between the groups (Fig. 5G and

I).

Figure 6A shows 3D connectome maps with node sizes

scaled by the participation coefficient value (edge density

10%). In CCI Day 2 rats, nodes in frontal cortical and

basal forebrain areas had low participation coefficient

values compared to the same nodes in control rats

(Fig. 6A, red coloured nodes middle 3D map compared

to left 3D map). In CCI Day 30 rats, nodal participation

coefficient values resembled those of control rats (red col-

oured nodes in 3D map on right). We assessed the mean

participation coefficient for all nodes contained in each

module (Fig. 6B). Compared to controls, nodes in the

largest module of CCI Day 2 rats had significantly lower

participation in cross-modular connectivity (t¼ 3.4,

P¼ 0.001, BH¼ 0.006, d¼ 0.99). We also determined the

mean participation coefficient for all nodes in the ipsi-

and contralateral lesion sites (Fig. 6C). Participation co-

efficient values of contralesional nodes were not different

from controls, although a trend towards reduction in

CCI Day 2 rats was observed (t¼ 1.8, P¼ 0.07, d¼ 0.53)

(Fig. 6C). Nodes in the ipsilateral cortex, however, had

lower participation coefficient values in CCI Day 2 rats

compared to controls (t¼ 3.1, P¼ 0.005, d¼ 0.90). This

difference was not observed on Day 30 post-injury.

Nodal classification based on the participation coefficient

did not differ between groups (Fig. 6D).

Finally, differences in rich club organization and the

degree of assortative mixing of nodes were both assessed
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(Fig. 6E and F, respectively). Owing to the observed in-

crease in contralateral node strength in the TBI groups

(Fig. 3E) and increased contralateral eigenvector central-

ity in Day 2 CCI rats (Fig. 5F), we anticipated similar

increases in how high strength nodes interact with other

high strength versus low strength nodes. Although we did

not observe any group differences in the rich club index

(Fig. 6E), we observed a significant increase in assorta-

tivity index in CCI Day 2 rats compared to controls

(Fig. 6F) (2%: t¼�3.9, P¼ 0.0004, BH¼ 0.007,

d¼�1.15; 4%: t¼�2.9, P¼ 0.005, BH¼ 0.10,

d¼�0.86, 6%: t¼�2.4, P¼ 0.005, BH¼ 0.35,

Figure 5 Controlled cortical impact increased network modularity and node eigenvector centrality. (A) Modularity index at

edge densities from 2 to 40%. Modularity index is significantly higher in CCI Day 2 post-injury relative to control rats. (B) Size of the largest

detected module at edge densities from 2 to 40%. No differences in the size of the largest module. (C) Number of detected modules at edge

densities from 2 to 40%. The mean number of detected modules was lowest for CCI Day 2 post-injury rats. (D) 3D connectome maps of

node eigenvector centrality across modules. colour coding represents modular group. (E) Eigenvector centrality (EigC) scores averaged per

each module ranked from largest to smallest (1st to 4th) according to number of nodes in each module. No differences between the groups

in eigenvector centrality scores across the top four largest modules. (F) Eigenvector centrality scores averaged across nodes in the

contralesional and ipsilesional cortex. Compared to control rats, CCI Day 2 rats had higher eigenvector centrality and CCI Day 30 rats lower

scores. (G) Betweenness centrality scores averaged across nodes in the contralesional and ipsilesional cortex. No differences in betweenness

centrality. (H) Eigenvector centrality per node (x) ranked across all nodes (node x). Eigenvector centrality scores were generally lowest in

CCI Day 2 rats compared to controls. (I) Betweenness centrality per node (x) ranked across all nodes (node x). No differences in

betweenness centrality were observed. Significant difference between control and CCI Day 2* or Day 30**, P< 0.05 (permutation test) and

Cohen’s d� 0.80 (P-values in A and C adjusted using a Bonferroni–Holm procedure). Data in line plots in A–C are mean 6 standard error at

edge density thresholds from 2 to 40%. Data in bar plots in F–G and line plots in H–I are mean 6 standard error at 10% edge density.
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d¼�0.71). No differences between control and CCI

groups in the small world index, global CC and average

CPL were observed (Fig. 7).

Discussion
Our data indicate that focal injury to the rat cortex

resulted in increased node strength in the contralesional

hemisphere at Days 2 and 30 post-injury. The right-

hemispheric regions affected by the CCI injury include

large portions of the medial and lateral parietal

association cortex, the retrosplenial cortex medially, sec-

tions of the primary and secondary motor cortex and

trunk somatosensory cortex rostrally and medial and

lateral secondary visual cortex caudally. At 30 days

post-CCI, we observed significant reductions in node

strength in ipsilateral cortex. The brain regions showing

node strength differences between CCI and control rats

included cortical nodes in or adjacent to the CCI foci

(e.g. visual cortical and somatosensory areas) and struc-

tures directly ventral and ipsilateral to this region (e.g.

thalamic nuclei, hippocampus, PAG) and contralateral

homotopic cortical regions.

Figure 6 Controlled cortical impact reduced node participation coefficient. (A) 3D connectome maps showing node participation

coefficient across modules. Colour coding represents modular grouping of nodes and node size scaled by participation coefficient. (B)

Participation coefficient averaged per each module ranked from largest to smallest (1st to 4th) according to the number of nodes in each

module. Participation coefficient in the largest module (1st) is reduced in CCI Day 2 post-injury relative to control rats. (C) Participation

coefficient in the ipsilateral cortex is reduced in CCI Day 2 post-injury relative to control rats. (D) Node cartographic classifications,

including ultraperipheral (UP), peripheral (P), non-hub connector (NHC) and non-hub kinless (NHK). (E) Rich club index. (F) Assortativity

index. Positive assortativity was higher in CCI Day 2 rats compared to controls. Significant difference between control and CCI Day 2* or

Day 30**, P< 0.05 (permutation test) and Cohen’s d� 0.80 (P-values in A and C adjusted using a Bonferroni–Holm procedure). Data in bar

plots in B–C are mean 6 standard error and in data in D is Box–Whisker plots with 95% confidence bands (at 10% edge density).
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In addition to node strength, we assessed network

modular organization and node centrality. The grouping

of nodes into segregated functional units or modules is a

salient characteristic of structural and functional brain

networks and is highly conserved across various spe-

cies.49–55 This graph metric of network segregation has

been shown to be disrupted in TBI patients14 and is re-

sponsive to cognitive training.56 In this study, we

observed that rats imaged 2 days after CCI had increased

modularity. The CCI Day 2 rats had populations of

nodes with either low or high eigenvector centrality

scores that were segregated into different modules. High

centrality scores were observed in modules with nodes

located at or near the contralesional cortex. Low central-

ity scores were observed in modules with nodes anatom-

ically more distant from the injury site. This segregated

pattern of low and high centrality nodes is consistent

with an observed increase in positive assortative mixing

of nodes in CCI Day 2 rats. Adding to this segregation

of high and low influence nodes was a reduction in node

participation in cross-module interactions (reduced par-

ticipation coefficient) in CCI Day 2 rats. These findings

suggest that in early stages post-CCI there is transient

network topology involving increased functional special-

ization of separate pools of high and low influence nodes

within highly self-contained modules. This network top-

ology appears unfavourable to neuronal communication

and to the ‘binding’ of separate streams of information.

By Day 30 post-injury, nodes in the injury epicentre had

lower eigenvector centrality scores compared to control

rats, perhaps due to ongoing loss of influence of lesioned

structures on overall network topology. However, cross

module interactions and assortative mixing did not differ

from control rats—suggesting partial recovery.

There are a growing number of clinical TBI studies

that use graph theory analytical methods to investigate

functional network topology. Nakamura et al. were

among the first to demonstrate the value of graph theory

metrics as potential biomarkers of TBI progression. They

imaged 6 subjects over the course of 3- and 6-months

post-injury and observed significant reductions in node

strength and graph sparsity.57 The small cohort of

patients had varying lengths of hospitalization, age, gen-

der and location of contusions, but all participants had

an initial (e.g. 24 h) Glascow Coma Score of 3–8, in the

severe range. Compared to controls and to the 6-month

timepoint of recovery, at 3-months of recovery TBI

patients had shorter CPL, increased global and local effi-

ciency, and reduced small worldness at a graph sparsity

of 50%.57 At 6-months post-trauma, mild TBI patients

suffering from post-concussion syndrome had reduced

modularity compared to controls and this was correlated

with symptom severity.58 Consistent with the present

work in rats, patients exposed to blast-related mild TBI

had lower participation coefficient values compared to

non-TBI controls that also experienced blasts.14

Interestingly, reductions in nodal participation in cross-

module interactions was most severe within the early

timepoint of 90 days post-blast compared to subsequent

imaging sessions at 6- and 12-month follow-up.14 This

suggests that cross-modular functional connectivity

returns over the course of recovery and the participation

coefficient calculation is responsive to these network level

changes.

At approximately 8 years after injury, chronic TBI

patients had significantly lower connectivity within de-

fault mode and frontoparietal control networks (DMN

and frontoparietal control network, respectively), and

reduced connectivity of these two networks with the dor-

sal attention network.59 At a graph sparsity threshold

greater than in the above cited work by Nakamura

et al.,57 TBI patients had significantly reduced network

efficiency.59 Decreased local efficiency and degree central-

ity were also reported in mild TBI follow imaging visits

at 3 months post-injury, with regions of the DMN being

most affected.60 This is consistent with moderate and se-

vere TBI patients 1-year post-injury, which had lower

local integration (lower CC) and higher CPL (less effi-

ciency) compared to controls,61 and with mild TBI

patients imaged within 10 days which showed increased

node strength and CPL.62 These clinical mild TBI studies

agree for the most part that functional connectivity

Figure 7 No differences in small world index, clustering coefficient and mean characteristic path length were observed

between control and CCI rats. Left, small world index. Middle, clustering coefficient. Right, characteristic path length. Data are plotted as

mean 6 standard error at edge densities from 2 to 40%.

Functional connectomics and traumatic brain injury BRAIN COMMUNICATIONS 2021: Page 13 of 17 | 13



networks of patients have high CPLs (low efficiency),

increased node strength, lower local integration (low clus-

tering). In addition, communication between large func-

tionally specialized groups of nodes (such as DMN,

frontoparietal control network and dorsal attention net-

work) is disrupted in TBI patients. Our data in the rat

CCI model can be considered severe early stage TBI, with

a limited analysis across the lifespan of young adult

rodents. Nonetheless, our results are in general agreement

with increased functional specialization, increased strength

of connectivity and reduced cross module communication

in early TBI, which is partially recovered by 30 days. It

should be noted that variations across studies may be

due to the variability of brain injury across individuals

and differences in short- and long-term TBI effects (e.g.

location, extent or magnitude of damage, neurological

and neuropsychiatric sequelae, age, etc.). In addition,

assumptions in the initial steps in network processing

such as the choice threshold (graph sparsity) or whether

to threshold or not (use individual graph sparsity) can

produce different results across laboratories. In some

cases, low thresholds that allow the inclusion of weaker

edges (much lower Pearson r values) or edges with nega-

tive values can lead to spurious results.

Compared to clinical studies, there have been fewer

animal fMRI studies of TBI, particularly studies focused

on analysing network interactions following controlled

focal or diffuse injury. This might be due to concerns

over the inability of fMRI connectivity measurements to

disambiguate changes in neurovascular coupling from

frank neuronal or synaptic deficits, and valid concerns

regarding the confounding effects of anaesthetics and sed-

atives used for functional imaging of rodents. Apart from

these important issues, the experimental use of methods

that allow well-controlled site-specific lesions and diffuse

injuries offers an opportunity to investigate network met-

rics as potential functional brain biomarkers of TBI. This

is illustrated in a within-subjects imaging study in the

CCI rat model by Harris et al.59 Rats were imaged in a

7 T MR scanner under continuous medetomidine sed-

ation during baseline conditions (pre-injury), and at 7-,

14- and 28-days post-injury. Their results indicated a sig-

nificant increase in global node strength, which is consist-

ent with reports of hyperconnectivity in TBI patients.63

Consistent with our present findings, CCI rats had signifi-

cantly increased node strength in contralesional cortex

and reduce strength in ipsilateral cortex. In terms of

topological changes over time, they report decreases in

CPL, increased efficiency, consistent with initial work in

TBI patients by Nakamura et al.57 Their data also

showed increased global network clustering and transient-

ly reduced modularity index (on Day 7 compared to pre-

injury), which is consistent with diffusion MRI based

tractography studies in the closed head weight drop

model in mice.64 We did not observe differences in

weighted CC between the groups (in our between-subjects

design), but we did observe a similar but non-significant

trend towards increased global transitivity and binarized

CC in CCI Day 2 rats compared to controls (data not

shown). A limitation regarding comparisons between ro-

dent TBI studies and human TBI should be noted.

Namely, as noted above there is substantial evidence that

in human TBI functional systems such as DMN, FPN

and dorsal attention network sustain long-term impair-

ments in connectivity,59 while in rat models the damage

seems restricted to the type of TBI model used and the

impacted region. The functional deficits in DMN, FPN

and dorsal attention network implies that in human TBI

network-specific deficits may develop overtime whereas in

rats recovery is driven by changes in the region originally

injured.

Differences between the Harris et al. study59 and the

present study are perhaps due to the experimental design

(e.g. mild to moderate TBI in Harris et al. versus a more

severe contusion model used in the present study) and/or

methods (alpha-2 agonist sedative-hypnotic versus light

general anaesthesia). Also, the independent use of either a

within-subjects versus a between-subjects design limits

interpretations between studies. Within-subjects design are

highly robust in terms of tracking individual, subject-spe-

cific changes over time and over the course of disease

progression and recovery. However, experience-dependent

changes can also confound interpretations when between-

subjects control comparisons are not included in the

study. This point is in part illustrated in previous imaging

work by Orsini et al. 65 and Colon-Perez et al.,66 which

used a combination of both within- and between-subjects

comparisons and observed changes over the course of

several imaging sessions that were separated by weeks. In

Orsini et al.,65 while drug treatment was observed to

lead to increases in functional connectivity (when com-

paring pre- to post), these changes were not specific to

the drug and were observed with a natural reward given

for the same amount of time. In addition, baseline con-

trol groups receiving no treatment over the course of the

3 imaging sessions still showed differences when com-

pared to baseline imaging session.65 In Colon-Perez et

al.,66 the inclusion of an untrained group of rats func-

tionally imaged at the same timepoints as aged and

young rats that underwent cognitive training was neces-

sary to demonstrate that in fact training increased rich

club organization and node strength.66 Thus, there are

gains in statistical power by including a mixed between/

within-subjects multisession imaging design in TBI re-

search in animal models. There have been other signifi-

cant functional imaging studies in animal models of TBI.

These have focused on traditional seed-based functional

connectivity but did not examine functional network

topology.15,18,67

The graph-theory results obtained in the rat TBI model

used in this study are likely to be related to underlying

changes in excitatory–inhibitory neuron balance in deep

layer cortical circuits at the site of injury and changes in

neurovascular coupling as a result to trauma to cortical
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vessels. Reductions in node strength at the injury epi-

centre could involve both vascular and neuronal damage

and slow recovery of function. Increased node strength in

contralesional cortex may involve increases in underlying

synchronous BOLD activity. This increase in node

strength and synchronous activity may drive much of the

differences in modular organization, cross modular com-

munication and high eigenvector centrality of contrale-

sional nodes between CCI Day 2 compared to control

rats. Evidence of cellular and neurophysiological links to

stimulus-based BOLD hyperexcitability in contralesional

cortex of CCI rats have been previously reported.19

Hypoexcitability in ipsilateral cortex has been demon-

strated for up to 56 days in the FPI rat model.17

Glutamatergic hyperexcitability involved in TBI-induced

epileptiform activity was shown in the CCI injured rat

cortex (at 2–4 weeks post-injury) and was observed to

spread to adjacent regions, an effect associated with loss

of GABAergic control.48,68 In mice, CCI reduced

GABAergic cell counts in the ipsilateral dorsal and medial

hilar of the hippocampal dentate gyrus and reduced in-

hibitory post-synaptic currents were observed as early as

1 week and for as long as 13 weeks.69 Under control con-

ditions (non-TBI), transcallosal fibres, which in adults are

almost exclusively comprised of glutamatergic projections,

exert inhibitory control over contralateral primary sen-

sory receptor fields.70–73 Ipsilateral reductions in neuronal

activity have been observed to widen contralateral neo-

cortical receptive fields, possibly by reducing transcallosal

cross-hemispheric inhibitory control.72 Contralateral cor-

tical BOLD increases in response to limb stimulation in

rats is accompanied by ipsilateral BOLD signal reduc-

tions.74 These separate lines of evidence suggests that

reductions in the influence of neuronal populations in the

ipsi-lesioned cortex can remove these transcallosal inhibi-

tory control inputs over the contralateral cortex. The

microcircuit mechanism may involve transcallosal gluta-

matergic projections that synapse onto contralaterally

located GABAergic neurons. While most callosal inputs

terminate in layer 2/3 pyramidal neurons, these also ter-

minate on soma and dendrites of parvalbumin positive

GABA interneurons in deep neocortical layer 6.75 These

neurons are thought to play a key role in synchronization

of thalamocortical loops.75 Loss of transcallosal glutama-

tergic inputs may therefore lead to decrease excitability of

GABA cells and result in pyramidal overexcitation of the

contralateral cortex. This could partly explain the

observed compensatory increases in functional connectiv-

ity and reorganization of hub nodes. Spontaneous outputs

from these disinhibited pyramidal cells can lead to down-

stream plasticity related changes in neuronal activity, as

observed in peripheral sensory deprivation models.73,76

We should indicate that although neocortical changes

in GABA and glutamatergic excitability can play a role

in brain wide changes in functional connectivity in TBI,

mechanisms involved in neurovascular coupling are also

likely important.77–79 Loss of synchrony in BOLD could

reflect underlying changes in neurovascular coupling, par-

ticularly with the occurrence of gliosis and astrocytic

changes in the injury epicentre. The neuronal and cere-

brovascular/hemodynamic mechanisms contributing to the

observed increases in contralesional node strength, and

the alterations in modularity and ‘hub’ node organiza-

tion, warrant future investigations. It is important to

point out several limitations of the present work, which

will be pursued in future research. First, multimodal

imaging, including diffusion MRI, T2* parametric map-

ping and cerebral blood flow measurements were not

included in the present work and these specific imaging

modalities are important to validate results obtained with

fMRI. Second, correlations between graph theory metrics

and behavioural assessments, such as cognitive tasks or

measurements of anxiety like behaviours will be import-

ant to include in future studies. Network assessments in

TBI animal models opens the door to establishing mech-

anistic links between graph theory metrics and underlying

neuronal, glial and vascular mechanisms, and behaviour.

Understanding the mechanisms of these and other

reported connectomic changes following TBI can help

with therapeutic interventions that use functional connec-

tomic readouts as indices (biomarkers) of recovery or

treatment efficacy.
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