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Abstract: Viruses utilize microRNAs (miRNAs) in a vast variety of possible interactions and
mechanisms, apparently far beyond the classical understanding of gene repression in humans.
Likewise, herpes simplex virus 1 (HSV-1) expresses numerous miRNAs and deregulates the
expression of host miRNAs. Several HSV-1 miRNAs are abundantly expressed in latency, some of
which are encoded antisense to transcripts of important productive infection genes, indicating their
roles in repressing the productive cycle and/or in maintenance/reactivation from latency. In addition,
HSV-1 also exploits host miRNAs to advance its replication or repress its genes to facilitate latency.
Here, we discuss what is known about the functional interplay between HSV-1 and the host miRNA
machinery, potential targets, and the molecular mechanisms leading to an efficient virus replication
and spread.

Keywords: miRNAs; host–pathogen interaction; HSV-1; latency; productive replication; antiviral
innate immune response; apoptosis

1. Introduction

Throughout millions of years of co-evolution with their hosts, viruses have been successfully
avoiding defense mechanisms and, at the same time, hijacking and harvesting the products of the
host’s metabolism to thrive. Interestingly, ancient cells have invented an ingenious mechanism based
on small RNAs to defeat viruses, which has later evolved into an elaborate microRNA (miRNA)
system (reviewed in [1,2]), also successfully embraced by viruses. In brief, miRNAs are a large class
of small non-coding RNAs that govern post-transcriptional repression of mRNAs in animals, plants,
and viruses (reviewed in [3]). miRNAs derive from precursor transcripts (pri-miRNAs) that, at least
in one region, form a typical hairpin structure, which is recognized by a heterotrimeric complex
called Microprocessor containing RNase III enzyme Drosha and its processivity factor DGCR8 [4].
Microprocessor releases the hairpin (≈60 nucleotides) called pre-miRNA, which is transferred to the
cytoplasm by Exportin 5/RAN-GTP [5] for further processing by another RNase III enzyme Dicer.
Dicer in association with TRBP cuts the hairpin to generate a miRNA duplex with 2–3 nt 3′ overhangs.
The duplex containing the miRNA paired to its star strand (miRNA*) is loaded into an Argonaute
(Ago) protein, and while miRNA* will be released and degraded, the other strand (miRNA) will form
a mature silencing complex [6]. The miRNA in the silencing complex will pair with target transcripts,
leading to their degradation and/or translational repression. The target recognition depends on
the miRNA seed sequence (nucleotides 2–8) and the complementary pairing with target mRNA,
usually within the three prime untranslated region (3′UTR) of messenger RNAs (mRNAs). In animals,
miRNAs have important roles in all biological processes, from embryogenesis to development and
homeostasis, and have been found to be deregulated in many diseases [7]. Each miRNA can regulate
many targets, and it has been estimated that more than 60% of human protein-coding genes are
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under selective pressure to maintain pairing with miRNAs [8]. A remarkable functional flexibility,
non-immunogenicity, small size, and fast evolution (one nucleotide change dramatically shifts the
target repertoire) give miRNAs an advantage over proteins in the viral gene regulation [9,10]. Thus,
it is not surprising that many viruses have been found to encode miRNAs and/or exploit host miRNAs
to their advantage. Currently, there are more than 40 viruses encoding miRNAs (vmiRNAs) listed
in miRBase (the main miRNAs database; release 22: March 2018), and this number represents only a
fraction of the reported studies and confirmed viral miRNAs (vmiRNAs). Among these, large DNA
viruses of the Herpesvirales order dominate the list, which can be explained by their biological properties
and the accessibility to the miRNA-biogenesis machinery. Herpesviruses establish a lifelong dormant
infection (latency) within their hosts, which requires a precise balancing between the maintenance
of latency and the responsiveness to reactivation stimuli. miRNAs are potent regulators of gene
expression, which might enable a tight regulation of immunosurveillance and/or factors that stimulate
reactivation (i.e., miRNAs confer the robustness of the on/off switch).

Clustering of vmiRNAs within the region of a virus genome associated with the active gene
expression during latent infection and an abundant expression of vmiRNAs specifically during the
latent program strongly support this concept (reviewed in [11–13]). Although the negative regulation
of virus gene products is counterintuitive from the perspective of virus replication, there are many
studies showing that the main role of latent vmiRNAs is to limit the expression of gene products that
are important for the productive infection (e.g., virus-encoded trans-activators of gene expression)
and preventing host defense mechanisms [9,10] to facilitate the establishment of latency and further
spread. For example, Kaposi’s sarcoma-associated herpesvirus (KSHV) miR-K12-9, expressed in
latency, regulates the major lytic switch the replication and transcription activator (RTA) protein,
which controls the virus reactivation from latency, and inactivation of miR-K12-9 leads to an increased
reactivation [14]. Similarly, human cytomegalovirus (HCMV) miR-UL112-1 targets the crucial viral
trans-activating gene IE72 [15], suggesting its possible roles in latency. Yet, not all herpesviruses
express miRNAs. Varicella zoster virus (VZV) and Simian varicella virus (SVV), its non-human
primate counterpart, have not been found to encode miRNAs [16–18], suggesting that other viral
and/or host gene products could compensate for their roles. Indeed, a study by Pan et al. (described
in detail below) has shown that the host miRNA miR-138, which is expressed in herpes simplex virus
1 (HSV-1) latently infected cells, regulates the expression of ICP0, a viral protein that enhances the
reactivation [19], and promotes the establishment of latency.

In contrast to the abovementioned herpesviruses, which use miRNAs to limit their replication,
many viruses use host miRNAs to facilitate their productive infection by direct association with
miRNAs or by deregulating host miRNAs to generate, for the replication, favorable conditions
(reviewed in [20]). The first characterized direct miRNA–virus genome interaction was between
hepatitis C virus (HCV) and the liver-specific miR-122. Binding of miR-122 to the 5′UTR of the
genome upstream of the internal ribosomal entry site (IRES) enhances protein translation and virus
accumulation [21,22] and it is essential for an efficient virus replication. Interestingly, the recruitment
of Ago proteins to the 5′UTR stabilizes the RNA genome and prevents its decay [23,24]. In contrast to
such positive regulation, a negative regulation by host miRNAs would be under a strong selection
pressure and, thus, unexpected in RNA viruses. Indeed, Heiss et al. have introduced target sites
for brain-enriched miRNA in the 3′ non-coding region of the flavivirus genome, which strongly
reduced virus neurovirulence in the mature mouse central nervous system (CNS). However, in highly
permissive suckling mice, virus rapidly reverted to a neurovirulent phenotype accumulating mutations
in miRNA binding sites [25], indicating that such target sites might be unsustainable. However,
Trobaugh et al. have shown that the hematopoietic cell-specific miRNA miR-142-3p potently restricts
the replication of the mosquito-borne North American eastern equine encephalitis virus (EEEV) in
myeloid-lineage cells by directly targeting virus genome. This restriction led to a limited induction of
immunity, which in turn facilitated replication of the virus and neurological disease manifestations.
Moreover, binding of miR-142-3p was essential for the efficient virus infection of mosquito vectors [26].
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Similarly, murine cytomegalovirus (MCMV) uses a highly abundant transcript m169 to decoy two
cellular miRNAs, miR-27a and miR-27b, which are subsequently rapidly degraded. A mutant virus no
longer able to target miR-27a/b shows a significant attenuation in multiple organs [27,28], indicating an
antiviral function of miR-27. The depletion of miR-27 was also observed in herpesvirus-saimiri-infected
cells by the highly abundant non-coding RNA HSUR [29]. Thus, clearly, the repressive host miRNA
target sites can be evolutionarily conserved within the virus genomes and transcripts, but only if this
repression confers some advantage to the virus life cycle.

In contrast to direct pairing of host miRNAs with viral genomes or transcripts, there are numerous
studies showing that viruses can dramatically alter the miRNAome of the infected cells, consequently
deregulating cellular factors involved in host defense, control of cell death, and virulence (reviewed
in [20]), some of which are described below. Based on the described examples, it is important to note
that viruses are the most diverse biological entity, and, therefore, it is not surprising that the interplay
between viruses and miRNAs is also by far more diverse than a canonical understanding of the miRNA
functions. Taken together, viruses additionally prove their resourcefulness and fascinating ability
to adapt.

In this review, we briefly summarize the biology of Herpes simplex virus 1 (HSV-1), a prototype of
α-herpesviruses, and the current understanding of HSV-1-encoded miRNAs and their functions. In the
second part, we focus on the exploitation of host miRNAs by HSV-1 to facilitate latency; suggested
functions of the host miRNAs deregulated during the virus infection; and the molecular mechanisms
by which the virus triggers expression of the specific host miRNAs. Finally, we discuss experimental
challenges in addressing the functions of miRNAs in HSV-1 infection and perspectives for further
research in the field.

2. Herpes Simplex Virus 1 and miRNAs

HSV-1 is a widely disseminated and an important human pathogen, and one of most intensively
studied viruses. HSV-1, similar to all herpesviruses, prospers by having its life cycle in two very distinct
phases: productive and latent. The virus initially infects epithelial cells, usually in the oro-nasal region
and less commonly of the genital mucosa, which initiates its productive infection. In this phase,
the virus abundantly expresses its genes in a coordinated cascade of gene expression (first immediate
early (IE), followed by early (E) and late (L) genes) and replicates its DNA, resulting in new virus
progeny and spread. Newly replicated viruses can gain access to the nearby innervating neurons and
move by retrograde axonal transport to the nucleus of neurons resident in peripheral ganglia. The virus
delivers its DNA, which is rapidly chromatinized, and the activity of genes across the entire genome is
largely suppressed [30]. In latently infected neurons, the only abundantly expressed transcripts are
long non-coding RNAs (lncRNAs) and miRNAs arising from the latency-associated transcripts region
(LAT). The major lncRNA is a very stable intron (1.5/2 kb) processed from a long transcript spanning
the entire LAT region [31]. The molecular mechanisms that control establishment, maintenance, and
reactivation from latency are still poorly characterized, and the exact function of LAT has not been
determined. However, the functions in repressing the productive gene expression and enhancing
reactivation, inhibition of cell death and host defense, and heterochromatinization of virus genome
have been assigned to it [32–41]. The more recent discovery of HSV-1 miRNAs led to a paradigm
shift in understanding the molecular mechanism governing latency and provoked a great interest
in researching the roles of HSV-1 miRNAs [42–44]. It is important to note that HSV-1 shares many
biological properties with HSV-2, a closely related virus that is widely known as the causative agent of
genital herpes, including a set of the functional miRNA homologs [43]. Although we will focus on
the miRNA interaction of HSV-1 and its host in this review, many of the biological phenomena can be
attributed to HSV-2 as well.
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2.1. HSV-1 miRNAs

HSV-1-encoded miRNAs have been predicted, together with other herpesviruses, by Pfeffer
et al. [45]; however, the laboratories of Donald M. Coen and Bryan Cullen have provided the first
experimental evidence of an HSV-1-encoded miRNA, miR-H1, which is abundantly expressed in
productive infection [42] and miR-H2-H6 in latency [44]. Since then, several groups have contributed
to the discovery of HSV-1- and HSV-2-encoded miRNAs, and, currently, evidence has been provided
for at least 20 miRNA encoding loci named miR-H1–H8, H11–H18, and H26–H29 (the gaps indicate
HSV-2 miRNAs with no identified homologs in HSV-1) [18,43,44,46–50]. Most of the abundantly
expressed HSV-1 miRNAs are located within the LAT region and strongly depend on the activity of
the LAT promoter in a mouse model [51]. The exact roles of most of the HSV-1-encoded miRNAs
are unknown, and have been investigated in only a few instances. For some miRNAs, the genomic
locus is very indicative of their function, i.e., some are encoded antisense to important viral genes
and, thus, completely complementary to their transcripts. For example, miR-H2, H7, and H8 are
antisense to the ICP0 transcript, an important IE transcriptional activator. Similarly, miR-H3 and H4
are antisense to ICP34.5, the main neurovirulence factor. However, although the ICP0 transcript is
an obvious target of miR-H2, and although several lines of evidence indicate their interplay (e.g.,
confirmed specific targeting [44] and interaction identified by ribonucleoside-enhanced crosslinking
and immunoprecipitation (PAR-CLIP) [52]), virus mutants of the HSV-1 strain KOS lacking the miR-H2
expression did not show a significant difference in the expression of ICP0 or replication, compared to
wild-type (wt) in cultured cells [52,53] or in a mouse model [53]. Then again, a mutant virus with
disrupted expression of miR-H2 in the virulent wt strain (McKrae) showed an increased expression of
ICP0 during productive infection and increased virulence and rate of reactivation [54,55]. These results
are puzzling and, on the one hand, might be explained by the differences between virus strains and the
experimental conditions. On the other hand, host and viral miRNAs might have redundant functions,
and thus multiple-miRNA mutants might be required to observe more exaggerated phenotypes. Also,
the function of miRNAs, i.e., fine tuning of gene expression, might be difficult to test using standard
latency and reactivation assays with a relatively low power to capture subtle differences.

Similarly to the miR-H2–ICP0 relation, mutations in miR-H3 or -H4 showed a modest but
significant effect on the replication of the virus in a cell-specific manner [52].

It is of note that mutations in the miR-H2 or miR-H4 counterparts in HSV-2 did not identify
roles of these miRNAs for the HSV-2 infection either [56]. miR-H7 and H8 lie antisense to the first
intron in ICP0 and are, thus, unlikely to regulate its expression; however, their interplay has not
been investigated. ICP4, another important HSV-1 IE transcriptional activator, has been indicated
to be a target for regulation by miR-H6, yet the biological relevance of this regulation is still to be
investigated [44,57]. In contrast to miR-H2, H3, or H4, most of the HSV-1 miRNAs do not have an
obvious target, and, thus, it is conceivable that this target might be host transcripts.

miR-H1 is a unique HSV-1 miRNA expressed abundantly in productive infection and not
present in latency and, importantly, encoded at the same locus as miR-H6. This suggests its
function in productive infection/reactivation, potential targeting of host transcripts, and even the
possibility of a functional interplay between miR-H1 and H6 [58]. Indeed, miR-H1 has been shown
to target alpha-thalassemia/mental retardation syndrome X-linked (ATRX), an effector of intrinsic
immunity and ND10 component, which contributes to other HSV-1 mechanisms in depletion of this
protein [59]. The relevance of ATRX targeting for the HSV-1 infection is still unknown. More recently,
Zheng et al. have proposed that ubiquitin protein ligase E3 component n-recognin 1 (Ubr1) is a target
of miR-H1, which might contribute to neurodegeneration by interfering with the ubiquitin-proteasome
degradation pathway [60]. The molecular mechanism of this regulation is rather puzzling, since
miR-H1 is not expressed in latency; however, it might be induced during reactivation. In addition,
miR-H1 has been predicted to target genes involved in endocytic and intercellular trafficking pathways
affecting immune defense [61]. Additionally, Naqvi et al. have shown an impaired phagocytosis
and aberrant cytokine secretion in primary human macrophages (Mϕ) transfected with miR-H1,
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probably by targeting SORT1 transcript. Moreover, they have observed that miR-H1 deregulates
a number of host miRNAs in Mϕ and primary oral keratinocytes, which also have predicted roles
in endocytosis [61]. Taken together, these studies indicate a complex network of possible multiple
interactions, but the exact roles of miR-H1 in infection are yet to be investigated.

Interestingly, in a targeted screen, Enk et al. have investigated whether HSV-1 miRNAs
downmodulate NK receptor ligands, and shown that miR-H8 reduced the expression of two NKG2D
ligands ULBP2 and ULBP3, the expression of the 2B4 ligand CD48, and viral restriction factor
tetherin by targeting phosphatidylinositol glycan anchor biosynthesis class T (PIGT), a member of
the protein complex involved in the glycosylphosphatidylinositol (GPI) anchoring pathway essential
for the presentation of proteins on the cell surface [62]. Consequently, this downmodulation led to
reduced NK-dependent killing [62]. Unfortunately, miR-H8 targets exclusively human PIGT, and, thus,
this regulation cannot be tested in a mouse model. Taken together, it is not yet possible to explain
the biological relevance of all the abovementioned interactions; however, the pieces of the puzzle are
coming together increasingly fast, and, evidently, miRNAs are important for HSV-1 infection.

2.2. HSV-1 Deregulation and Interaction with Host miRNAs

To enable efficient virus replication, HSV-1 dramatically alters host cell metabolism, including
massive changes in transcriptome and proteome. Modulation of host miRNAs (miRNAome) by HSV-1
and the roles of host miRNAs in HSV-1 infection have been studied extensively throughout the last
decade, and a large body of evidence has accumulated. Some host miRNAs have been found to directly
regulate virus gene products important for productive infection and, thus, regulate virus entry into
latency, whereas others were found deregulated to promote an efficient productive replication by
targeting different factors involved in host defense and survival. Below, we will describe some recent
evidence of the complex interaction between HSV-1 and host miRNAs.

2.2.1. Direct Targeting of Host miRNAs to HSV-1 Transcripts

As mentioned above, the negative regulation of virus replication by direct targeting of host
miRNAs to virus transcript is rather unexpected due to a strong selection for loss of such target
sites. However, herpesviruses are opportunistic pathogens that infect their hosts in a rather limited
fashion, establish “undetectable latency”, and occasionally reactivate and spread. Thus, utilizing every
mechanism that would restrict potentially aggressive productive infection should be expected,
and there is an increasing body of evidence showing that a tightly controlled virus infection represents
an advantage, and miRNAs might have a crucial role in these processes. Recently, Pan et al. have
identified two miR-138 target sites within the 3′UTR of HSV-1 ICP0 mRNA, and one such site within
the HSV-2 ICP0 mRNA, which indicated an evolutionarily conserved functional role. miR-138 is a
highly conserved miRNA abundantly expressed in neuronal cells and important for neuronal stem cell
proliferation and differentiation, and frequently found downregulated in various cancers (reviewed
in [63]). This led the authors to a hypothesis that miR-138 might limit the expression of ICP0 in
neurons, thus repressing the productive infection to facilitate latency [19]. Indeed, in addition to
a standard transfection assay in which miR-138 can reduce the expression of its target, Pan et al.
have shown evidence of RNA-induced silencing complex (RISC) binding to the ICP0 transcript in
association with miR-138 by PAR-CLIP in cells infected with HSV-1. To explore the biological relevance
of miR-138–ICP0-mediated regulation, they have generated viruses with mutated miR-138 binding
sites. Interestingly, although endogenous miR-138 can reduce the expression of ICP0 in productively
infected cells in culture, the mutant virus replicated with similar kinetics to wt in all cells tested.
However, the experiments in a mouse model gave a dramatically different phenotype. During the
acute phase of infection, mutant and wt virus replicated comparably and waned at the same pace.
However, later in the infection (day 7 post infection (p.i.); i.e., towards the establishment of latency)
the authors have observed increased levels of ICP0 and other productive replication gene transcripts,
including elevated levels of viral DNA, compared to wt, indicating that the mutant virus is debilitated
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for the establishment of latency. Moreover, the mutation in the ICP0 miR-138 binding site resulted
in significantly increased morbidity and mortality in mice. Curiously, after the establishment of
latency (32 days p.i.), the expression levels of ICP0, LAT, and other markers of virus infection were
comparable between mutant virus and wt, and both viruses reactivated equally efficiently from latency.
These results can be explained by challenging experimental approaches and the robustness of assays
with the sensitivity below the detection of meaningful differences. The authors speculated that HSV-1
has evolved to utilize the host miRNA to gain the selective advantage of increased latency, which in
turn increases the ability of the virus to spread throughout the population [19] (Figure 1).Non-Coding RNA 2018, 4, x FOR PEER REVIEW  6 of 21 
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Figure 1. Host miR-138 targets herpes simplex virus 1 (HSV-1) ICP0 messenger RNA (mRNA) and
promotes latency. A schematic representation of host-neuron-specific miR-138 regulating an important
productive replication viral protein ICP0. miR-138 in association with RNA-induced silencing complex
(RISC) binds to two microRNA (miRNA) target sites within the three prime untranslated region (3′UTR)
of the HSV-1 ICP0 transcript, leading to decreased protein levels of ICP0, and reduced overall lytic
gene expression to facilitate latency. Figure adapted from Pan et al. [19].

It is important to note, as described above, that the ICP0 transcript also contains two binding sites
for the virus-encoded miR-H2, and that mutations of miR-H2 also showed an increased neurovirulence
in strain McKrae [54,55], but the phenotype was not statistically significant in strain KOS [53]. It would
be interesting to learn if mutations in both miR-H2 and binding sites for miR-138 would additionally
accentuate the observed phenotype. Nonetheless, although the mysterious molecular mechanisms
controlling the HSV-1 latency are becoming even more complicated, it is now clear that miRNAs have
an important role in these processes.

2.2.2. Indirect Effects of Host miRNAs on HSV-1 Infection

HSV-1 has been found to modulate more than a dozen host miRNAs to target host virulence
factors enabling an efficient virus replication, and a vast number of such interactions is yet to be
identified. The deregulated host miRNAs can indirectly impact the HSV-1 replication through various
mechanisms, which, although intersected, can roughly be grouped into three categories: (a) miRNAs
that modulate factors important for the replication, (b) miRNAs that prolong cell survival, and (c)



Non-coding RNA 2018, 4, 36 7 of 21

miRNAs targeting factors of immunity. Below, we will summarize the work of many groups that have
contributed to this aspect of the complex HSV-1 biology (Figure 2 and Table 1).Non-Coding RNA 2018, 4, x FOR PEER REVIEW  7 of 21 
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Figure 2. HSV-1 deregulates host miRNAs. A schematic representation of reported deregulated
host miRNAs in HSV-1 infection and miRNAs with pro/antiviral functions. HSV-1 infects
cells and triggers massive changes in host cell miRNAome. Many miRNAs have been found to
be upregulated (arrow up within the nucleus) or downregulated (arrow down in the nucleus).
These miRNAs regulate different host (blue boxes) or viral transcripts (light blue box) with functions
in (a) regulation of apoptosis, (b) antiviral immunity, (c) inhibition of viral replication, and (d)
miRNAs with targets not known depicted in separate boxes. During early infection (EI), miR-23a
is downregulated, while later in the infection (LI) miR-23a is upregulated. The exact targets of
miR-155 and miR-146a have not been identified; however, they regulate host immune response
(yellow boxes) by regulating T-cell differentiation and the arachidonic acid cascade (AA cascade)
pathway, respectively. Upregulated miR-132 activates Ras by removing Ras-GAP, leading to corneal
neovascularization (CV). Neuron-specific miR-138 regulates virus protein ICP0. Arrows indicate
positive regulation. PD-1: Programmed cell death protein 1; PDCD-4: Programmed cell death protein
4; IRF1: Interferon regulatory factor 1; CFH: Complement factor H; TNFα: Tumor necrosis factor
alpha; IFNβ/γ: Interferon beta/gamma; MALT1: Mucosa-associated lymphoid tissue lymphoma
translocation gene 1; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; Ras-GAP:
Ras–glyceraldehyde-3-phosphate; ICP0: Infected cell polypeptide 0; ATP5B: ATP synthase subunit beta;
GRSF1: G-rich sequence factor 1; ARHGAP21: Rho GTPase-Activating Protein 21; Cdc42: Cell division
control protein 42 homolog.

Host miRNAs Prolonging Cell Survival and/or Weakening Host Defense Mechanisms

Virus infection is recognized by elaborate host defense mechanisms, many of which overlap and
lead to a less-permissive state for virus replication or programmed cell death. Apoptosis is form of
programed cell death that is vital for normal cell turnover and the removal of old, damaged, or infected
cells. Expectedly, miRNAs were also found to indirectly control apoptosis by targeting different genes
involved in cell survival, and many such miRNAs have been found to be deregulated in cancer [64].
The importance of these mechanisms for limiting virus infection can be appreciated from the fact
that all viruses encode inhibitors of these pathways. For example, HSV-1 encodes at least seven gene
products that have been shown to inhibit apoptosis at some phase of infection (reviewed in [65]).
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Recently, Ru et al. have found that HSV-1 infection strongly induces miR-23a in productively
infected HeLa cells [66], which coincides with the depletion of interferon regulatory transcription factor
1 (IRF1). miR-23a is well-known oncomiR (a miRNA with a transformation potential) with roles in
cell proliferation, development, immunity, and, in particular, apoptosis by modulating many different
targets, including IRF1 [67]. In addition, Ru et al. showed that miR-23a-mediated depletion of IRF1
can result in lower levels of radical S-adenosyl methionine domain-containing 2 (RSAD2)/viperin,
suggesting its role in limiting virus infection [68]. Interestingly, the gammaherpesvirus KSHV encodes
a number of miRNAs, including miR-K9, which targets growth arrest DNA damage-inducible gene
45 beta (GADD45B) and prevents cell cycle arrest and apoptosis [69], and miR-K3, a miRNA that
shares targets with miR-23a (i.e., a functional homolog), including genes involved in the regulation
of apoptosis and caspase-3 and -7 [70,71]. In addition, overexpression of miR-23a has been shown to
inhibit Porcine reproductive and respiratory syndrome virus (PRRSV) by directly targeting virus RNA
and inducing an IFN response [72]. miR-21, another miRNA that has been well-characterized as a
suppressor of apoptosis, has been found to be strongly upregulated in various cells in a mouse model
of Behcet’s disease after infection with HSV-1; however, the relevance for the HSV-1 infection has not
been revealed [73]. On the other hand, Xie et al. showed further evidence for the importance of the
HSV-1–miRNA–IRF1 feedback regulation in infection [74]. Using miRNA arrays, they have shown
that miR-373, which is involved in cell growth, apoptosis, and immune response, was one of the most
upregulated miRNAs in HeLa cells after infection with HSV-1. It is of note that they have not observed
a significant change in the expression levels of miR-23a. Also, they have found an increased expression
of miR-373 in serum from patients with herpetic gingivostomatitis compared to healthy control. In an
effort to investigate the biological relevance of this induction, they show that transient overexpression
of miR-373 slightly increased the virus yield, whereas the inhibition of miR-373 decreased the yield
by more than 10×, indicating a proviral role for miR-373. Moreover, they have shown that miR-373
targets IRF1 mRNA directly and, thus, limits the expression of many proteins involved in interferon
response, including the expression of IFN-α, IFN-β, protein kinase R (PKR), and 2′,5′-oligoadenylate
synthetase (OAS) [74], and, thus, facilitates the replication of HSV-1. Similar to HSV-1, miR-373 has
been found to facilitate the replication of PRRSV [75], hepatitis B virus (HBV) [76], and HCV [77],
suggesting a broad role of this miRNA in promoting virus replication through negative regulation of
the IFN signaling pathway.



Non-coding RNA 2018, 4, 36 9 of 21

Table 1. Host microRNA (miRNA) deregulated in herpes simplex virus 1 (HSV-1) infection and their targets.

Non-Coding RNA 2018, 4, x FOR PEER REVIEW  9 of 21 

 

Table 1. Host microRNA (miRNA) deregulated in herpes simplex virus 1 (HSV-1) infection and their targets. 

miRNA Up-/Downregulated Target Possible Roles Model References  Cellular Process 

miR-23a 
Down- then 
Upregulated 

IRF1 
Inhibition of innate immune response and cell 

survival 
HeLa [66]  

A
PO

PTO
SIS 

miR-649 Downregulated MALT1 Inhibition of innate and adaptive immune response HeLa [78]  

miR-101 

Upregulated ATP5B Blocking DNA packaging and capsid maturation HeLa [79] 

IN
H

IBITIO
N

 O
F 

V
IRA

L 
REPLIC

A
TIO

N
 Upregulated GRSF1 Inhibition of viral protein synthesis HeLa [80] 

miR-132 Upregulated Ras-GAP 
Immuno-inflammatory response leading to 

neovascularization and stromal keratitis lesions 
Murine corneas [81] 

A
N

TIV
IRA

L IM
M

U
N

ITY 

 Upregulated p300 Inhibition of innate immune response Monocytes (THP-1 cell line) [82] 

miR-146a Upregulated Complement 
factor H 

Evasion of HSV-1 from the innate immune response Human neuronal-glial cells  [83] 

miR-373 Upregulated IRF1 Inhibition of innate immune response 
HeLa and patients with herpetic 

gingivostomatitis [74] 

miR-155 
Deficiency SOCS1 Regulation of T cell differentiation 

In vivo mouse model of herpes 
simplex encephalitis 

[84] 

Upregulated Unknown - 
In vivo acute viral encephalitis 

model—mouse brain 
[85] 

TA
R

G
ET N

O
T 

K
N

O
W

N
 

miR-183/96/182 Upregulated Unknown - Primary fibroblasts and neurons [86] 
miR-15b, miR-26a, miR-141, miR-

183/96/182, miR-200a, b, c, miR-429 1 
Upregulated Unknown - 

In vivo acute viral encephalitis 
model—mouse brain 

[85] 

 

 

1 All of these miRNAs are shown to be upregulated during HSV-1 infection, and syndecan-2 (Sdc2) has been shown to be a possible cellular target regulated by 
miR-96, miR-141, miR-183, and miR-200c.

1 All of these miRNAs are shown to be upregulated during HSV-1 infection, and syndecan-2 (Sdc2) has been shown to be a possible cellular target regulated by miR-96, miR-141, miR-183,
and miR-200c.



Non-coding RNA 2018, 4, 36 10 of 21

miR-146a is one of the miRNAs most frequently found to be deregulated in virus infections, and
was the first host miRNA shown to be upregulated in HSV-1 infection [83]. The expression of miR-146a
is responsive to stimulation by pathogens and immunomodulatory cytokines, such as TNFα and
IL-1β, and it regulates the innate, immune, and inflammatory response and other antiviral pathways
by targeting many genes, including TNF receptor-associated factor 6 (TRAF6) and interleukin-1
receptor-associated kinase 1 and 2 (IRAK1 and IRAK2) (reviewed in [87,88]). Hill et al. have observed
the upregulation of miR-146a, but not the closely related brain-enriched miR-132 (mentioned below),
in primary human neuronal-glial (HNG) cells infected with HSV-1 [83]. They linked the elevated
expression of the miR-146a with the concurrent downregulation of complement factor H (CFH),
a known target of this miRNA and repressor of the complement signaling cascade, and suggested
that this regulation loop might also contribute to the first-line antiviral host defense mechanism [83].
This observation was later confirmed by Majer et al. when analyzing global changes in miRNA
expression during HSV-1 encephalitis (HSVE) in mice. The authors have observed that a number of
immuno-modulatory miRNAs were upregulated, including miR-146a, the miR-183/96/182 cluster,
miR-155, and the miR-200 family [85]. It is rather puzzling to note that some of these miRNAs are
proinflammatory (e.g., miR-155), whereas others suppress inflammation (e.g., miR-146a), which can
be explained by a different response of various cells to the infection, which might have contributed
differently in a global analysis. Indeed, Majer et al. have shown evidence that the proinflammatory
miR-155 was largely overexpressed in cells with a microglia phenotype. It has been previously shown
that miR-155 knockout (KO) mice are more susceptible to HSV-1 ocular infection and dissemination
in the nervous system due to a diminished function of CD8 T cells [89], strongly suggesting its
protective role. However, in wild-type mice, ocular infection with HSV-1 leads to inflammation and
overexpression of miR-155, mainly in macrophages and CD4(+) T cells [84], which strongly contributes
to stromal keratitis (SK) and corneal vascularization (CV). Thus, miR-155 KO mice or mice treated
in situ with miR-155 inhibitors were more resistant to herpes SK [84], which identifies miR-155 as a
potential target for inhibition to control not only herpetic keratitis, but other immune-related adverse
diseases, such as autoimmunity. There is a vast interest in researching miR-155 in virus replication,
yet, from the virus replication perspective, the best evidence of its importance comes from KSHV
and Marek’s disease virus (MDV), which encode orthologs of miR-155 to influence maturation and
expansion of B-cells [10,90–92].

Similar to miR-146a and miR-155, miR-132 has been found to be implicated in the replication of
many viruses, including HSV-1. miR-132 has roles in neuronal function and development, angiogenesis,
and innate immune response, and has been associated with Alzheimer’s disease [93]. Initially,
Lagos et al. have shown that KSHV infection of lymphatic endothelial cells (LECs), as well as HSV-1
or HCMV infection of monocytes, induces the expression of miR-132 early in the infection, and in
the absence of virus gene expression [82]. The induction of miR-132 is required for efficient KSHV
replication and depends on the phosphorylation of the cAMP response element-binding protein (CREB)
by mitogen/stress-activated protein kinases. Transcriptional coactivator EP300 (p300), a protein that
associates with CREB and is essential for the initiation of antiviral immunity [94], was the revealed
target of miR-132; i.e., in conclusion, the virus induces a negative feedback loop to facilitate its
replication and impairs host defense. In the context of HSV-1 infection and similar to miR-155, miR-132
has been found to be strongly upregulated in corneas of mice after HSV-1 infection [81], depending on
the VEGF or IL-17 signaling. This signaling leads to neovascularization and SK lesions, which can be
prevented by miR-132 antagomirs [81].

In contrast to all of the abovementioned miRNAs, which were found to be upregulated in HSV-1
infection, recently, Zhang et al. have reported that miR-649 was downregulated in productively
infected HeLa cells in an multiplicity of infection (MOI)-dependent manner [78]. There is relatively
limited knowledge about the function or targets of miR-649; however, roles in carcinogenesis have
been attributed to it [95–97]. Zhang et al. have shown that miR-649 facilitates HSV-1 replication
through direct targeting of 3′UTR of mucosa-associated lymphoid tissue lymphoma translocation gene
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1 (MALT1) in both HeLa and Hep-2 cells. The paracaspase MALT1 is an essential component of nuclear
factor κB (NF-κB) signaling that plays a key role in innate and adaptive immunity. Downregulation
of MALT1 results in evasion of both innate and adaptive immune responses through inhibition of
the NF-κB pathway [78]. Interestingly, miR-649 levels were downregulated after HSV-1 infection in
HeLa cells, and its downregulation may play a role in limiting HSV-1 replication through a negative
feedback loop. Although investigators have proposed a molecular mechanism by which miR-649
directly targets MALT1 and in that way facilitates replication of HSV-1, further studies are necessary to
confirm the significance of this mechanism in virus–host interaction.

Host miRNAs Modulate Host Factors Required for Efficient HSV-1 Replication

In an effort to identify virulence factors important for the virus infection, Zhang et al. have
observed that overexpression of miR-101 reduced the replication of HSV-1 in HeLa cells, whereas the
presence of a miR-101 inhibitor slightly increased the replication of the virus compared to a control
inhibitor. In addition, they have observed that miR-101 is upregulated in productively infected HeLa
cells [79]. This observation led them to hypothesize that miR-101 might be a part of an inducible
defense mechanism targeting host factors important for virus replication. Indeed, they have identified
ATP synthase subunit beta (ATP5B), a subunit of the mitochondrial F1 ATP synthase complex crucial
for maintaining the energy homeostasis in cells, as a target for the miR-101 regulation. Surprisingly,
the overexpression of miR-101, although reducing a vital component of the cells, did not alter the cells
viability; nonetheless, these cells were less permissive to HSV-1 infection [79]. More recently, the same
group has shown that ICP4, the major transcriptional regulatory protein of HSV-1, binds directly to
the miR-101 promoter and induces its expression [80]. In addition, they have validated another target
of miR-101, RNA–binding protein G-rich sequence factor 1 (GRSF1), a member of a large family of
RNA-binding proteins termed the heterogeneous nuclear ribonucleoprotein F/H protein (hnRNP
F/H) family. GRSF1 has been identified as a host virulence factor for many viruses, and it has a role
in facilitating protein synthesis by direct binding to viral RNAs [98–100]. Similarly, Wang et al. have
shown that, in transfection assays, GRSF1 directly binds HSV-1 p40 (UL26) mRNA and enhances its
expression. Taken together, Wang et al. have concluded that miR-101 might have a role in repressing
GRSF1 to limit virus replication, and to ensure the survival of host cells permitting a persistent HSV-1
infection, similar to what has been described for HSV-1-encoded miRNAs and host miR-138. Notably,
in contrast to the upregulation of miR-101 during HSV-1 infection, miR-101 has been found to be among
the most downregulated miRNAs in HCMV-infected cells, and linked to regulation of mammalian
target of rapamycin (mTOR) signaling components leading to reduced mTOR protein levels, and, thus,
affecting mRNA translation and cell growth and survival [101]. HSV-1 and HCMV, although both
herpesviruses that share many biological properties, are quite different viruses and, thus, it is not
surprising that they might differ in some aspects of their replication.

It is important to mention that miRNAs were successfully used to discover factors and networks
important for viral infection, which can be further explored as potential drug targets. In one such
screen, Santhakumar et al. have identified miR-199a as a broadly active antiviral miRNA that inhibits
the infection of several viruses, including HSV-1. miR-199 regulates multiple pathways essential
for the efficient replication of herpesviruses, including PI3K/Akt and ERK/MAPK signaling [102],
and targets Rho GTPase-Activating Protein 21 (ARHGAP21), the Cdc42-specific GTPase-activating
protein required for normal Golgi function and for the HSV-1 secondary envelopment [103].

2.2.3. The Molecular Mechanism of HSV-1 Induced Upregulation of the miR-183/96/182 Cluster

A vast body of evidence suggests that any virus infection will trigger deregulation of host
miRNAs to a different extent [29,104–107]; however, in only a few instances has the exact molecular
mechanism of the observed deregulations been revealed. As described above, many studies have
shown that HSV-1 triggers massive changes in host miRNAs, but most of these studies were limited
to only one cell type or specific experimental conditions. Recently, Lutz et al., while analyzing the
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miRNA expression pattern in two different HSV-1 in vitro latency models, have observed that the
relative abundance of overall miRNAs does not dramatically change, suggesting that HSV-1 does
not cause global changes in host miRNA abundance [86,108]. In addition, they have observed that
miR-183, miR-96, and miR-182, which are miRNAs expressed from a single cluster, were significantly
upregulated during early times of latency establishment in vitro and during the productive infection
in primary cells (human foreskin fibroblasts or rat neurons) but not in transformed cell lines (HeLa,
U2OS) [86]. More recently, Majer et al. have found that this cluster is upregulated in brain tissue of
mice with acute HSVE, indicating roles for these miRNAs in host defense mechanisms [85]. miRNAs
of the miR-183/96/182 cluster are co-expressed and have important roles in stemness, embryogenesis,
and development [109–111], and are frequently found to be deregulated in cancer and other diseases
(reviewed in [112]). Using a battery of virus mutants deficient for the expression of different IE
proteins, Lutz et al. have demonstrated that the expression of ICP0 and ICP4 is required for the
maximal induction of the miR-183/96/182 cluster during HSV-1 infection [86]. Furthermore, they have
shown that the expression of ICP0 in the absence of any other HSV-1 gene product is sufficient to induce
the cluster and that is mediated by the E3 ligase function of ICP0. This led the authors to speculate that
ICP0 might target a repressor of the miR-183/96/182 transcription for degradation. Indeed, they have
identified the consensus binding sequences for the ZEB (Zinc Finger E-Box Binding Homeobox)
family of transcription factors in the upstream region of the potential transcriptional start site of the
primary transcript of the cluster. Moreover, two members of the family and well-known repressors of
the miR-183/96/182 cluster, ZEB1 and ZEB2 [113], have been previously identified as SUMOylated
proteins destabilized by ICP0 [114]. Taken together, Lutz et al. provided additional evidence that ICP0
indeed is responsible for the depletion of ZEB1, which in turn coincides with the de-repression of the
miR-183/96/182 cluster and the elevated expression of each of the miRNAs (Figure 3). Importantly,
HSV-1 is not the only herpesvirus that alters the expression of the miR-183/96/182 cluster or interacts
with the ZEB proteins, but rather this interplay represents a broadly conserved mechanism. Similar
to HSV-1, HCMV alters the abundance of several host miRNAs during its productive infection cycle,
including a strong upregulation of the miR-183/96/182 cluster [115,116]. HCMV does not encode an
ICP0 homolog; however, it is well-established that immediate early protein IE1 and tegument protein
pp71 are, to an extent, functional counterparts [117] of ICP0; however, it is not known if these proteins
modulate the expression of the cluster. Interestingly, high levels of miRNAs of the miR-183/96/182
cluster have also been found to be associated with the Epstein–Barr virus (EBV) type I latency, as
compared to barely detectable levels of these miRNAs in the type II or III latency [118,119], in which
other sets of miRNAs are expressed at high levels (e.g., miR-146a or miR-155). Oussaief et al. have
shown that a single virus protein, latent membrane protein 1 (LMP-1), through phosphatidylinositol
3-kinase (PI3K)/Akt signaling selectively downregulates the expression of the miR-183/96/182
cluster and in turn upregulates the targets of these miRNAs [118]. The roles of ZEB1 and ZEB2
in regulating the EBV latent-lytic switch have been investigated in detail, and it has been shown that
these proteins repress the expression of the EBV BLZF1 gene by binding to its promoter. However,
only downregulation of ZEB2, but not ZEB1, leads EBV towards reactivation [120–122]. It would be
interesting to learn if upregulation of miR-183/96/182 would lead to reactivation in the absence of
other viral or cellular factors.
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3. Discussion

The roles of miRNAs in HSV-1 infection are largely unexplored, yet a significant amount of
literature has accumulated. We focused on the HSV-1/host miRNAs interactions to illustrate the
complexity and the challenging aspects in the field. Based on the presented studies, which are
mostly limited to one cell line or specific experimental conditions, it is somewhat difficult to find a
consensus on which sets of host miRNAs are reproducibly deregulated in HSV-1 infection and how
these interactions relate to infection in vivo.

Nonetheless, there is strong evidence that the manipulation of host miRNAs can affect the outcome
of HSV-1 infection [80,82,102]. Thus, it is important to address which of these miRNAs represent a part
of a host-triggered defense, which miRNAs are actively deregulated by HSV-1 to facilitate replication,
and which of these are deregulated as a consequence of the infection and not biologically meaningful.
To answer these questions, more integrative research with different HSV-1 strains and different cell
types is needed.

In addition, there are several conceptual problems with addressing the roles of host miRNAs in
HSV-1 infection, which are a subject of debate in the field. First, regarding the productive infection,
HSV-1 has a relatively short replication time, which inevitably leads to the destruction of the infected
cell, and, thus, one can argue that miRNAs might not have a chance to significantly contribute to
the regulation of productive infection. Secondly, there are numerous more robust viral functions
that intercept and block defense mechanisms of the host (e.g., RNase activity of virion host shutoff
(Vhs) protein, ICP0-mediated protein degradation, and encoded inhibitors of apoptosis); therefore,
the contribution of miRNAs to these processes during the productive infection could be modest at
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best [59]. Moreover, the observed changes in host miRNA expression levels are relatively small (2–10×),
and only nascent proteins or proteins with a relatively short lifetime would be possibly affected by viral
or deregulated host miRNAs. On the other hand, one can argue that the current knowledge is largely
based on experiments in cultured cells, and might not reflect the relevance in vivo. It is rather frequent
that the phenotype of a mutant virus is detectable only in animal models. A good example is the loss
of the pathogenicity of mutant MCMV unable to deplete miR-27 [27]. Furthermore, it is interesting to
note that, in contrast to all RNA viruses tested (HIV-1, West Nile virus, yellow fever virus, influenza A
virus etc.) that were refractory to depletion of endogenous miRNAs, HSV-1 replication was modestly
but significantly decreased in Dicer KO cells [123], indicating that viral or host miRNAs might have a
role during the productive infection. It has recently been shown that the function of miRNAs might
be limited to the regulation of cytokine response after virus infection [124], and, indeed, most of
the host miRNAs were reproducibly found to be upregulated in HSV-1 productive infection and
target some aspect of innate immunity [66,74,82,83]. However, it is very challenging to experimentally
verify the importance of this regulation, particularly in vivo. Notably, the selected proviral miRNAs
might represent a target for novel treatment of HSV-1 infection [81,84,102]. It is important to note
that herpesvirus infection is a journey through many stages, from a forceful productive infection
through establishment and maintenance of latency to reactivation, and different levels of regulation
are needed, and some miRNAs might even have a different role at a different stage of the infection.
In other words, when addressing the function of miRNAs, one has to take into account that antiviral
activity might represent, at the same time, an antiviral defense that limits productive infection and a
selective advantage for the virus to establish latency, similar to what was documented for miR-138 [19].
This additionally hampers the already demanding experimental approaches required to reveal the
function of miRNAs. For example, if it occurs, it would be extremely difficult to measure the extent
and the outcome of host miRNA deregulation in neurons after virus entry.

In contrast to productive infection, the roles of host and viral miRNAs are easier to perceive in
the latent phase of HSV-1 infection, and there is much evidence to support this hypothesis. However,
experimental challenges remain, because the latency is largely limited to experiments in animal
models. However, the recent advent of various in vitro HSV-1 latency models [108,115,125], which are
particularly suitable for high-throughput miRNA analyses, will certainly facilitate this research
regardless of the limitation regarding the immunity.

Briefly, to conclude, the miRNA field is still relatively young and the exact molecular mechanisms
of how miRNAs contribute to HSV-1 infection have not yet been revealed. However, the field is rapidly
developing and one can expect a major contribution in understanding of the complex biology of HSV-1.
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