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Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/
KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The
poor clinical outcome linked to this aggressive disease and the detrimental treatment side-
effects, particularly in children, warrant the urgent development of more effective and
cancer-selective therapeutics. The aim of this study was to identify novel candidate
compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library
containing 3707 approved drugs and pharmacologically active compounds was screened
for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type
(KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based
viability assays. The screen yielded SID7969543, an inhibitor of transcription factor
Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7
out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants,
without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or
peripheral blood mononuclear cells from healthy controls. The compound also
significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation,
which defines a highly aggressive leukemia subtype that shares common underlying
leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r
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leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment
and demonstrated synergy with established chemotherapeutics used in the treatment of
high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective
activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants
further investigation.
Keywords: KMT2A/MLL-rearranged leukemia, infant leukemia, repurposing, high-throughput screen,
NR5A1, apoptosis
INTRODUCTION

The conventional drug discovery path involves several drug
development stages, from compound discovery, through to
extensive preclinical drug optimization and characterization,
which includes Absorption, Distribution, Metabolism,
Elimination and Toxicity (ADMET) and efficacy studies in
animal models, culminating in rigorous testing in humans
through clinical trials. Due to this time-consuming process, it
has typically taken more than a decade for new agents to advance
from bench to bedside, with the vast majority of compounds
failing to reach the final stages of clinical trial testing. As a result,
an alternative and potentially more effective discovery approach
based on drug repurposing has recently gained traction. Drug
repurposing entails the use of drugs for indications other than
those for which they were originally intended and therefore
bypasses many development and optimization steps, shortening
the timeline and decreasing the overall costs for drug approval.

Here we aimed to apply a drug repurposing approach to
identify novel candidate drugs for targeting leukemias harboring
a rearrangement of the MLL gene, recently renamed KMT2A,
present in approximately ten percent of patients with acute
leukemia (1–3). In general, the presence of this translocation is
associated with an aggressive disease course, chemoresistance, an
increased risk of relapse and poor prognosis, especially in the
setting of acute lymphoblastic leukemia (ALL) in children below
the age of one (1, 4, 5). Infant KMT2A-rearranged (KMT2A-r)
ALL is one of the most challenging pediatric cancers with less
than 40% of patients surviving 5 years past diagnosis (5, 6).
Toxicity from current treatment, involving the use of intensified
chemotherapeutic drug combinations and hematopoietic stem
cell transplant, can be lethal in a significant percentage of
patients and for those who survive, long-term detrimental
health effects are common (5). More potent and safer
treatment options for KMT2A-r leukemia, particularly for
infant KMT2A-r ALL, are urgently needed.

To identify novel candidate compounds that selectively target
KMT2A-r leukemia cells, we screened a library comprising of US
Food and Drug Agency (FDA)-approved drugs and
pharmacologically active compounds with known targets
against a KMT2A-r leukemia cell line with counter screening
against a KMT2A-wildtype (KMT2A-wt) leukemia cell line. We
identified SID7969543, an inhibitor of transcription factor
Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1),
as a novel selective candidate inhibitor against a subset of
2

KMT2A-r and CALM-AF10 translocated leukemia cells,
including cells derived from infants with KMT2A-r leukemia.
MATERIALS AND METHODS

Chemicals and Reagents
SID7969543 was purchased from Tocris Bioscience (Bristol,
United Kingdom). 2-Cl-ATP was procured from Santa-Cruz
Biotechnology (Texas, USA). 2-CADO and cladribine were
purchased from Sigma Aldrich (New South Wales, Australia).
For the generation of lipid-based nanoparticles used to
transfect leukemia cells with siRNA, cholesterol and
the lipids 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC), 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene
glycol-2000 (DMG-PEG), and 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-[lissamine rhodamine B sulfonyl]
(DOPE-Rho) were obtained through Merck & Co., Inc. D-Lin-
MC3-DMA was purchased from Assay Matrix Pty Ltd.
siGENOME Human NR5A1 siRNA (M-003429-00-0010)
targeting NR5A1 and On-TARGETplus control pool non-
targeting scrambled siRNA (D-001810-10-20) were purchased
from Millennium Science Pty Ltd.

Cell Lines and Cell Culture
All cell lines used in this study were mycoplasma-free and have
been authenticated using STR profiling. Cells were cultured as
previously described (7, 8). Characteristics of the leukemia cell
lines used in this study are described in Supplementary Table 1.
Peripheral blood mononuclear cells from healthy donors were
purchased from Australian Red Cross.

High-throughput Phenotypic Screening
The following chemical libraries were used in the screening as
previously described (9): Prestwick Chemical Library (Prestwick
Chemical PC SAS, France), LOPAC®1280 library (Sigma-
Aldrich, Australia), Tocriscreen Plus library (Tocris Bioscience,
UK) and Selleck Inhibitor Library (Selleck Chemicals, USA),
together combining 3707 compounds. PER-485 (KMT2A-r) and
CCRF-CEM (CEM, KMT2A-wt) leukemia cells were seeded into
384-well culture plates. Test compounds were added to the assay
plates for a final concentration of 5 mM (in DMSO stock). Plates
were incubated for 72 hours at 37°C, 5% CO2. Resazurin was
added and plates were incubated for 7 hours. The difference in
relative fluorescence units at time zero and 7 hours of resazurin
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incubation was calculated for each well. The percentage cell
viability for each test compound was calculated relative to the
cells treated with vehicle (100% viability).

Cytotoxicity, Synergy, and In Vitro
Cell-Based Assays
The cytotoxicity of drugs was assessed through resazurin-based
assays and the inhibitory concentration resulting in 50%
reduction of cell survival relative to control (IC50) was
calculated as previously described (7). In synergy studies, cells
were exposed to a dilution series of compounds, as single agents
or in combination, in resazurin-based assays (72 hours) as
described (8–10). The occurrence of synergy was determined
with the Bliss Independence model as previously described (8–
10). Bliss Prediction curves indicated the predicted percentage
viability of the cells when exposed to the combination of
compounds if both compounds work additively together.
Synergy was visualised as the presence of a lower cell viability
upon combination of two compounds compared to the viability
predicted based on the presence of an additive effect of the
compounds (i.e., the viability curve of the combination runs
below the Bliss Prediction curve). The percentage of apoptotic
cells was assessed by annexin V and 7-Aminoactinomycin D (7-
AAD) (BD Biosciences, Australia) flow cytometry as previously
described (7).

Western Blot
Western blotting experiments were performed as previously
described (7). Antibodies used are listed in Supplementary
Table 2. Actin was used as a loading control.

RNA Isolation and qRT-PCR
Total RNA was isolated using a Qiagen RNeasy kit and cDNA
synthesized using the iScript cDNA Synthesis Kit (BioRad).
Quantitative PCR was run and analyzed on Applied
Biosystem’s QuantStudio5 Real-Time PCR Detection System,
using Taqman gene expression assays for genes NR5A1
(Hs00610436_m1), GUSB (Hs99999908_m1) and HPRT
(Hs99999909_m1) Relative expressions were determined as
previously described (7).

Mouse Liver Microsomal Stability Assays
Compound half-life was estimated by mouse liver microsomal
stability assays as described (10).

Synthesis of Lipid-Based Nanoparticles
Encapsulating siRNA
Lipid-based nanoparticles encapsulating siRNA targeting
NR5A1 and scrambled siRNA (LNP-siRNA) were prepared
using a NanoAssemblr™ Spark® instrument (Precision
Nanosystems) as previously described (11). Prior to addition to
cell cultures, LNP-siRNA suspensions were further diluted in
PBS (pH 7.4) or culture media to lessen traces of ethanol to non-
toxic levels (<0.5% vol/vol). Dynamic light scattering using a
Malvern Zetasizer Ultra (Malvern Ltd) was used to determine the
LNP-siRNA size (~67 nm) and polydispersity index (<0.2).
Frontiers in Oncology | www.frontiersin.org
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siRNA encapsulation (%) in LNPs was determined by Quant-
iT™ RiboGreen™ RNA Assay (ThermoFisher Scientific) in the
presence and absence of Triton X-100 (0.5% vol/vol).

LNP-siRNA-Mediated NR5A1 Silencing
Cells were seeded at 0.5 x 106 cells/mL in 12 wells culture plates
and incubated at 37°C, 5% CO2, with LNPs encapsulating anti-
NR5A1 siRNA or scrambled siRNA at 250 nM siRNA
concentration for up to 72 hours.
RESULTS

Cell-Based Screening of FDA-Approved
Drugs and Pharmacologically Active
Compounds to Identify Selective Inhibitors
of KMT2A-r Leukemia
To identify novel compounds targeting KMT2A-r leukemia, a
phenotypic cell-based viability screen on a library containing
3707 compounds performed previously was re-analyzed (9). The
library, consisting of the Prestwick (n=1200), Tocris (n=1119),
LOPAC (n=1280) and Selleck (n=108) libraries, comprised a
mixture of drugs approved by the FDA and other agencies, such
as the European Medicines Agency, and biologically active
compounds that cover a wide range of targets including
kinases, neurotransmitter receptors and G-protein-coupled
receptors. The library was screened against a KMT2A-r
leukemia cell line, PER-485, harboring the most common
KMT2A translocation found in infants and pediatric patients
[t(4;11)], and a KMT2A-wt leukemia cell line CCRF-CEM (9, 12,
13). Both lines were isolated from children with relapsed
leukemia, providing excellent in vitro models for high-risk
disease. The viability of cells treated with a fixed concentration
(5 µM) of the library compounds was assessed in resazurin-based
cytotoxicity assays after a 72-hour incubation to allow selection
of drugs acting rapidly on cell viability as previously described
(9). To discover potent compounds with selective cytotoxicity
towards the KMT2A-r leukemia cells, we defined two stringent
criteria to select hit compounds: 1) decreasing cell viability of
PER-485 cells to 10% or less, and 2) producing a greater growth
inhibition of PER-485 KMT2A-r leukemia cells compared to
CEM KMT2A-wt leukemia cells (%viability of CEM – %viability
of PER-485 ≥ 40%). One hundred ninety-seven compounds
decreased the viability of the PER-485 cells to 10% or less after
a 72-hour incubation. One hundred and forty agents showed a
viability difference of ≥ 40% in CEM versus PER-485 cells
(Figures 1A, B). A total of six compounds fell into both
categories and were subsequently retested in a secondary
validation screen in triplicate (Figure 1A). Four of these agents
were confirmed to preferentially target KMT2A-r leukemia cells,
including the adenosine analog 2-chloroadenosine triphosphate
(2-Cl-ATP), SID7969543, an inhibitor of NR5A1, b-carboline-3-
carboxylate (b-CCB), an endogenous proconvulsant and
anxiogenic benzodiazepine receptor ligand, and oxethazaine, a
Na+ channel blocker (Figure 1C).
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Screening Against a Panel of Leukemia
Cell Lines Uncovers Two Candidate
Compounds that Selectively Target
KMT2A-r Leukemia Cells
To investigate the selectivity of the four short-listed hit
compounds towards KMT2A-r leukemia, cytotoxicity assays
were performed in a leukemia cell line panel (n=8) that
included the PER-485 and CEM cells used in the original
screen, as well as four additional KMT2A-r cell lines (both
ALL and acute myeloid leukemia (AML)) with either t(4;11)
(n=2) or t(9;11) (n=2) KMT2A translocations, two KMT2A-wt
leukemia cell lines and a non-malignant cell line MRC-5
(Figure 1C and Supplementary Table 1). While b-CCB
displayed strong cytotoxic activity with a concentration of 2.6
µM needed to achieve 50% inhibition of cell survival (IC50) in
PER-485 cells, confirming our results from the original screen, it
was less potent against the other KMT2A-r leukemia cell lines
tested (Figure 1C). Oxethazaine demonstrated cytotoxicity
against several KMT2A-wt and KMT2A-r leukemia cell lines
Frontiers in Oncology | www.frontiersin.org 4
with limited selectivity towards KMT2A-r leukemia cells.
However, the other two compounds, 2-Cl-ATP and
SID7969543 demonstrated selective cytotoxic activity against a
subset of KMT2A-r leukemia cells without inhibiting the
KMT2A-wt leukemia cells or the non-malignant cell line,
MRC-5 (Figure 1C). 2-Cl-ATP and SID7969543 were
therefore selected for further evaluation.

KMT2A-r Leukemia Cells Are Sensitive to
Adenosine Analogs
To further characterize the cytotoxic profile of the adenosine
analog 2-Cl-ATP, the compound was evaluated in an expanded
leukemia cell line panel comprising six additional KMT2A-r
leukemia cell lines, including five derived from infants with
KMT2A-r ALL and two CALM-AF10 translocated leukemias,
which are KMT2A-wt but represent an aggressive leukemia
subtype that shares underlying molecular etiological pathways
with KMT2A-r leukemias, such as their dependency on DOT1L
histone-lysine methyltransferase and an upregulation
A B

C

FIGURE 1 | Cell-based screening for identification of selective inhibitors of KMT2A-r leukemia. (A) Schematic of the drug screen. (B) Percentage viability of KMT2A-
wt CEM and infant KMT2A-r PER-485 cell lines represented by a dot plot after primary screening of the 3707-compound library. Each dot represents the viability of
the specified cell line (CEM, red; PER-485, blue) after treatment with an agent (5 mM) from the compound library. Compounds are arranged on the x-axis according
to the difference in growth inhibition of PER-485 cells compared to CEM cells (%viability of CEM – %viability of PER-485). Compounds showing higher inhibitory
effects in PER-485 than in CEM are displayed towards the right of the x-axis, whereas compounds that CEM are more sensitive to compared with PER-485 are
towards the left. The dotted line indicates 10% cell viability. The black bar on the x-axis indicates the position of the 140 drugs that have ≥40% difference in viability
(%viability of CEM – %viability of PER-485 ≥40%). The left curly bracket indicates the position of the six hit candidates selected for further evaluation in expanded cell
line panels. The black arrows indicate the achieved PER-485 %viability values corresponding to the two final hit compounds selected from the screen. (C) Heatmap
of concentration with 50% cell growth reduction (IC50) achieved in different cell lines after treatment with 5 mM of each compound for 72 hours.
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of HOXA cluster genes (14–16). In addition, to determine the
specificity of the compound towards leukemia cells, we widened
our cell line panel to incorporate non-leukemia cell lines,
including seven solid tumor cell lines (neuroblastoma, breast
cancer and lung carcinoma) and another non-malignant cell line,
totaling 25 cell lines (KMT2A-r n=11, KMT2A-wt n=5, solid
tumors n=7, non-malignant n=2) (Supplementary Table 1).
2-Cl-ATP showed inhibitory activity, with IC50 values below
10 µM, towards 9 out of 11 (82%) KMT2A-r leukemia cells with
IC50 values ranging from 2.5 to 5.9 µM (Figure 2A and
Supplementary Table 1). The compound also exerted
significant inhibitory effects against both CALM-AF10
translocated leukemia cell lines when compared to other
KMT2A-wt leukemia cell lines, the solid cancer cell lines and
non-malignant cells (Figure 2A and Supplementary Table 1). 2-
Cl-ATP inhibited KMT2A-r leukemia cells by inducing
apoptosis (Supplementary Figure 1A).

2-Cl-ATP is a phosphorylated derivative of the adenosine
analog 2-chloroadenosine (2-CADO). Corroborating our
observations, previous studies have reported sensitivity of
KMT2A-r ALL cells to nucleoside analogs (17, 18). To further
confirm that 2-Cl-ATP exerts a similar KMT2A-r selective action
as other nucleoside analogs such as cladribine and that KMT2A-r
leukemia cells are indeed susceptible to nucleoside analogs, we
evaluated whether 2-Cl-ATP and 2-CADO had a similar
cytotoxicity profile as cladribine in resazurin-based viability
assays with a panel of KMT2A-r and KMT2A-wt leukemia cell
lines (Supplementary Figure 1B). Indeed, a highly similar cell
line selectivity was observed for all three drugs, with 2-Cl-ATP-
resistant cell lines THP-1 and REH also being less responsive to
2-CADO and cladribine than the 2-Cl-ATP-sensitive KMT2A-r
cells confirming our observed sensitivity of KMT2A-r leukemia
cells to adenosine agonists.

SID7969543 Rapidly Kills KMT2A-r
Leukemia Cells by Inducing Apoptosis
The selectivity of SID7969543 towards KMT2A-r leukemia cells
was also determined in the expanded cell line panel. Similar to 2-
Cl-ATP, all cell lines that were sensitive towards SID7969543
(IC50 < 10 µM) were leukemias with either a KMT2A or CALM-
AF10 translocation (Figure 2B and Supplementary Figure 2).
SID7969543 decreased the viability of a subset (7/11) of KMT2A-
r cells as well as both CALM-AF10 leukemia cells, with IC50

values ranging from 1 µM to 5 µM, while not affecting the other
KMT2A-wt leukemia cells, solid tumors or non-malignant cells
(Figure 2B and Supplementary Figure 2; Supplementary
Table 1). Five of the seven sensitive KMT2A-r leukemia cell
lines were derived from infants. No significant association was
found between the occurrence of a certain KMT2A translocation
and sensitivity to SID7969543. Both of the t(9;11), four out of six
t(4;11) and one t(1;11) translocated KMT2A-r leukemia cell were
sensitive to SID7969543, whereas the remaining two t(11;19)
KMT2A-r leukemia cells did not display sensitivity
(Supplementary Table 1). No significant associations were
observed between sensitivity to SID7969543 and the presence
of a lymphoid (ALL) or myeloid (AML) leukemia phenotype
Frontiers in Oncology | www.frontiersin.org 5
(Supplementary Figure 3). Remarkably, SID7969543 did not
significantly impact the viability of peripheral blood
mononuclear cells (PBMC) isolated from healthy donors at
doses at which it significantly inhibited KMT2A-r leukemia
cells (Figure 2C). This is in contrast to the inhibitory effects of
A

B

DC

FIGURE 2 | The adenosine analog 2-Cl-ATP and the NR5A1 inhibitor
SID7969543 display selective cytotoxicity against a subset of KMT2A-r
leukemia cell lines. The percentage viability of a 25-cell line panel after
treatment with 10 µM 2-Cl-ATP (A) or SID7969543 (B) in a 72-hour
resazurin-based cytotoxicity assay is represented in a bar chart (left). The
panel on the right depicts the comparison of viabilities of cell lines (mean ±
SE) grouped based on subtype: CALM-AF10 translocated, infant KMT2A-r,
other KMT2A-r, KMT2A-wt, solid tumor and non-malignant cell lines. Details
of cell lines and IC50 are found in Supplementary Table 1. Dose response
curves for peripheral blood mononuclear cells from three healthy donors
when treated with SID7969543 (C) and 2-Cl-ATP (D) in a 72-hour resazurin-
based viability assay. Statistical significance was determined by ANOVA with
Dunn’s correction for multiple comparisons. Asterisks represent significance
levels of P-values. *, p<0.05; **, p<0.01. ***, p<0.001.
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2-Cl-ATP against these PBMCs with IC50 values closer to those
achieved against KMT2A-r leukemia cells (Figure 2D).

To identify how SID7969543 limited the viability of KMT2A-
r leukemia cells, the percentage of cells expressing surface
annexin V was quantified to evaluate induction of apoptosis.
SID7969543 significantly increased the percentage of annexin V-
positive KMT2A-r cells as early as 6 hours post-exposure
(Figure 3A). This was associated with increased cleavage of
PARP and caspase-3 in sensitive KMT2A-r, but not in KMT2A-
wt leukemia cells (Figure 3B and Supplementary Figure 4),
indicating that the compound rapidly kills sensitive KMT2A-r
leukemia cells through caspase-dependent apoptosis.

To elucidate whether SID7969543 exerted its selective
KMT2A-r leukemia cell killing effect through targeting and
inhibiting its reported target, the transcription factor NR5A1,
we firstly investigated whether the expression of NR5A1 was
associated with the occurrence of a KMT2A rearrangement.
NR5A1 expression was not significantly different between
KMT2A-r and KMT2A-wt infant ALL patient samples
(Supplementary Figure 5A) nor between KMT2A-r and
KMT2A-wt leukemia cell lines (Supplementary Figure 5B),
and the sensitivity of leukemia cell lines to SID7969543 did not
correlate with expression levels of NR5A1 (Supplementary
Figure 5C). We next assessed whether the drug impacted
downstream NR5A1 signaling in treated KMT2A-r leukemia
cells. Treatment with SID7969543 significantly decreased the
expression of reported NR5A1 target genes involved in
metabolism, enolase-1 (ENO1) and pyruvate kinase (PKM)
(19) in sensitive KMT2A-r cell lines before the induction of
apoptosis, while the expression of genes not regulated by NR5A1
(e.g. the KMT2A target genes HOXA9, HOXA10, MEIS1, and
MYB) remained unchanged, demonstrating that SID7969543 hit
its reported target (Figure 3C and Supplementary Figures 6, 7).
However, siRNA-mediated silencing of NR5A1 expression did
not selectively impact the viability of KMT2A-r leukemia cells
and thus did not mimic the action of SID7969543 on these cells
(Figures 3D–F and Supplementary Figures 8, 9). In addition,
another structurally dissimilar inhibitor of NR5A1, the inverse
agonist AC-45594, did not display selective cytotoxicity towards
KMT2A-r leukemia cells (Supplementary Figure 10) (20).
Taken together it is therefore unlikely that the sole inhibition
of NR5A1 is causing the observed effects of SID7969543 on
KMT2A-r leukemia cell survival.

SID7969543 Synergizes With
Conventional Chemotherapeutics for
Childhood Leukemia
We next determined whether SID7969543 synergized with
conventional chemotherapeutics used in the treatment of high-
risk leukemia, namely, cytarabine, daunorubicin, etoposide,
mitoxantrone, and topotecan (Figure 4 and Supplementary
Figure 11). Two KMT2A-r leukemia cell lines (PER-485,
MOLM13) were treated with SID7969543, a conventional
chemotherapeutic agent or their combination and potential
synergistic effects were determined using the Bliss additivity
model. For both cell lines, the viability curves of cells treated
Frontiers in Oncology | www.frontiersin.org 6
with the combination of SID7969543 and cytarabine or
daunorubicin tracked below the predicted viability curves by
Bliss (dotted lines), demonstrating synergy (Figure 4). For
etoposide, synergy with SID7969543 was observed in the PER-
485 cells, while the combination was additive in MOLM13 cells
A

B

D E F

C

FIGURE 3 | SID7969543 induces caspase 3-mediated apoptosis in KMT2A-
r leukemia cells. (A) Representative flow cytometry plots of PER-485 cells
(left) treated with the compound for up to 48 hours and stained for annexin
V/7AAD. Quantifications (right) of mean percentage increases of annexin V
positive PER-485 and THP-1 cells relative to vehicle-treated cells after
treatment with their respective IC50 doses of SID7969543 (PER-485: 1.4 µM;
THP-1: 2.6 µM). Statistical significance was determined by one sample t-test.
(B) Western blots showing induction of apoptotic markers in KMT2A-r THP-1
cells but not in KMT2A-wt REH cells after treatment with SID7969543. (C)
mRNA expression level of ENO1 and PKM after treatment of KMT2A-r PER-
485 cells with SID7969543 relative to vehicle-treated cells. Cells were treated
with 1.4 µM (IC50 of for PER-485) of SID7969543 for three hours. (D) mRNA
expression level of NR5A1 after a 48-hour incubation of three KMT2A-r
leukemia cell lines (PER-485, REH, and THP-1) with LNP-siRNA targeting
NR5A1 (si-NR5A1) relative to cells treated with LNP encapsulating scrambled
siRNA (si-Scr). (E) Cell growth of KMT2A-r PER-485 cells treated with si-Scr
LNPs (control) or si-NR5A1 up to 72 hours as determined by trypan blue
exclusion cell count. (F) Percentage of annexin V positive PER-485 cells after
a 48-hour treatment with si-Scr or si-NR5A1 LNPs. Graphs depict mean ± SE
of three independent experiments. Asterisks represent significance levels of
P-values. *, p<0.05; **, p<0.01.
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(Figures 4A, B). The combination of SID7969543 with
mitoxantrone or topotecan had additive effects in both cell
lines (Supplementary Figures 11A, B). No synergy between
SID7969543 and cytarabine, daunorubicin or etoposide was
found in KMT2A-wt REH cells (Figure 4C).

Taken together, these data demonstrate that SID7969543
rapidly kills a subset of KMT2A-r leukemia cells, particularly
those arising in infants, via the induction of apoptosis. In
addition, the compound potentiates several standard-of-care
chemotherapies used for treatment of high-risk leukemia.
However, microsomal stability assays showed that SID7969543
has a short half-life and thus limited in vivo stability
(Supplementary Figure 12), precluding further testing in
animal models in its current form.
DISCUSSION

KMT2A-r leukemias, which are particularly resistant to
standard-of-care chemotherapy regimens, continue to be one
of the most aggressive and difficult to treat leukemia types,
especially in infants. Several novel agents such as DOT1L and
FLT3 inhibitors that demonstrated selective targeting of
KMT2A-r leukemia cells in preclinical models, have
unfortunately failed to live up to their expectations in clinical
trials (21, 22). While results of clinical trials testing the safety and
Frontiers in Oncology | www.frontiersin.org 7
efficacy of epigenetic regulators such as specific inhibitors of
menin and histone deacetylases for application in KMT2A-r
leukemia are awaited, the search for other potent drugs and novel
targetable vulnerabilities remains ongoing (2, 23).

By performing a systematic in vitro evaluation of a library of
approved drugs and pharmacologically active compounds, we
have identified novel candidate compounds that selectively kill
KMT2A-r leukemia cells in vitro within a short time frame, in
contrast to slower acting epigenetic modifiers. The identification
of the adenosine analog, 2-Cl-ATP as a selective inhibitor of
KMT2A-r leukemia cell lines, is in line with previous studies
highlighting the sensitivity of KMT2A-r leukemia to nucleoside
analogs (17, 18) and supports the validity of our screening
approach to identify KMT2A-r selective candidate drugs.
Moreover, we demonstrate that this selective sensitivity to
nucleoside analogs can be extended to CALM-AF10
translocated leukemias.

SID7969543 preferentially inhibited the growth of a subset of
KMT2A-r leukemia cells, which included various subtypes with
different KMT2A translocations. No associations between the
presence of certain KMT2A translocations or a lymphoid/
myeloid phenotype of the leukemia cell lines and sensitivity to
SID7969543 were observed in this study. Interestingly, we found
that the majority of sensitive cell lines were derived from infants
diagnosed at less than one year of age. Given the remarkable
heterogeneity of KMT2A-r leukemia, these results are in line
A

B

C

FIGURE 4 | SID7969543 synergizes with conventional chemotherapeutics. Dose response curves for combination treatments of SID7969543 and standard-of-care
chemotherapy drugs cytarabine, daunorubicin and etoposide in PER-485 (A), MOLM-13 (B) and REH (C) cells as determined by 72-hour resazurin-based viability
assays. Graphs depict mean ± SE of three independent experiments. Drug synergy was calculated by applying the Bliss additivity model. Dotted lines indicate
predicted viability if compounds are additive and combination curves below the dotted Bliss line indicate the occurrence of synergy between the tested drugs.
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with infant KMT2A-r leukemia representing a unique disease
subtype (24). While KMT2A-r leukemias are unified by an
aggressive clinical disease course characterized by treatment
resistance, other factors such as the specific KMT2A
translocation, particular gene breakpoints, and age of the
patient actually define different disease subtypes driven by
diverse leukemogenic pathways (25–27). This also suggests the
need to apply distinct therapeutic approaches or precision
medicine for different subtypes of KMT2A-r leukemia. To
achieve this, a comprehensive understanding of the complex
heterogeneity of pathways involved in KMT2A-r leukemogenesis
and leukemia progression is warranted to allow identification of
targetable vulnerabilities for each patient. Our finding that
SID7969543 also targets CALM-AF10 translocated leukemia
cells, supports previous reports showing that KMT2A and
CALM-AF10 translocations rely on common underlying
leukemogenic pathways (14–16) and further emphasizes that
both leukemia subtypes share common targetable vulnerabilities.
This is in line with observations in our earlier studies that
focused on large-scale chemical library screening and yielded
novel candidate drug molecules with selectivity for KMT2A-r
leukemia that were similarly cytotoxic against CALM-AF10
translocated leukemias (7, 10). To be able to identify markers
of responsiveness to SID7969543, such as the presence of certain
molecular abnormalities (e.g., specific KMT2A translocations), a
future larger scale screening in an expanded panel of KMT2A-r
leukemia cell lines is warranted.

SID7969543 is an isoquinolinone derivative first identified in
an ultra-high-throughput screen of approximately 65,000
compounds from the National Institute of Health’s Molecular
Libraries Small Molecule Repository in a cell-based
transactivation assay to search for potent and selective
inhibitors of NR5A1 (28). NR5A1 is an orphan nuclear
receptor and critical regulator for development of the adrenal
cortex and gonads (29, 30). More recently, NR5A1
overexpression has been reported in adult and childhood
adrenocortical carcinoma and has been shown to increase
adrenocortical carcinoma cell proliferation, adrenocortical
hyperplasia and tumor formation, suggesting that NR5A1 is
involved in the regulation of cellular proliferation and
maintenance (31–35). While the role of NR5A1 in regulation
of the expression of genes involved in steroid hormone synthesis
and cellular cholesterol homeostasis pathways is well defined,
little is known about how this nuclear factor contributes to the
development of cancer (36–38). In adrenocortical carcinoma,
NR5A1 controls cellular proliferation and maintenance likely
through pathways independent of steroidogenic gene regulation.
Crosstalk between NR5A1 and transforming growth factor
(TGF) b signaling, Wnt/b-catenin signaling as well as cell
proliferation and macromolecule synthesis pathways including
glycolysis, have been proposed to contribute to cancer
progression (36, 38).

Only one other study has linked NR5A1 to hematological
cancers; a recent large NGS short hairpin RNA knockdown
screen identified NR5A1 as a crucial gene for leukemic cell
survival in one out of six primary AML samples (39), but the
Frontiers in Oncology | www.frontiersin.org 8
significance of this finding remains unclear. While our discovery
of SID7969543 as a selective inhibitor of KMT2A-r leukemia
highlights NR5A1 as a candidate target in KMT2A-r leukemia,
the absence of a phenotypic effect of NR5A1 silencing by siRNA
and the lack of a similar KMT2A-r selective cytotoxicity of
another structurally dissimilar inverse NR5A1 agonist suggests
that it is unlikely that the inhibition of NR5A1 solely explains the
selective killing of KMT2A-r leukemia cells by SID7969543. Of
note, transient and incomplete silencing of NR5A1 by siRNA
might not mimic the antagonistic effect of SID7969543 on
NR5A1 and the alternative NR5A1 inhibitor, AC-45594, might
have other targets that impact its cytotoxic selectivity. Further
studies are needed to identify the mode of action of SID7969543
in KMT2A-r leukemia cells.

Structure-activity relationship (SAR) analysis with SID7969543
derivatives will be needed to identify the targeted pathway in
KMT2A-r leukemia cells and develop clinically viable inhibitors.
SAR analysis will pinpoint the functional groups essential for the
KMT2A-r cell killing effect of the drug, guiding the development
of analogs suitable for tagging and affinity chromatography to
allow the identification of the molecular targets of SID7969543
and its derivatives in KMT2A-r leukemia cells. Silencing of
candidate targets followed by downstream phenotypic analysis
will subsequently provide insight into the identity of the true
molecular target or targeted pathway for this class of compounds
that mediates the observed KMT2A-r cell killing selectivity. These
analyses will also direct the development of pharmacologically
viable SID7969543 derivatives that have better drug-like properties
and are suitable for evaluation in animal models of KMT2A-
r leukemia.

While SID7969543 cannot be moved directly into the clinic,
the strong in vitro findings of our study demonstrating the rapid
killing of a subset of KMT2A-r leukemia cells, particularly those
arising in infants, support further study of SID7969543 to
identify its molecular target, develop drug-like derivatives and
use as a tool compound in vitro.

Overall, our results show that SID7969543 represents a novel
candidate agent with selective activity against KMT2A and CALM-
AF10 translocated leukemia, warranting further investigation.
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