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Abstract: The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes
severely affect GPS signal propagation, thereby impacting the performance of GPS precise point
positioning (PPP). However, the investigation of GPS PPP accuracy over the global scale under
different geomagnetic storm conditions is very limited. This paper for the first time presents the
performance of GPS dual-frequency (DF) and single-frequency (SF) PPP under moderate, intense,
and super storms conditions during solar cycle 24 using a large data set collected from about 500
international GNSS services (IGS) stations. The global root mean square (RMS) maps of GPS PPP
results show that stations with degraded performance are mainly distributed at high-latitude, and
the degradation level generally depends on the storm intensity. The three-dimensional (3D) RMS of
GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and
1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes
show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m
on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet
or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms
is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate
of TEC index (ROTI) maps. Ionospheric disturbances not only lead to the deteriorated ionospheric
correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with
that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate,
intense, and super storms conditions, respectively.

Keywords: geomagnetic storms; precise point positioning; ionospheric irregularities; rate of
TEC index

1. Introduction

Geomagnetic storms, i.e., large-scale disturbances in the Earth’s near-space environment, are caused
by the enhanced solar wind and its interaction with the magnetosphere–ionosphere–thermosphere system.
According to the Dst index derived from near-equatorial geomagnetic measurement, the principal feature
of a geomagnetic storm represents an obvious decrease of the horizontal intensity of Earth’s magnetic field
followed by a recovery [1]. The disturbance that drives geomagnetic storm can be due to the occurrence
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of coronal mass ejections (CMEs) on the Sun and the associated interplanetary shock waves or corotating
interaction region (CIR) produced by high-speed solar wind streams in the interplanetary medium [1,2].
Generally, a geomagnetic storm consists of three periods, i.e., initial phase, main phase, and recovery
phase [3].

A geomagnetic storm is characterized by an increased spatial decorrelation of ionosphere range
delays and scintillation effects at both high- and low-latitudes [4]. During the geomagnetic storm,
abundant energetic particles inject into the Earth’s magnetosphere. Some of them follow the terrestrial
magnetic field and then precipitate into the ionospheric altitude at high-latitude, resulting in steep
ionospheric density gradients and irregularities [5]. The ionospheric irregularities at high-latitude
including polar cap patches and auroral blobs can both cause rapid phase and amplitude fluctuations
of the trans-ionospheric radio signals, known as ionospheric scintillation [6]. During a geomagnetic
storm, the occurrence of equatorial irregularities including equatorial spread-F (ESF) and plasma
bubbles (EPBs) is quite complicated since it is influenced by many factors such as the existence of
prompt penetration, disturbance dynamo electric fields, and small increase of geomagnetic activity
level, which are all known affect the vertical plasma drifts and thus dominate the Rayleigh-Taylor linear
growth rate [7]. In addition, the ESF and EPBs triggered by the geomagnetic storm may also depend on
the maximum dDst/dt determined local time sector [8]. The occurrence equatorial irregularities during
geomagnetic storms can induce the equatorial ionospheric scintillation. To GNSS users, ionospheric
scintillation possibly leads to the occurrence of cycle-slip and even loss of signal tracking, degenerating
the GNSS positioning and navigation accuracy [9–11].

Over the past decades, many researchers have reported the adverse effects of geomagnetic storm
on GPS positioning. Usually, network real-time kinematic (RTK) can achieve cm-level accuracy over
distances within ~100 km [12]. However, this level of accuracy would be significantly affected by
the geomagnetic storm [13]. Due to the fast ionospheric error decorrelation in the super storm on
29 October 2003, the success ratio of instantaneous ambiguity resolution of RTK reduced to only
31% compared to 94% on quiet day [14]. As a result, the RTK positioning error in the up component
exceeded 0.5 m for a 121 km baseline during this storm. Similar results by Bergeot et al. [15] also
indicated that, during the geomagnetic storm period of 30 October 2003, the position repeatability
of the kinematic GPS positioning in northern Europe can reach 12.8 cm, 8.1 cm and 26.1 cm for the
north, east, and up components, respectively, while it was better than 2.5 cm under normal ionospheric
condition. Except for ionospheric disturbances, the degradation of RTK positioning is also affected
by the baseline orientation during geomagnetic storm period. The maximum and standard deviation
values of positioning error for baselines with a north–south orientation are larger than those baselines
with east–west orientation [16]. More recently, focusing on Norway region, a detailed analysis of
network RTK performance and phase scintillation caused by the super storm on St. Patrick’s Day
(17 March) 2015 was presented by Jacobsen and Andalsvik [17]. The simple function relationship
between vertical positioning error and phase scintillation index, known as the rate of total electron
content (TEC) index (ROTI), was shown in their work. Results indicated that the positioning errors
increased exponentially with the rise of ROTI values.

With respect to the studies on network RTK technique, the effects of geomagnetic storm
on precise point positioning (PPP) have only received limited attention. PPP is a stand-alone
positioning technique, which normally can achieve positioning accuracy of dm-level to cm-level
using undifferenced dual-frequency observations with precise satellite orbit and clock products [18,19].
Under the same geomagnetic storm condition, Jacobsen and Andalsvik [17] found that the performance
of PPP is always better than that of RTK at all ionospheric disturbance levels in Norway region.
However, only three stations within limited latitude at 55◦–70◦ N were considered in their study.
To provide a more representative investigation, in this work we collect data from about 500
International GNSS services (IGS) stations and present a comprehensive assessment on the performance
of both dual-frequency (DF) and single-frequency (SF) PPP under different intensities of geomagnetic
storm during solar cycle 24. This article is organized as follows: Section 2 describes the data and
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methodology in details. Section 3 presents GPS DF and SF PPP solutions under three typical
geomagnetic storms conditions, i.e., moderate, intense, and super storms, during solar cycle 24
from 1 January 2011 to 31 December 2017. Furthermore, the corresponding analyses for the
experiments are also shown in Section 3. Finally, the discussion and conclusion are given in
Sections 4 and 5, respectively.

2. Data and Methodology

This section describes the data sources, including geomagnetic activity, solar activity, global
TEC maps, and GPS measurements, used in our study. In addition, the data processing models and
strategies used to perform GPS DF and SF PPP are presented in this section.

2.1. Data Sources

The Dst index is a good quantitative measure of the intensity of the geomagnetic storm [20].
In this work, we focus only on the geomagnetic storm with minimum Dst (Dstmin) ≤ −50 nT, which is
commonly adopted as the threshold by many past studies [21,22]. Further, if a period of high activity
showed multiple Dst ≤ −50 nT, we arbitrarily treat them as a single storm event if the minima were
separated by less than 24 h, rather than define each minimum as a separate storm [23]. Depending on
Dst index, the storms are classified as moderate (−100 nT < Dstmin ≤ −50 nT), intense (−200 nT <
Dstmin ≤ −100 nT), and super storm (Dstmin ≤ −200 nT).

Figure 1 presents the variability of solar flux index F10.7, daily sunspot number and the hourly
Dst distribution during solar cycle 24 from 1 January 2011 to 31 December 2017. The red lines in the top
two panels represent the corresponding smoothed data. The red stars in the bottom panel represent
the geomagnetic storms. Statistics show that there are total 134 geomagnetic storms, including 113
moderate storms, 18 intense storms, and 2 super storms, during solar cycle 24 from 1 January 2011
to 31 December 2017. To fully assess the performance of GPS PPP under geomagnetic storms
conditions, we select three typical storms data to perform the experiments, which are highlight in
blue ellipses shown in the third panel of the figure. They are moderate storm on March 27, 2017 with
Dstmin = −74 nT, intense storm on 20 December 2015 with Dstmin = −155 nT, and super storm on
17 March 2015 with Dstmin = −233 nT.
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In this work, the GPS dual-frequency data provided by the IGS are used to investigate the effects
of storms with different intensities on GPS PPP solutions (ftp://cddis.gsfc.nasa.gov/). There are about
500 continuous operation tracking stations distributed as shown in Figure 2. Besides, the global TEC
maps with a time resolution of 5 min derived from the worldwide GNSS stations are used to analyze
the ionospheric response to various geomagnetic storms. The TEC map data can be freely accessible
from the CEDAR Madrigal database (http://cedar.openmadrigal.org/ftp/).
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2.2. GPS PPP Model

The raw observables of dual-frequency GPS pseudorange and carrier phase between a receiver
“r” and a satellite “s” are generally expressed as below [24]:

Ps
r, f = ρs

r + tr − ts + αs
r·Tz + br, f − bs

f + β f ·Is
r + εP (1)

Φs
r, f = ρs

r + tr − ts + αs
r·Tz + br, f − bs

f − β f ·Is
r − λ f ·

(
Ns

r, f − ϕ
)
+ εΦ (2)

where Ps
r, f and Φs

r, f are the pseudorange and carrier phase on frequency f in meters; ρ is the geometric
range in meters; tr and ts are the receiver and satellite clock offset; Tz is the zenith tropospheric delay;
α is the mapping function; br and bs are the frequency dependent signal delay for receiver and satellite;
I is the line-of-sight TEC with the frequency dependent factor β f = 40.3/ f 2; λ is the wavelength; N
is the float ambiguity and ϕ is the phase windup error in cycle; and εP and εΦ are the measurement
noise of pseudorange and carrier phase, respectively.

In this study, we adopted undifferenced PPP model with raw GPS measurements instead of
ionospheric-free PPP model. Compared with the latter one, in the undifferenced model, individual
signals of each frequency are treated as independent observables, thus avoiding noise amplification
in the linear combinations. For the ionospheric delay in DF and SF PPP models, a priori ionospheric
model with proper constraints is utilized as [25]:

Is
r = γs

r ·I(z)
s
r (3)

I(z)s
r = a0 + a1dL + a2dL2 + a3dB + a4dB2 + rs

r (4)

Ĩ(z)s
r = a0 + a1dL + a2dL2 + a3dB + a4dB2 + rs

r + ε Ĩ(z)s
r

(5)

where I(z)s
r is the vertical TEC of the ionospheric pierce point (IPP); γ denotes the ionosphere

mapping function; ai (i = 0, 1, 2, 3, 4) are the coefficients used to describe the deterministic behavior
of the ionospheric delay; dL and dB are the longitude and latitude difference between IPP and
the approximate location of station; the scalar field rs

r represents the stochastic component from a

ftp://cddis.gsfc.nasa.gov/
http://cedar.openmadrigal.org/ftp/


Sensors 2018, 18, 1784 5 of 17

second-order stationary process; and Ĩ(z)s
r is the vertical ionospheric delay correction interpolated

from global ionospheric map (GIM) with corresponding noise ε Ĩ(z)s
r
.

In the data processing, all GPS observations have a sampling interval of 30 s, and the satellite
elevation mask angle is set to 10◦. GPS precise satellite orbit and clock products provided by IGS are
adopted for PPP processing. The data processing models and strategies for GPS DF and SF PPP are
summarized in Table 1. Note that in this study the experiments and results of DF PPP are introduced
first and those of SF PPP are shown next since the DF receivers are more common used in real surveying
applications. In addition, the following experiments only focus on the kinematic PPP solutions since
geomagnetic storms have no obvious influence on static PPP with a daily processing.

Table 1. Summary of data processing models and strategies for GPS DF and SF PPP.

Item Models and Strategies

Observations Raw code and carrier phase observations from L1/L2 signal
Observation weighting Elevation-dependent weight
Sampling rate 30 s
Elevation angle cutoff 10◦

Satellite orbit Fixed using the products from IGS
Satellite clock Fixed using the products from IGS
Phase wind-up effect Corrected
Phase center offset igs08.atx
Phase center variation igs08.atx

Ionospheric delay (DF/SF) Piece-wise for polynomials in 5 min and random walk for temporal
variation, GIM from CODE as a priori information constraint [25]

Tropospheric delay Prior model as Hopfield model [26] with remaining estimated as a random
walk process (5 mm/

√
h)

Receiver coordinate Estimated and modeled as a random walk process [24]
Differential code biases (DCB) Corrected using the products from CODE

3. Results and Analyses

The variations of solar wind velocity (Vsw), IMF Bz component, Kp index, and Dst index during
three typical storms are shown in Figure 3. For comparison, the observations on the quiet day of
17 March 2017 are also given in the figure. Obviously, the time series of Vsw and Bz show a smooth
variation on 17 March 2017 due to the quiet solar activity. For the moderate storm, the Vsw is found
to gradually increase on 27 March 2017, and the Bz shows rapidly variations but the magnitude is
small within ±8 nT. The geomagnetic index Dst shows a decrease until 14:00 coordinated universal
time (UTC) when arriving at the minimum of −74 nT. For the intense and super storms, the Vsw
shows quick increases at the beginning of the storm sudden commencement (SSC) time. The IMF
Bz components for the two storms are also found being rapid fluctuations when the solar winds are
very dynamic. Most importantly, the duration time of negative Bz for the intense and super storms
can reach several hours, which are much longer than that of moderate storm; moreover, the larger
magnitude of negative Bz around −15 nT can be clearly seen in those two great storms. That is why
those storms are much stronger than the moderate storm of 27 March 2017. From the Kp index panels,
we can find that the values of Kp in the main phase of intense and super storms are in the range of 6
to 8, which are generally larger than those of moderate storm as the range of 4 to 6. As a response to
the solar wind and IMF fluctuations, the disturbances are seen in the geomagnetic index Dst with the
minimum values as −155 nT on 20 December 2015 and −233 nT on 17 March 2015.
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To analyze the ionospheric response to geomagnetic storms with different intensities,
the corresponding magnetic latitude (MLAT) versus UTC of TEC maps are presented in Figure 4.
The TEC measurements are averaged over 5 min in UTC and 2.5◦ MLAT over all longitudes. Note that
no data of TEC map during 23:17–24:00 UTC on 17 and 27 March 2017, so the corresponding regions
are blank in Figure 4a,b. On the quiet day, large values of TEC are found in low-latitude, and the peaks
are found in the equatorial ionization anomaly (EIA) regions around ±15◦ MLAT during 18:00–23:17
UTC. During the moderate geomagnetic storm, the crests of EIA further extend to about ±17◦ MLAT
and the larger magnitude TEC are observed during 15:00–23:17 UTC when the western hemisphere
was on dayside, which is the same as on the quiet day. It is easy to understand that the daytime TEC
is larger than that on the nightside. During the intense geomagnetic disturbed condition, the crests
of EIA can reach around ±22◦ MLAT, spreading toward mid-latitude. In addition, their TEC during
18:00–22:00 UTC can exceed 40 TECU. For the super storm on 17 March 2015, TEC values of more than
40 TECU are easily observed around ±30◦ MLAT on the whole day. In Figure 4, we can find that with
the increase of geomagnetic storms intensity, the EIA also expands far from their regular position of
±15◦ MLAT and the TEC values also increase to a larger magnitude as 40–50 TECU.

Figure 5 shows the positioning errors of GPS DF and SF PPP in the north, east and up components
for the KIRU station (67◦51′ N, 20◦58′ E; geomagnetic: 65◦15′ N, 115◦20′ W) during each storm within
three days. Positioning errors on 16–18 March 2017 under normal ionospheric condition are also
presented in the figure for comparison. The ionospheric irregularities index as ROTI and geomagnetic
index as Dst are given in the bottom panels of Figure 5. Under quiet condition of 17 March 2017,
the positioning results show smooth variations with 99.2% and 92.7% of errors in the range of ±0.3 m
for DF and SF PPP. However, during geomagnetic storm periods, the time series of positioning errors
vary significantly especially in the up component regardless of DF or SF PPP. For instance, the positions
of DF PPP during 13:00–23:00 on 17 March 2015 show outliers reaching 12.293 m, 3.693 m and 22.009 m
in the north, east and up components, respectively. The detailed statistics of DF and SF PPP results are
presented in Table 2. In Figure 5 and Table 2, we can find that stronger intensity geomagnetic storms
generally cause more significant degradation of GPS PPP.
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From the ROTI panels, it is observed that under geomagnetic storms conditions the time series
of ROTI fluctuate significantly during the main phase as well as the recovery phase period, and the
values can increase to around 1.0 TECU/min. Conversely, most of them in the quiet ionospheric
condition show smooth variation, being lower than 0.05 TECU/min. Generally, ROTI > 0.5 TECU/min
indicates the presence of ionospheric irregularities at scale length of a few kilometers [27]. Note that
there are few abnormal ROTIs being larger than 0.3 TECU/min under quiet condition. The abnormal
results can be caused by many factors such as multipath. When satellite signals pass through the
ionospheric irregularities, they would encounter signal attenuation, even sometimes complete loss of
lock [28]. Hence, the degradation of PPP during the geomagnetic storm period should be attributed to
ionospheric irregularities. The detailed relationship between ionospheric irregularities and degradation
of PPP over the global scale are shown below.

Table 2. The maximum (MAX) values and root mean square (RMS) statistics of GPS DF and SF PPP
during the quiet, moderate, intense, and super storms period (Unit: m).

DF PPP SF PPP

North East Up 3D North East Up 3D

MAX

17 March 2017 (Quiet) −0.172 0.258 −0.572 0.599 0.284 0.248 −1.050 1.077
27 March 2017 (Moderate) −1.154 −1.666 −4.153 4.247 −1.069 0.953 −3.691 3.742

20 December 2015 (Intense) −1.562 −0.880 −4.292 4.601 1.389 −1.431 −3.045 3.333
17 March 2015 (Super) 12.293 3.639 22.009 25.215 6.804 2.210 16.727 18.101

RMS

17 March 2017 (Quiet) 0.040 0.068 0.106 0.132 0.083 0.085 0.179 0.215
27 March 2017 (Moderate) 0.151 0.119 0.310 0.365 0.195 0.184 0.586 0.644

20 December 2015 (Intense) 0.225 0.148 0.609 0.703 0.314 0.372 0.602 0.774
17 March 2015 (Super) 0.671 0.221 1.224 1.413 0.609 0.296 1.126 1.314

Figure 6 presents the RMS statistics of horizontal and vertical errors of GPS DF PPP for all IGS
stations over the global scale for each storm day as well as the quiet day. Since the first two hours
(0:00–2:00 UTC) are in the state of convergence in PPP solution, the RMS is calculated based on
positioning errors in the period of 2:00–24:00 UTC for each day. The top two panels clearly show
that under normal ionospheric condition positioning accuracies of GPS DF PPP in the horizontal and
vertical components are better than 0.15 m and 0.2 m. During the moderate geomagnetic storm, some
stations located in the high-latitude, e.g. North America region, experience the positioning quality
deterioration as their RMS can reach around 0.5 m. With the increase of storm intensity, more and more
stations are affected by the ionospheric disturbances, which can be obviously seen in the third and
fourth panels. In the vertical component, stations with RMS > 0.5 m account for 1.7%, 7.0%, and 14.6%
during moderate, intense, and super storms period, respectively. In addition, there are 19 stations with
RMS > 1.0 m during the super storm of 17 March 2015.

The 90% confidence level of time series of positioning errors of DF PPP over all stations located
at high-latitude (60◦–90◦ N/S), mid-latitude (30◦–60◦ N/S), and low-latitude (0◦–30◦ N/S) regions
during three typical storms are presented in Figure 7. The background gray scatters are the positioning
results for all IGS stations.For clarity, the first two hours results in the state of convergence are excluded
in Figure 7. The corresponding RMS statistics in the north, east, and up components are also given
in the figure. The three-dimensional (3D) RMS statistics for all stations are presented in Table 3.
During geomagnetic storms, it can be clearly seen that more serious degradation of DF PPP is found
in the high-latitude region compared with other two latitude regions. The degradations of mid- and
low-latitude regions are comparable. For high-latitude region, the 3D RMSs during moderate, intense,
and super storms are 0.393 m, 0.680 m, and 1.051 m, respectively, while under quiet condition is only
0.163 m (see Table 3). The performances of DF PPP for mid- and low-latitude regions are not very
influenced by the moderate and intense storms, but few stations show major degradation during the
super storm period.
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The corresponding results of GPS SF PPP are shown in Figures 8 and 9. Similar to DF PPP, the
degree of deterioration for SF PPP mainly depends on the intensity of geomagnetic storm. Due to the
lack of L2 observations, the performance of SF PPP is inferior to that of DF PPP regardless of quiet or
disturbed condition. Under quiet condition, the 3D RMS of SF PPP are 0.341 m, 0.361 m, and 0.456 m
in high-, mid-, and low-latitude regions (see Table 3), which is consistent with the previous study [19].
During geomagnetic storms periods, it can be found that stations experiencing degraded positioning
of SF PPP are mainly distributed in high-latitude region. Their 3D RMSs during moderate, intense, and
super storms are 0.963 m, 0.911 m, and 1.624 m (see Table 3). Note that, during a super storm period,
the degradation of SF PPP can also be clearly seen in mid- and low-latitude regions. Nava et al. [29]
pointed out that, during the super storm period on 17 March 2015, the extreme ionospheric conditions
have been observed in mid- and low-latitudes. Therefore, the deteriorated ionospheric correction
caused by large gradients of ionosphere under super storm condition should be treated as the main
reason for the degradation of positioning in mid- and low-latitude regions. It is easy to understand
that, under severe ionospheric condition, ionospheric correction is a more serious challenge in SF
solution compared with that in DF solution.
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Table 3. The 3D RMS statistics of GPS DF and SF PPP for all stations in high-, mid-, and low-latitudes
during the quiet, moderate, intense, and super storms period (Unit: m).

DF PPP SF PPP

Latitude Quiet Moderate Intense Super Quiet Moderate Intense Super

High- 0.163 0.393 0.680 1.051 0.341 0.963 0.911 1.624
Mid- 0.153 0.156 0.200 0.320 0.361 0.368 0.493 0.745
Low- 0.151 0.165 0.160 0.281 0.456 0.595 0.542 0.714
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Figure 7. The 90% confidence level of time series of DF PPP results for all stations located at high-,
mid-, and low-latitude regions on: (a) 17 March 2017 as the quiet day reference; (b) 27 March 2017 as
the moderate storm; (c) 20 December 2015 as the intense storm; and (d) 17 March 2015 as the super
storm, respectively. The background gray scatters are the absolute values of positioning results for each
IGS station.

From the above analysis, it is found that the degraded performance of GPS DF and SF PPP should
be attributed to the complex ionospheric conditions caused by geomagnetic storms. Therefore, it
is necessary to show the specific ROTI data to further analyze the ionospheric disturbances during
different intensities storms. Figure 10 presents the global ROTI maps derived from entire IGS network
in the three perturbation periods (i.e., initial phase, storm development, and deep main phase) of each
geomagnetic storm. The ROTI values are averaged in grid of 2.5◦ latitude and 5◦ longitude with a
sliding window for each 5 min interval. As the GPS phase fluctuation index, ROTI can be used to
monitor global activity of ionospheric irregularities [27,30]. From the topside panels, we can clearly
observe that most ROTI values are smaller than 0.3 TECU/min, indicating no obvious irregularity
occurrences on the quiet day of 17 March 2017. Consequently, the corresponding results of GPS PPP are
in agreement with the expectations. In the case of the geomagnetic storms, the ROTI values would be
different. During the initial phase period, as shown in the left three panels, the irregularities appeared
at high-latitude of northern America sector as well as Antarctic sector where some ROTI values are
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larger than 0.5 TECU/min. Since this period is in the initial phase of the storms, the irregularities are
not commonly seen in other sectors. Afterwards, the storms went into the main phase. The significant
irregularities can be easily seen in high-latitude regions including North America, northern Europe as
well as Antarctic region, and some ROTI values even can reach 1 TECU/min. Note that the stronger
intensity of geomagnetic storms, the higher ROTI values and larger scale of irregularities are found in
general. Consequently, more stations are affected by the irregularities (see Figures 6 and 8). In addition,
during the main phase period around 18:00 UTC of the super storm, the irregularities can also be
found in the equatorial regions such as the India sector. During the deep main phase close to recovery
phase, shown in the right three panels, the intensity of irregularities decreases gradually although the
auroral activities were also active especially in the Antarctic and South America regions during the
super storm.
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Figure 9. The 90% confidence level of time series of SF PPP results for all stations located at high-,
mid-, and low-latitude regions on: (a) 17 March 2017 as the quiet day reference; (b) 27 March 2017 as
the moderate storm; (c) 20 December 2015 as the intense storm; and (d) 17 March 2015 as the super
storm, respectively. The background gray scatters are the absolute values of positioning results for each
IGS station.

As discussed before, the ionospheric irregularities caused by geomagnetic storms possibly lead to
the occurrence of cycle-slip and even loss of signal tracking [31]. The frequent cycle-slip occurrence
can result in degradation of GNSS positioning. To further analyze the characteristics of cycle-slip
occurrence under different intensities storms, Figure 11 gives the scatters of cycle-slip occurrence
rate against geographical latitude derived from all IGS stations data during the quiet, moderate,
intense, and super storm periods. In this study, the Melbourne-Wübbena wide-land combination
and rate of geometry-free combination proposed by Luo et al. [9] are jointly used to detect cycle-slip.
Note that cycle-slip occurrence rate is calculated as the total number of cycle-slips divided by total
available measurements.
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storm, respectively.

From the topside two panels, we can see that most scatters are within the range of 0–0.5%.
Compared with the South Pole, more cycle-slips are detected in the North Pole, which is consistent
with the results reported by Astafyeva et al. [32]. From the bottom two panels, we can find that the
scatters are more discrete mainly ranging from 0% to 1%. That means many cycle-slips occurred
under intense and super storms conditions. Meanwhile, although there are fewer stations located
in the South Pole, the cycle-slip occurrence rate can reach around 2% under super storm condition.
That implies larger scale irregularities induced by super storm resulted in cycle-slip occurrence in
the two poles. The statistics show that the mean values of cycle-slip occurrence rate are 0.23%, 0.26%,
0.36%, and 0.39% for quiet, moderate, intense, and super storm days, respectively. Compared with
quiet days, the increased cycle-slips occurrence percentages are 13.04%, 56.52%, and 69.57% during
moderate, intense, and super storm days. From the above analysis, we conclude that the degraded
performance of GPS PPP under geomagnetic storm conditions should be attributed to two factors: (1)
the deteriorated ionospheric correction under severe ionospheric conditions; and (2) the contaminated
satellite measurements, such as serious signal attenuation and frequent cycle-slip occurrence, when
satellites signals pass through the ionospheric irregularities.
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4. Discussion

This study presents a comprehensive investigation of the performance of GPS DF and SF PPP
under three typical geomagnetic storms, using a large data set collected from about 500 IGS stations,
during solar cycle 24 from 1 January 2011 to 31 December 2017. The geomagnetic storms are the
moderate storm on 27 March 2017 with Dstmin = −74 nT, intense storm on 20 December 2015 with
Dstmin = −155 nT, and super storm on 17 March 2015 with Dstmin = −233 nT.

Under geomagnetic storms conditions, the time series of positioning results derived from
high-latitude stations data for GPS DF and SF PPP vary significantly and the range can reach
several meters in the horizontal and vertical components. This is consistent with the previous
investigations based on RTK [13–16] and PPP techniques [17]. With the increase of storm intensity,
more and more stations experienced the degradation of positioning with most located at high-latitude
regions. It is well known that the high-latitude region has strong coupling among the interplanetary
medium, the magnetosphere, the thermosphere, and the ionosphere [29]. During geomagnetic storms,
abundant energetic particles precipitate into high-latitude region, and heat the upper atmosphere in
the form of Joule heating and Lorentz forces, resulting in the steep ionospheric density gradients and
irregularities [5,33]. Our global ROTI maps clearly show that the ionospheric irregularities are mainly
distributed in high-latitude regions including North America, northern Europe and Antarctic region
during the main phase period of geomagnetic storms (see Figure 10). As a result, most stations located
at high-latitude region experienced the degradation of positioning.

To GNSS users, adverse effects caused by the geomagnetic storm should be carefully mitigated to
ensure the reliable positioning requirement. The mitigation strategies can be summarized as three parts:
improvement of the success rate of cycle-slip detection and correction during the data processing [34];
consideration of the second- or high-order ionospheric delays in ionospheric corrections [15,35]; and
combination of other GNSS system satellites to improve the weak satellite geometries [36]. The frequent
cycle-slip occurrence during geomagnetic storms has been demonstrated in Figure 11. Since most
approaches of cycle-slip detection and correction lack proper handling of ionospheric delay variations,
a geometry-based approach with rigorous handling of the ionosphere was presented by Banville and
Langley [34]. After applying this method to GNSS data collected in northern Canada, some kinematic
PPP results showed a dm-level improvement. However, the increased measurement noise associated
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with an active ionosphere still makes cycle-slip detection and correction difficulty. Under geomagnetic
storm conditions, the first-order ionospheric delays can reach about 30 m and the second-order
delays are very small but with about 3 mm magnitude [35,37]. Therefore, consideration of high-order
ionospheric delays can only contribute to an improvement of mm-level in GNSS PPP. The integration
of multi-constellation GNSS can significantly increase the number of satellites, thereby increasing the
measurement redundancy and improving the satellite geometry. However, the positioning errors of
GPS/GLONASS PPP in the height component can also reach around 1 m during the geomagnetic
storm period on 13 May 2015 [36]. From the above analysis, we can conclude that aforementioned
strategies may also be influenced by severe geomagnetic storm conditions. More reliable mitigation
strategies require further investigation.

5. Conclusions

A comprehensive investigation of geomagnetic storms effects on GPS PPP has been presented in
our study. Results show that under normal condition without geomagnetic storms occurrence GPS
DF PPP accuracy of most IGS stations is better than 0.15 m and 0.2 m in the horizontal and vertical
components, respectively. The degradation performance of DF PPP can be easily found in geomagnetic
storms conditions especially at high-latitude region. The 3D RMS at this region based on all stations’
results during moderate, intense, and super storms are 0.393 m, 0.680 m, and 1.051 m, respectively,
while that value is only 0.163 m under quiet condition. In addition, our results show that stronger
intensity storms generally cause more significant degradation of positioning. The statistics indicate that
the number of stations with RMS > 0.5 m accounts for 1.7%, 7.0%, and 14.6% during moderate, intense,
and super storm periods, respectively. Besides, there are 19 stations with RMS > 1.0 m during the super
storm of 17 March 2015. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless
of quiet or disturbed condition. Under quiet condition, GPS SF PPP accuracy of most IGS stations is
around 0.35 m and 0.6 m in the horizontal and vertical components. Under disturbed condition, the 3D
RMS of SF PPP during moderate, intense, and super storms can reach 0.963 m, 0.910 m, and 1.624 m at
high-latitude region, respectively. Different from DF PPP, more serious degradation of SF PPP can also
be clearly found at mid- and low-latitude regions, especially for the super storm condition.

During geomagnetic storm periods, the degraded performance of GPS positioning regardless
of DF or SF PPP should be attributed to the increased ionosphere disturbances. The strong response
between positioning errors and ionospheric irregularities index ROTI has been confirmed in this
study based on single station data collected at high-latitude. Moreover, the global ROTI maps further
indicated the strong correlation between the degradation positioning and ionospheric irregularities.
The ionospheric disturbances can not only lead to the deteriorated ionospheric correction but also
to frequent cycle-slip occurrence. Statistical results show that the increased cycle-slip occurrence
percentages are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions,
respectively, compared with those of quiet day. Note that this study only focuses on GPS PPP
performance analysis under different geomagnetic storm conditions. The corresponding multi-GNSS
PPP analysis requires further investigation.
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