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Abstract

Background and Purpose: Individuals born very preterm (before 33 weeks of gestation, VPT) are at risk of damage to
developing white matter, which may affect later cognition and behaviour.

Methods: We used diffusion tensor MRI (DT-MRI) to assess white matter microstructure (fractional anisotropy; FA) in 80 VPT
and 41 term-born individuals (mean age 19.1 years, range 17–22, and 18.5 years, range17–22 years, respectively). VPT
individuals were part of a 1982–1984 birth cohort which had been followed up since birth; term individuals were recruited
by local press advertisement. General intellectual function, executive function and memory were assessed.

Results: The VPT group had reduced FA in four clusters, and increased FA in four clusters relative to the Term group,
involving several association tracts of both hemispheres. Clusters of increased FA were associated with more severe
neonatal brain injury in the VPT group. Clusters of reduced FA were associated with lower birth weight and perinatal
hypoxia, and with reduced adult cognitive performance in the VPT group only.

Conclusions: Alterations of white matter microstructure persist into adulthood in VPT individuals and are associated with
cognitive function.
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Introduction

Preterm birth is associated with a range of adverse outcomes,

including impaired cognitive function and academic under-

performance [1–3]. These sequelae have been attributed to

perinatal brain injury [4], particularly when this involves white

matter [5–11]. White matter may be susceptible to damage after

preterm birth because of the developmental vulnerability of

oligodendrocyte precursors [12,13]. A recent DT-MRI study [71]

reported that the pattern of diffusivity abnormalities in extremely

preterm neonates suggested an oligodendroglial rather than axonal

lesion. White matter volume has been shown to be reduced in

preterm adolescents [10,14]. Diffusion tensor magnetic resonance

imaging (DT-MRI) provides information about the microstructure

of white matter. The principle DT-MRI measure is fractional

anisotropy (FA), which describes the degree to which water

diffusion is constrained in a certain direction [15], and is likely to

be sensitive to both the alignment of white matter fibres and their

structural integrity, including the degree of myelination [16–18].

FA is correlated with age [19,20], and with cognitive maturation

[21–23]. DT-MRI studies indicate that white matter microstruc-

ture is altered in preterm neonates [24–26] and children [21] and

in very-low-birth-weight adolescents [29,30] and is associated with

neurocognitive outcome [27–30]. It has been suggested that

DT-MRI indices may be a useful indicator of individuals at

greatest risk of poor developmental outcomes [72]. Few studies

have followed preterm-born individuals into adulthood [11,31,32],

and it is at present unclear to what extent white matter

abnormalities may be attenuated by brain growth and maturation.

In this study we assessed a group of young adults born before 33

weeks of gestation (very preterm; VPT) and a Term-born

comparison group using DT-MRI and neuropsychological

evaluation. We hypothesised that the VPT group would show

altered patterns of white matter microstructure, and that these

would be associated with perinatal adversity and with adult

cognitive function.

Methods

Study Participants
VPT individuals were recruited from a cohort born before 33

weeks of gestation between 1982 and 1984 and admitted to

University College London Hospital within five days of birth.

Three hundred and two individuals survived and were recruited

into the study [7,8]. At 15 years, 111 individuals were assessed [7].

These individuals were re-contacted and 87 (78%) underwent DT-

MRI, at mean age 19.1 years (range 17–22 years). VPT

individuals who were not assessed did not differ significantly from
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those who were assessed in their gestational age (t = 1.55, df = 469,

p = 0.12), Apgar scores at 1 minute (x2 = 0.3, df = 1, p = 0.86) and

5 minutes (x2 = 0.9, df = 1, p = 0.35), gender (x2 = 0.82, df = 1,

p = 0.37), or socioeconomic status (SES), determined according to

the Registrar General’s (1991) classification [67], (x2 = 1.3, df = 4,

p = 0.87).

Forty-nine term-born individuals were recruited by advertise-

ment in the South London press at a mean age of 18.5 years (range

17–22 years). They were screened for the presence of neurological

conditions and a history of intracranial infection or head injury.

Neuropsychological Testing
VPT and Term participants were assessed, blind to group

membership, using the Wechsler Abbreviated Scale of Intelligence

(WASI) [33]; Controlled Oral Word Association Test (COWAT)

[34]; Hayling Sentence Completion Test (HSCT) [35]; California

Verbal Learning Test (CVLT) [36]; Wechsler Memory Scale

immediate and delayed picture recall [37].

Neuropsychometry was divided into 3 domains: General

intellectual function (full scale IQ, verbal IQ, performance IQ);

Executive function (semantic and phonological verbal fluency;

HSCT); Memory (CVLT total score; immediate and delayed

recall on WMS). For the VPT group, Z scores of individual tests

were computed, taking the Term group mean and standard

deviation as reference. Within the Executive and Memory

domains, Z scores were summed to create a global score which

was then used in subsequent correlational analyses.

Neonatal Cerebral Ultrasound Classification
Ultrasound (US) ratings were performed on the VPT group in

the perinatal period, using a linear US array. Participants were

divided into 3 groups on the basis of these ratings (0 = normal;

1 = uncomplicated periventricular haemorrhage; 2 = periventricu-

lar haemorrhage and ventricular dilatation) [8,38] (see Table 1).

Measurement of Brain Volumes
Three-dimensional T1-weighted inversion recovery prepared

spoiled gradient recalled structural images (IR-SPGR) were

acquired on a GE Signa 1.5 Tesla MRI system (General Electric,

USA) in the same session as the DT-MRI data. The volume of the

lateral ventricles was determined by the Cavalieri method, using

‘MEASURE’ (Johns Hopkins University, Baltimore, USA) [39].

Ventricular sizes were measured by a single operator. Cerebellar

size was measured using similar methods, and total grey and white

matter volumes were calculated using SPM5 (http://www.fil.ion.

ucl.ac.uk/spm/) [40]. Corpus callosum cross-sectional area was

measured using Analyze7c, following the method described in

Allin et al. (2007) [31]. Using this method, the corpus callosum was

divided into 4 equal sections on a mid-sagittal slice (anterior, mid-

anterior, mid-posterior and posterior). Structural MRI data has

been reported in detail elsewhere [31,40].

DT-MRI
DT-MRI images were acquired in the same session as the

IR-SPGR images. The sequence provided isotropic voxels (2.5 mm

62.5 mm62.5 mm, reconstructed as 1.875 mm61.875 mm6
2.5 mm) with coverage of the whole head, gated to the cardiac

cycle, with an echo time of 107 ms, and effective repetition time of 15

R-R intervals. The duration of the diffusion encoding gradients was

17.3 ms, giving a maximum diffusion weighting of 1300 s/mm2 [41].

At each location, seven images without a diffusion gradient (i.e.,

b = 0 s/mm2) were acquired, along with 64 diffusion-weighted

images (1300 s/mm2), with the latter having gradient directions

distributed uniformly in space. Diffusion-weighted images were

corrected for eddy-current distortions, and masked using a modified

version of the brain extraction tool from the Functional Software

Library (FSL) (Oxford University, UK) [42–43]. The method of

Basser et al. (1994) [17]. was used to determine the diffusion tensor in

each voxel, from which fractional anisotropy (FA) images were

calculated.

DT-MRI Processing
Group mapping techniques, derived from the computational

morphometry methods developed for structural MRI were used

[44,45]. These techniques compare parametric maps calculated

from MRI data (in this case, FA) between subjects or groups,

following registration of each subject’s map into a standard space.

Initial FA images were calculated using locally written software,

and registered using Statistical Parametric Mapping (SPM2,

University College London, UK). A two-stage registration process

was used, analogous to the ‘optimised voxel-based-morphometry’

approach [46]. To reduce the potential for mis-registration, VPT

individuals were excluded if their ventricular volume exceeded the

maximum measured in the Term group (46 mm3).

The mean T2-weighted (b = 0) image for each subject was first

registered to the SPM2 EPI template and the derived warping

parameters applied to the corresponding FA image. Normalised FA

images of all participants were averaged and smoothed to create a

new, study-specific template, to which each subject’s FA images

were then re-registered. Registered FA images were also segmented

(again in SPM2) to give maps of the probability of a tissue being

either white or grey matter, and these segmented images were

thresholded at a low (10%) probability to provide a binary mask of

white matter. (An accurate segmentation was not essential, and a

deliberately relatively liberal threshold was used, in order to create a

slightly ‘over inclusive’ mask). Next, the images were smoothed with

a 56565 Gaussian kernel to minimise residual mis-registration.

Finally, the smoothed images were multiplied by the binary mask,

restricting subsequent analyses to white matter only.

Between-group differences in FA were estimated by fitting an

analysis of covariance (ANCOVA) model at each intracerebral

voxel in standard space. This model examined group differences

between VPT and Term subjects, using permutation based testing,

implemented in the XBAM package (developed at The Institute of

Psychiatry, London, UK http://www.brainmap.co.uk/) to assess

statistical significance at both the voxel and cluster levels [47].

Initially, a relatively lenient p-value (p#0.05) was set to detect voxels

putatively demonstrating differences between groups. At this stage,

we considered only those voxels at which all subjects contributed

data. Along with the masking procedure described above, this

restricts the analysis to core white matter regions, reducing the

search volume (and thus the number of comparisons made) and also

avoiding testing at the grey/white interfaces, where the high grey/

white contrast of FA images exacerbates any edge effects. The

programme then searched for spatial clusters among these voxels,

and tested the ‘mass’ of each cluster (the sum of suprathreshold

voxel statistics it comprises) for significance. At the cluster level the

number of clusters which would be expected by chance alone for a

range of p-values was calculated and used to set the statistical

threshold for significance for each analysis so that the expected

number of false positive clusters would be less than one. On the

resulting cluster maps, affected white matter tracts were identified

by reference to an atlas [48]. Mean FA values were also extracted,

for each individual, from each cluster in the VPT/Term analysis,

and used to test for associations between FA differences and

cognitive function or (in the VPT group alone) perinatal variables.

White Matter after Preterm Birth
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Statistical Analysis
Socio-demographic characteristics were analysed with x2 tests

(with Yates or Fisher’s correction), and independent samples t-

tests, as appropriate. Differences in IQ were analysed with

Analysis of Covariance (ANCOVA), adjusting for the age at

assessment. Relationships between FA and perinatal variables and

between FA and neuropsychological function were assessed using

Kendall partial correlations, controlling for age at assessment and

socioeconomic status.

Ethics Statement
Ethical approval was obtained from the Joint South London

and Maudsley and the Institute of Psychiatry NHS Research

Ethics Committee. All participants gave written, informed consent.

Results

Characteristics of the Study Groups
DT-MRI data were successfully acquired on 87 VPT and 49

Term individuals. Data from seven VPT individuals who had lateral

ventricular volumes above 46 mm3, were excluded. Socio-demo-

graphic and cognitive characteristics of the two groups are shown in

Table 1. VPT and Term groups did not differ in gender distribution,

but did differ in distribution of SES, and the VPT group was slightly,

but significantly, older than the Term group at assessment (Table 1).

Subsequent analyses were corrected for age and SES.

Cognitive Function
The VPT group had significantly lower full-scale, verbal and

performance IQ than the Term group. Total CVLT score, HSCT

Table 1. Demographic details, cognitive function and neuroimaging measures for VPT and Term groups.

Term VPT Statistics

Gender F/M 22/27 39/41 x2 = 0.181; p = 0.671

Age (years) 18.6 (0.93) 19.2 (0.96) F = 14.3; p = 0.001

Socioeconomic status

I 6 5 x2 = 13.03; p = 0.011

II 21 23

III 13 45

IV 5 6

V 4 1

Neonatal

Gestational age (weeks) 40.2 (1.49) 28.9 (2.18) F = 878.5; p,0.0005

Birth weight (g) 3317.9 (385.3) 1263.6 (393.9) F = 710.5; p,0.0005

Length of apnoea (min) NA 2.02 (2.22) NA

Neonatal pH NA 7.24 (0.11) NA

General intellectual functioning

Full-scale IQ 106.3 (13.1) 95.5 (13.9) F = 18.5; p,0.0005

Verbal IQ 102.9 (13.8) 93.6 (14.9) F = 12.1; p = 0.001

Performance IQ 106.7 (15.0) 98.1 (14.9) F = 9.9; p = 0.002

Executive Function

Phonological VF 41.4 (11.1) 36.3 (10.7) F = 6.51; p = 0.012

Semantic VF 22.5 (5.0) 19.9 (5.4) F = 7.32; p = 0.008

HSCT score 5.9 (1.5) 4.8 (2.0) F = 11.1; p = 0.001

Global executive score Reference 25.7 (2.0) range [210.1 20.2]

Memory

CVLT total score 56.3 (8.7) 52.1 (10.4) F = 5.59; p = 0.02

WMS immediate 11.3 (2.3) 6.9 (17.7) F = 2.87; p = 0.093

WMS delayed 10.4 (3.0) 5.6 (17.5) F = 3.589; p = 0.061

Global memory score Reference 21.8 (3.1) range [29.2 2.5]

Brain volumes

Grey matter (cm3) 805.3 (84.8) 746.9 (75.2) F = 14.3; p,0.0005

White matter (cm3) 455.5 (50.5) 428.7 (57.0) F = 6.2; p = 0.014

Cerebellum (cm3) 140.5 (11.2) 135.8 (20.4) F = 1.5; p = 0.222

Lateral ventricles (cm3) 13.1 (7.9) 20.0 (9.8) F = 16.4; p,0.0005

Corpus callosum (mm2) 494.6 (98.2) 477.5 (104.5) F = 0.624; p = 0.431

Demographic details, cognitive function and neuroimaging measures for very-preterm born and Term-born groups. Global neuropsychological scores are the sum of
domain-specific Z scores for executive functioning and memory in the very-preterm born group. Mean and standard deviation of the Term-born group was the
reference category.(Abbreviations: CVLT: California Verbal Learning Test ; HSCT: Hayling Sentence Completion Test; NA: Not assessed; NP: Neuropsychometry; Term:
term born individuals; VPT: very-preterm born individuals; Wechsler Memory Scale; neonatal pH determined from cord blood at time of birth).
doi:10.1371/journal.pone.0024525.t001
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score, and semantic and phonological verbal fluency were

significantly lower in the VPT group. There was no significant

group difference in WMS (Table 1).

Structural Brain Measurements
Lateral ventricular volume was significantly increased in the

VPT group – even after exclusion of 7 individuals with extreme

ventricular enlargement. Total grey and white matter volumes and

corpus callosum cross-sectional area were significantly reduced in

the VPT group. There was no significant group difference in

cerebellar volume or corpus callosum cross-sectional area

(Table 1).

Group Differences in FA
FA was reduced in the VPT group relative to the Term group in

four clusters, containing a total of 4688 voxels (p = 0.0075). While

our voxel based approach provides results relating to regions of the

brain, not white matter tracts per se, comparison of these regions

with atlases [48] suggests that the differences we see fall largely

within: corpus callosum (genu, splenium and body); left and right

superior longitudinal fasciculi; left superior corona radiata; left and

right superior longitudinal fasciculi (See Table 2 and Figure 1).

Additionally, there were four clusters (containing a total of 796

voxels; p = 0.0075) in which FA was higher in the VPT group than

in the Term group. These clusters involved regions likely to

Figure 1. Group differences in FA, displayed on a white matter template. Group differences in fractional anisotropy, displayed on
representative white matter template using MRIcro (http://www.cabiatl.com/mricro/). One sagittal and one coronal view is displayed for each cluster
showing significant group differences. Cluster numbers refer to Table 1, where MNI coordinates and tract identification are given.
doi:10.1371/journal.pone.0024525.g001

Table 2. Group differences in Fractional Anisotropy (FA).

Number of
Voxels Cluster ID White Matter Regions and Tracts MNI Coordinates p

VPT,Term x y z

157 1 Corpus callosum (genu) 0 26 4 0.0009

108 2 R Superior longitudinal fasciculus 45 22 16 0.001

154 3 L Superior corona radiata 218 220 50 0.0004

4269 4 Corpus callosum (body and splenium); L&R Superior longitudinal fasciculi 14 237 6 0.0001

VPT.Term x y z

153 5 R Inferior fronto-occipital and uncinate fasciculi; anterior corona radiata 22 30 8 0.002

214 6 L Inferior fronto-occipital and uncinate fasciculi; anterior corona radiata 218 35 0 0.0001

143 7 L Superior longitudinal fasciculus 225 235 24 0.0001

286 8 R Superior longitudinal fasciculus 31 233 22 0.0001

Group differences in Fractional Anisotropy (FA). The co-ordinates of the centres of mass of significant clusters are given, along with their anatomical (tract) location.
(Abbreviations: L: left; MNI: Montreal Neurological Institute; R: Right; Term: term-born individuals VPT: very-preterm born individuals).
doi:10.1371/journal.pone.0024525.t002
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represent: left and right inferior fronto-occipital fasciculus; left and

right uncinate fasciculi; left and right superior longitudinal

fasciculi; left and right anterior corona radiata.

Relationships Between Perinatal Variables and FA
Mean FA values were extracted from the clusters in the group

maps, and relationships with other variables assessed using partial

correlations (controlling for age at assessment and SES). This

analysis was restricted to the VPT group (perinatal data were not

available for the Term group). FA in cluster 2, corresponding to

the right superior longitudinal fasciculus (VPT,Term), was

positively associated with gestational age and birth weight. FA in

cluster 4, localised to the body and splenium of corpus callosum

and bilateral superior longitudinal fasciculus (VPT,Term), was

associated with birth weight, but not gestational age. Of the

VPT.Term clusters, FA in clusters 5 and 6 (corresponding to the

right and left inferior fronto-occipital and uncinate fasciculi and

right and left anterior corona radiata) was negatively associated

with gestational age (increasing gestational age associated with

lower FA). FA in cluster 8, localised to right superior longitudinal

fasciculus (VPT.Term), was positively associated with gestational

age and birth weight (higher gestational age or birth weight

associated with higher FA) (Table 3). There was no statistically

significant association between FA and indicators of neonatal

hypoxia (neonatal pH; length of apnoea). ANOVA comparing

neonatal ultrasound categories revealed significant differences in

all 4 VPT.Term clusters, where FA was significantly higher in the

uncomplicated periventricular haemorrhage and the periventric-

ular haemorrhage plus dilatation groups (Table 4). There were no

ultrasound severity group differences in the VPT,Term clusters.

Relationships Between Cognitive Functioning and FA
There were no associations between FA and neuropsychometry

in the Term group. In the VPT group, significant associations

between FA and performance IQ and between FA and Memory

were found in all 4 of the VPT,Term clusters, such that higher

FA was associated with better cognitive function (Table 3).

Similarly, full scale IQ was associated with FA in clusters 1 and 2.

There were no associations between FA and verbal IQ, or FA and

Executive Function in any cluster.

Relationships Between Adult Neuroimaging Data and FA
Lateral ventricular volume was negatively associated with FA in

3 VPT,Term clusters 1, 3 and 4. Corpus callosum cross sectional

area was positively associated with FA in VPT,Term clusters 1, 2

and 4. There were no significant associations between total grey or

white matter volume or cerebellar volume in any FA cluster

(Table 3). There were no associations between FA and structural

brain measures in the Term group.

Discussion

We have demonstrated spatially widespread alterations in white

matter microstructure in VPT young adults, affecting areas likely

to represent the corpus callosum, sensorimotor tracts and many

long association tracts in both hemispheres. These microstructural

alterations are associated with birth weight and gestational age,

and with adult cognitive function.

Our results are consistent with other studies that have examined

FA in VPT individuals at different ages – microstructural white

matter abnormalities have been reported in preterm or low birth

weight neonates [25], infants [49], children [21,24], and

adolescents [50]. For example, Constable et al. (2008) [51]

demonstrated FA reductions in inferior fronto-occipital fasciculus,

anterior uncinate and splenium of the corpus callosum in preterm

12-year-olds. Similar patterns of FA reductions have been reported

in VLBW adolescents, affecting the internal capsule, corpus

callosum, and hemispheric association tracts [29,30]. Eikenes et al.

(2010) [52] have studied FA and mean diffusivity (MD) in very-

low-birth-weight (VLBW#1500 g) adults at a comparable age to

our sample (18–22 years). They also found decreased FA in many

regions/tracts, including the corpus callosum. Similarly, Mullen

et al. (2011) [53] have demonstrated reduced FA in preterm 16-

Table 3. Correlations between FA and perinatal, neuropsychological and neuroimaging variables.

FA cluster

VPT,Term VPT.Term

1 2 3 4 5 6 7 8

Gestational age (weeks) NS 0.240 p = 0.034 NS NS 20.277 p = 0.014 20.233 p = 0.040 NS 0.240 p = 0.034

Birth Weight (g) NS 0.406 p,0.0005 NS 0.293 p = 0.009 NS NS NS 0.406 p,.0005

fsIQ 0.273 p = 0.027 0.315 p = 0.010 NS NS NS NS NS NS

vIQ NS NS NS NS NS NS NS NS

pIQ 0.359 p = 0.003 0.416 p = 0.001 0.238 p = 0.055 0.320 p = 0.009 NS NS NS NS

Executive function NS NS NS NS NS NS NS NS

Memory 0.253 p = 0.040 0.403 p = 0.001 0.326 p = 0.007 0.271 p = 0.028 NS NS NS NS

Grey matter (cm3) NS NS NS NS NS NS NS NS

White matter (cm3) 0.314 p = 0.021 NS NS NS NS NS NS NS

Cerebellum (cm3) NS NS NS NS NS NS NS NS

Lateral ventricles (cm3) 20.455 p = 0.001 NS 20.433 p = 0.001 20.703 p,0.0005 NS NS NS NS

Corpus callosum (mm2) 0.334 p = 0.014 0.362 p = 0.007 NS 0.384 p = 0.004 NS NS NS NS

Partial correlation coefficients (controlling for age at assessment and socioeconomic status) between cluster mean fractional anisotropy values and perinatal,
neuropsychological and neuroimaging variables in the very-preterm born group only. Cluster numbers refer to Figure 1 and Table 2. (Abbreviations:
NP = Neuropsychometry; MRI = Magnetic Resonance Imaging; NS = not significant (p.0.05)).
doi:10.1371/journal.pone.0024525.t003
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year-olds in several regions, including uncinate fasciculus, external

capsule, corpus callosum (splenium), and frontal white matter.

Our findings differ from other studies in that we found clusters

where FA was increased in the VPT group relative to the Term

group. This was unexpected, and merits further discussion. Similar

FA increases were reported by Vangberg et al. (2006) [29] in very-

low-birth-weight adolescents and by Eikenes et al. (2010) [52],

although not by Skranes et al. (2007) [30] in a similar sample.

Methodological differences may underlie this discrepancy. First,

Skranes et al. (2007) [30] studied individuals selected by birth

weight rather than gestational age – and although overlapping,

these two populations are not identical. Second, their participants

were scanned at a younger age than ours. There is active growth of

white matter and increase in FA during adolescence [54,55]. In a

previous study, we have shown a striking pattern of increased

growth of the corpus callosum between adolescence and adulthood

in VPT individuals [31]. Differential growth of white matter

between VPT and term groups could alter the pattern of group

differences that are observed at different age-ranges. In a

comparably-aged group of very-low-birth-weight adults, Eikenes

et al (2010) [52] reported one area of increased FA in the very-low-

birth-weight group relative to controls, which is consistent with our

findings. In our study, the areas of increased FA in the VPT group

were relatively small (796 voxels) compared to the areas of FA

decrease (4688 voxels) – a similar pattern to that reported by

Eikenes et al (2010) [52]. Given the consistency of this finding

across studies, and the relationships that we have demonstrated

between these areas of FA increase and neonatal brain injury, we

suggest that areas of increased FA in VPT and very-low-birth-

weight adults may be biologically meaningful. There is some

evidence that, in children and adolescents, there are negative

correlations between corpus callosum thickness and cognitive

function [56] – so, for white matter at least, more does not always

mean better.

Regions of increased FA in the VPT group could also represent

an ‘unmasking’ effect. In regions of crossing fibres, an individual

voxel is likely to contain fibres of more than one orientation. The

mean FA of such a voxel could be relatively low (especially if the

vectors of the crossing tracts diverge significantly). If this voxel

were then to lose some fibres its apparent FA could increase, as the

remaining fibres would have a more ‘coherent’ mean orientation.

In this model, FA increases in the VPT group relative to the Term

group could actually represent regions of white matter loss in the

VPT group. The exact microstructural and anatomical correlates

of DT-MRI, and how they change during development, are as yet

not fully known [57].

Alternatively, clusters of increased FA in the VPT group might

be indicative of compensatory changes – where plasticity of white

matter has allowed function to be spared, although white matter

integrity has been disturbed by early brain insults. Some of our

findings are compatible with this explanation: VPT participants

with more severe neonatal brain injury (by ultrasound) had higher

FA in several clusters; one cluster of increased FA was associated

with lower gestational age (right superior longitudinal fasciculus).

In a structural MRI (not DT-MRI) study, Nosarti et al. (2008) [10]

demonstrated white matter increases in VPT adolescents who had

experienced more severe grades of perinatal brain injury.

Two clusters of reduced FA were associated with birth weight and

gestational age, although the correlations between FA and birth

weight were stronger than those between FA and gestational age.

The large cluster involving corpus callosum and corticospinal tract

was associated with birth weight only, and the cluster involving the

right superior longitudinal fasciculus was associated with both birth

weight and gestational age. Although there is considerable overlap,

the categories of low birth weight and preterm birth may be

indicative of different pathological processes. Our results may

indicate that gestational age and birth weight have differential

relationships to adult white matter, but we were not able to assess

patterns of intrauterine growth which would be necessary properly

to address this question. Andrews et al. (2010) [58] demonstrated a

relationship between birth weight and corpus callosum FA in

preterm children (mean age at assessment 11 years). Eikenes et al.

(2010) [52] in very-low-birth-weight young adults also showed

relationships between FA reduction and perinatal adversity,

including gestational age, birth weight, days in Neonatal Intensive

Care and length of mechanical ventilation. White matter injury is

common in VPT and very-low-birth-weight neonates, and its

prevalence and severity is related to perinatal adversity [6].

We also have demonstrated associations between structural

neuroimaging measures and FA in several clusters. These clusters

were all ones in which FA was reduced in the VPT group.

Notably, corpus callosum size was associated with FA in clusters 1,

2 and 4. Two of these clusters anatomically involved the corpus

callosum. Thus the structural MRI findings are consistent with the

DT-MRI findings. Bassi et al (2011) [69] report relationships

between white matter lesions and reduced FA in corticospinal

tracts or preterm infants, which is consistent with our findings.

Lateral ventricular volume was also associated with FA in 3 of the

VPT,Term clusters. Enlargement of the lateral ventricles is a

known sequel of perinatal brain injury in VPT infants [59] and is

associated with white matter damage, and subsequently reduced

white matter volumes [8].

Table 4. FA in relation to severity of neonatal brain injury in the VPT group.

Neonatal ultrasound abnormality ANOVA

Cluster Location None PVH PHV+dil

5 R IFO, uncinate 0.37 (0.3) 0.39 (0.2) 0.39 (0.3) F = 4.12; df = 58; p = 0.021

6 L IFO, uncinate 0.38 (0.3) 0.40 (0.2) 0.41 (0.1) F = 6.22; df = 58; p = 0.004

7 L SLF 0.40 (0.3) 0.41 (0.3) 0.44 (0.2) F = 4.63; df = 58; p = 0.014

8 R SLF 0.43 (0.3) 0.44 (0.2) 0.46 (0.2) F = 5.00; df = 58; p = 0.010

Fractional anisotropy (FA) [mean (SD)] of centres of clusters showing group differences (Table 2; Figure 1), divided according to severity of brain injury on neonatal
ultrasound in the VPT group. Abbreviations: PVH = uncomplicated periventricular haemorrhage; PHV+dil = periventricular haemorrhage plus dilatation ; IFO = Inferior
Fronto-Occipital fasciculus; L: left; SLF = Superior Longitudinal Fasciculus; PCR = Posterior Corona Radiata; R:right; Term: term- born individuals; VPT: very-preterm born
individuals.
NS = p.0.05.
doi:10.1371/journal.pone.0024525.t004
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Alterations of FA in the VPT group were also associated with

cognitive outcome. IQ was associated with FA in three of the

VPT,Term clusters. This relationship was specific for perfor-

mance IQ rather than verbal IQ. We also found significant

associations between higher FA and better global memory

function, in all 4 clusters of reduced FA. Associations between

FA and cognition have been observed in other VPT and very-low-

birth-weight groups, and our results are consistent with this

[22,30]. The lack of an association between verbal IQ and FA is

striking, particularly given that several of the tracts involved

(notably the superior longitudinal fasciculus) are part of the

anatomy underlying language function. Successful performance on

the performance IQ subtests of the WASI requires an element of

timed performance, with bimanual coordination and spatial

reasoning (the block design subtest). This requires the coordinated

action of several different brain areas, and is likely to be dependent

on intact and functioning white matter. In a parallel study using

DT-MRI tractography in this same group of VPT adults Kontis

et al. (2009) [31] showed that altered microstructure in the genu of

the corpus callosum is associated with lower performance IQ.

Andrews et al. (2010) [58] found that reading skill in 11 year old

preterm children was associated with FA of the genu and body of

the corpus callosum. The pattern of association of IQ with

multiple white matter regions or tracts has face-validity, since IQ is

a composite of multiple cognitive processes [60] associated with

the structure and function of several connected brain regions [61].

Our results are consistent with the concept that the distributed

neural networks underlying cognition are altered in VPT adults.

Consistent results are reported by Mullen at al. (2011) [53], who

demonstrated correlations between uncinate fasciculus FA a

semantic language task, and between arcuate fasciculus FA and

a phonological task. Like us, Mullen et al. (2011) [53] found these

relationships only in their preterm participants, and not in their

term-born control group. They suggest that their findings indicate

that neural networks are altered in preterm individuals, or that this

represents delayed maturation in the preterm group relative to the

control group. Our findings are also consistent with these

explanations. It is of interest is that correlations with IQ and

memory in our study were only found in regions of FA reduction

in the VPT group, and not in regions where FA was increased. A

similar pattern of association between white matter volume (not

DT-MRI) and cognition was reported by Nosarti et al (2008) [10].

This would be consistent with the suggestion that areas of

increased FA in the VPT group represent compensatory changes.

Lubsen et al. (2011) [62] have suggested that neurodevelopmental

sequelae of preterm birth are due to altered patterns of neural

connectivity. Evidence from functional MRI studies [63–65]

indicates that VPT adolescents and adults have altered neural

networks underlying a variety of cognitive domains. The

functional connectivity study of Myers et al. (2010) [66] is also

consistent with this concept.

We acknowledge a number of possible limitations in the

interpretation of these results. First, co-registration of low-

resolution, high-contrast FA maps may give rise to mis-registration

and partial volume artefacts in regions of high and low anisotropy,

for example, around the ventricles. In order to minimise such

artifacts we used a two-step registration process and a masking

procedure which restricted analyses to core white matter regions;

we also excluded VPT participants with ventriculomegaly, in

whom any such issues are likely to be exacerbated. Second,

resolving a cluster into component tracts by reference to

anatomical atlases is compromised by the limited resolution of

the parametric maps and by the limited white matter detail such

atlases contain. Third, the correlation analyses that we report

could be vulnerable to type I errors by virtue of the number of

comparisons made. Fourth, there are systematic differences

between our participant groups, including an age difference

between VPT and term comparison groups. Since FA is known to

change with age, this could have introduced bias into our results.

We have attempted to adjust statistically for this possibility in all

the analyses.

There is much still to discover about the lifespan development of

white matter after premature birth. Longitudinal studies remain

the best method of addressing this kind of question, although they

are not easy to carry out, and require commitment from funding

bodies and research institutions if they are to be sustained for the

length of time required. A recently-published MRI atlas of

neonatal brain development was able to image maturational

changes in the neonatal period in normally developing babies [70].

Such methodology could provide information about brain

development after preterm birth, and may be able to identify

plausible sensitive developmental periods during which to target

therapeutic interventions. The interaction between brain lesions,

development and social and economic factors are not yet well

studied. Nagy et al. (2009) [73] found milder-than-expected brain

abnormalities in very preterm adolescents born in the late 1980s

and early 1990s, and speculate that such factors may be important

in changing brain structural outcomes. New imaging techniques

may also prove informative. For example, Driven Equilibrium

Single Pulse Observation of T1 and T2 (quaintly known as

‘‘DESPOT’’) can now be used to estimate characteristics such as

myelination [68]. Such emerging techniques have the potential to

tell us more about the pathological and developmental processes

affecting white matter after VPT birth.

Conclusion
VPT young adults have widespread alterations of fractional

anisotropy, which are related to gestational age and birth weight.

Some microstructural alterations may represent plastic reorganisa-

tion of white matter as well as the effects of early brain lesions.

White matter microstructure is associated with cognitive outcome.
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