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Two major posttranscriptional mechanisms—alternative
splicing (AS) and alternative polyadenylation (APA)—have at-
tracted much attention in cancer research. Nevertheless, their
roles in clear cell renal carcinoma (ccRCC) are still ill defined.
Herein, this study was conducted to uncover the implications of
AS and APA events in ccRCC progression. Through consensus
molecular clustering analysis, two AS or APA RNA processing
phenotypes were separately constructed with distinct prog-
nosis, tumor-infiltrating immune cells, responses to immuno-
therapy, and chemotherapy. The AS or APA score was
constructed to quantify AS or APA RNA processing patterns
of individual ccRCCs with principal-component analysis.
Both high AS and APA scores were characterized by undesir-
able survival outcomes, relatively high response to immuno-
therapy, and low sensitivity to targeted drugs, such as sorafenib
and pazopanib. Moreover, several small molecular compounds
were predicted for patients with a high AS or APA score. There
was a positive correlation between AS and APA scores. Their
interplay contributed to poor prognosis and reshaped the tu-
mor immune microenvironment. Collectively, this study is
the first to comprehensively analyze two major posttranscrip-
tional events in ccRCC. Our findings uncovered the potential
functions of AS and APA events and identified their therapeu-
tic potential in immunotherapy and targeted therapy.

INTRODUCTION
Renal cell carcinoma (RCC) represents the most frequent malignancy
that affects the adult kidney globally.1 It mainly includes three histo-
logical subtypes: clear cell RCC (ccRCC), papillary RCC (pRCC), and
chromophobe RCC (chRCC).2 The most common subtype of RCC is
ccRCC, which accounts for �75% of cases. The behavior of ccRCC is
to "clear the cytoplasm" due to its capacity to accumulate glycogen
and lipids.3 This malignancy is mostly asymptomatic in the early stage
and diagnosed occasionally by imaging, with favorable clinical out-
comes. Oppositely, in the late stage, the mortality of advanced pa-
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tients is quite high owing to low sensitivity to radiotherapy and
chemotherapy. Although advances have been made in tumor diag-
nosis and therapy, surgery is the first-line curative therapeutic strat-
egy against ccRCC. Targeted drugs like axitinib, sunitinib, and sora-
fenib have been applied as the standard of care.4 Despite the early
response in selected subjects, most of them ultimately develop resis-
tance to chemotherapy. Thus, improving the understanding of the
molecular mechanisms of ccRCC may facilitate the development of
treatment options.

RNA processing, including alternative splicing (AS) and alternative
polyadenylation (APA) of pre-mRNAs, is a highly specialized mech-
anism that allows organisms to enhance transcriptome and proteome
diversity.5 Over 90% of transcripts undergo alternative RNA process-
ing, which are estimated to generate approximately 100,000 different
proteins from 20,000 human genes.6 AS causes skipping/inclusion of
exons or retention of introns via differential selection of splice sites in
pre-mRNAs.7 Eukaryotic 30 end formation is a key step in mRNA
maturation, involving requisite cleavage and polyadenylation events
downstream of the polyadenylation signaling.8 APA leads to distinct
30 ends through regulated processing of the 30 end, including tran-
scription termination, cleavage, and polyadenylation.9 In almost
70% of human genes, cleavage and polyadenylation occur in multiple
locations through APA, which is a major post-transcriptional mech-
anism for gene regulation.10 Mounting evidence highlights the critical
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roles of AS and APA events in human cancers, such as driving onco-
genic gene expression,11 chemotherapy resistance,12 and tumor
microenvironment (TME).13 Furthermore, global AS and APA events
possess predictive potential as prognostic biomarkers of human can-
cers.14 Nevertheless, much remains unknown regarding the regulato-
ry mechanisms and the interactions of these two processes in ccRCC.
Herein, this study comprehensively recognized the regulation mech-
anisms of AS and APA RNA processing patterns in survival out-
comes, immune response, TME reshaping, and targeted therapeutic
sensitivity in ccRCC. AS and APA scoring systems were developed
to quantify the RNA processing patterns in individual tumors. Our
findings could enhance the understanding of TME immune regula-
tion and assist in developing more effective therapeutic strategies.

RESULTS
Establishment of AS RNA processing patterns with distinct

prognosis, TME, activation of signaling pathways, and

chemosensitivity

To further understand the AS events involved in tumorigenesis,
percent spliced in index (PSI) values for AS events on ccRCC samples
were obtained from The Cancer Genome Atlas (TCGA) SpliceSeq
database. We applied a non-negative matrix factorization (NMF) al-
gorithm to cluster these ccRCC patients based on the top 1,000 AS
events with the most variance. As a result, 520 ccRCC patients were
classified into two AS RNA processing patterns, named AS cluster 1
(n = 264) and 2 (n = 256) (Figures S1A and S1B). The t-distributed
stochastic neighbor embedding (t-SNE) results confirmed the accu-
racy of this classification (Figure S1C). The AS clustering patterns
remained based on the top 5,000 AS events with the most variance
(Figures S2A–S2C) or median absolute deviation (MAD) (Figures
S3A–S3C). We conducted survival analysis on ccRCC patients to
observe the prognostic difference between AS cluster 1 and 2. In Fig-
ure 1A, AS cluster 2 exhibited a significant survival advantage
compared with AS cluster 1 (p = 1.203 � 10�5). The ESTIMATE
method was presented to estimate the overall infiltration levels of im-
mune and stromal cells in ccRCC samples. Notably, AS cluster 1 had
elevated immune scores (p = 0.026; Figure 1B) and reduced stromal
scores (p = 0.0052; Figure 1C). The differences in the TME cell infil-
tration were compared between clusters. As depicted in Figure 1D,
antitumor lymphocyte cells, such as effector memory CD4+ T cells,
central memory CD8+ T cells, natural killer T cells, and natural killer
cells, exhibited higher infiltration levels in AS cluster 2, indicative of
favorable prognosis. Moreover, there were distinct differences in the
mRNA expression of immune checkpoints (Figure 1E) between clus-
ters. Notably, ADORA2A, BTNL2, CD160, CD244, TNFRSF18, LAG3,
and PDCD1 mRNAs were significantly up-regulated in AS cluster 1
Figure 1. Construction of two AS RNA processing patterns characterized by d

targeted drugs

(A) Kaplan-Meier curves of OS for ccRCC patients in AS cluster 1 and 2 (log rank test). (B

applying the ESTIMATE algorithm. (D) Heatmap of the infiltration levels in 28 immune c

mRNA expression of immune checkpoints in AS cluster 1 and 2. (F) Heatmap showing

analysis for the differences in activation of KEGG pathways between AS cluster 1 and 2

pazopanib between AS clusters. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
whereas CD276 and NRP1 mRNAs were markedly up-regulated in
AS cluster 2. In Figure 1F, the human leukocyte antigen (HLA) family
HLA-3, HLA-DRB5, HLA-DRA, and HLA-DPA1 had significantly
increased mRNA expression in AS cluster 2. These suggested that
AS RNA was significantly associated with the degree and types of
infiltrating immune cells in ccRCC. To further characterize the mech-
anisms underlying the two RNA processing patterns, we presented
gene set variation analysis (GSVA). In Figure 1G, most of the path-
ways, such as carcinogenic pathways (RCC, pathway in cancer, and
Wnt pathway) and metabolism pathways (such as glutathione meta-
bolism, sphingolipid metabolism, and starch and sucrose meta-
bolism), were significantly activated in AS cluster 2. We then investi-
gated whether there were differences in the sensitivity to commonly
used targeted drugs between clusters (Figures 1H–1K). The data
showed that AS cluster 2 had the lower half-maximal inhibitory con-
centration (IC50) values of sorafenib (p = 4 � 10�22) and pazopanib
(p = 7.22� 10�17), indicating that patients in AS cluster 2 were more
likely to benefit from sorafenib and pazopanib.

Quantification of AS score as a robust and independent

prognostic indicator of ccRCC

Given the heterogeneity between AS RNA processing patterns, we
identified 162 differential AS events between patterns, which were
finally determined with the Boruta algorithm (Table S1). To further
verify the AS post-transcriptional mechanism, we presented
consensus molecular clustering analysis based on the expression
profiling of the above AS genes. Consistent with the classification of
AS RNA processing patterns, the ccRCC patients were clustered
into two AS genomic phenotypes, named AS gene cluster 1 and 2
(Figures S4A–S4C). We observed that patients in AS gene cluster 2
had a more undesirable prognosis than those in AS gene cluster 1
(p = 1.129 � 10�5; Figure 2A). Considering the individual heteroge-
neity and complexity of AS post-transcriptional modification, on the
basis of the above AS genes, this study developed an AS scoring sys-
tem to quantify the AS RNA processing patterns of individual ccRCC
patients, named the AS score. Figure 2B visualized the attribute var-
iations of individual patients. We further evaluated the implication of
the AS score in predicting patients’ outcomes. With the median value,
patients were stratified into high and low AS score groups. Survival
analysis revealed that a high AS score was indicative of poorer overall
survival (OS) (p = 1.279 � 10�5; Figure 2C), disease-free survival
(DFS) (p = 4.622 � 10�1; Figure 2D), disease-specific survival
(DSS) (p = 1.885 � 10�3; Figure 2E), and progression-free interval
(PFI) (p = 1.31� 10�1; Figure 2F) in comparison with a low AS score.
However, no significant differences in AS were found among different
clinicopathological characteristics (Figure 2G). Receiver operating
istinct prognosis, TME, activation of signaling pathways and responses to

and C) The differences in immune score and stromal score between AS clusters by

ells between AS clusters via the ssGSEA algorithm. (E) Heatmap for visualizing the

the mRNA expression of HLA genes in AS cluster 1 and 2. (G) GSVA enrichment

. (H–K) The differences in estimated IC50 values of sorafenib, sunitinib, axitinib, and
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Figure 2. Development of AS score as a robust and independent prognostic indicator of ccRCC

(A) OS analysis between AS gene cluster 1 and 2 across ccRCC patients (log rank test). (B) Alluvial diagram visualizing the changes of AS RNA processing patterns, AS

genomic phenotypes, AS score, and survival status. (C–F) The differences in OS, DFS, DSS, and PFI between high and low AS score groups (log rank tests). (G) The

distribution of AS score in groups of different clinicopathological characteristics, including age <65 and R65, female and male, grade 1–4, and stage I–IV. p values were

(legend continued on next page)
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characteristic (ROC) curves were conducted to better illustrate the
clinical utility of AS score. In Figure 2H, we found that AS score
had a prominent advantage in predicting long-term survival time.
We evaluated whether the AS score could act as an independent prog-
nostic biomarker for ccRCC. Multivariate Cox regression model anal-
ysis confirmed AS score, stage, and grade as robust and independent
prognostic indicators for assessing a patient’s OS time (Figure 2I). A
nomogram that included AS score, stage, and grade was established
for predicting 1-, 3-, and 5-year OS probabilities (Figure 2J). The
excellent predictive efficacy of this nomogram was confirmed by
ROC (Figure 2K), calibration (Figures S5A–S5C), and decisive curves
(Figures S5D–S5F).

AS score in the role of survival outcomes and TME immune

regulation

To uncover the role of AS score in the TME immune regulation, we
quantified immune score and stromal score in ccRCC samples. Our
results showed that a high AS score was characterized by increased
immune score (p = 0.015; Figure 3A) and reduced stromal score
(p = 0.012; Figure 3B). We observed that the mRNA expression of
HLA genes was significantly down-regulated in high AS score sam-
ples (Figure 3C). We then investigated the specific differences of tu-
mor-infiltrating immune cells between high and low AS score groups.
Antitumor lymphocyte cells, such as activated CD4+ T cells, effector
memory CD4+ T cells, central memory CD8+ T cells, effector memory
CD4+ T cells, natural killer T cells, and natural killer cells, were signif-
icantly activated in the low AS group (Figure 3D), indicative of favor-
able survival outcomes. Increasing evidence has revealed the roles of
AS events in change of tumor-infiltrating immune cell levels. For
example, MALT1 controls signaling and activation of CD4+

T cells.15 Switch of HLA-G AS causes loss of HLA-G1 expression
and sensitivity to natural killer lysis.16 In Figure 3E, immune check-
points CD80, BTLA, CD40LG, CD244, TNFSF9, CD70, TMIGD2,
PDCD1, BTNL2, LAG3,ADORA2A,CD160, and TNFRSF18 displayed
significantly increased mRNA expression in high AS score samples,
whereas others were significantly decreased in low AS score samples.
For example, experimental evidence has confirmed that CD4017 and
PDCD118 expression is controlled by posttranscriptional and post-
translational regulation through AS. To uncover the potential mech-
anisms involved in the AS score, we carried out gene set enrichment
analysis (GSEA) across ccRCC samples. As a result, adherens junc-
tion, focal adhesion, and RCC were significantly activated in the
low AS score group (Figure 3F). We also examined the correlation be-
tween the known signatures and AS score. Our results showed that AS
score was negatively correlated to epithelial-mesenchymal transition
(EMT), Wnt, fibroblast growth factor receptor 3 (FGFR3), and angio-
genesis (Figure 3G), indicating that a low AS score could be linked to
stromal activation. Growing evidence shows that the activation of the
above pathways is in relation to immunotherapy resistance.19 For
example, WNT signaling activation mediates T cell exclusion and tu-
determined with Wilcoxon or Kruskal-Wallis test. (H) Time-independent ROC curves of a

regression analysis for assessing the independent prognostic indicators of OS and D

predicting 1-, 3-, and 5-year OS. (K) ROC curves under 1-, 3-, and 5-year OS based o
mor cell escape from the immune system.19 EMT-mediated pro-
grammed death ligand-1 (PD-L1) accumulation on cancer stem cells
facilitates immune evasion.20 Antiangiogenesis increases the infiltra-
tion of immune effector cells into tumors and converts the intrinsi-
cally immunosuppressive TME to an immunosupportive one.21

Thus, AS score might be negatively associated with immunotherapy
resistance. Also, we found that AS score displayed the negative corre-
lation to DNA replication, nucleotide excision repair, and mismatch
repair.

Characteristics of APA score in somaticmutation and prediction

of candidate drugs against ccRCC

We conducted a comprehensive analysis to evaluate the somatic mu-
tation difference between high and low AS score groups. A higher fre-
quency of somatic mutation was observed in low AS score samples
(Figures 4A and 4B). Moreover, a low AS score displayed markedly
increased microsatellite instability (MSI) than did a high AS score
(p = 5.9 � 10�5; Figure 4C). The mRNA expression-based stemness
index (mRNAsi) was quantified for reflecting cancer stemness. In Fig-
ure 4D, there was a markedly elevated mRNAsi in low AS score sam-
ples (p = 2.89� 10�42). We also investigated tumor mutation burden
(TMB) difference between high and low AS score groups. A higher
TMB was found in a low AS score (Figure 4E). The ccRCC patients
were stratified into four groups, according to AS score, and TMB
and survival analysis revealed that patients with a low AS score and
low TMB exhibited a prominent survival advantage (p = 1.093 �
10�4; Figure 4F). Thus, AS score could be closely linked to somaticmu-
tation. There is growing evidence showing that AS is tightly regulated
and tightly interplays with genetic and epigenetic machinery.22

Although somatic mutations regulate AS patterns, AS also controls
genomic stability, chromatin organization, and transcriptome. The
response to common targeted drugs sorafenib, sunitinib, axitinib,
and pazopanib was compared between groups (Figures 4G–4J). We
observed that a low AS score was more likely to benefit from sorafenib
(p = 8.33 � 10�22) and pazopanib (p = 3.02 � 10�17). Two main
methodswere applied for screening candidate compoundswith higher
drug sensitivity in high AS score patients utilizing Cancer Therapeu-
tics Response Portal (CTRP)- and Profiling Relative Inhibition Simul-
taneously in Mixtures (PRISM)-derived drug response data. We first
conducted differential drug response analysis between high and low
AS score groups to identify compounds with lower estimated area un-
der the curve (AUC) values in the high APA score group. Then,
Spearman correlation analysis between AUC value and AS score
was carried out to screen compounds with negative correlation coeffi-
cients. As a result, we identified eight CTRP-derived compounds
(including ouabain [r =�0.42], SR-II-138A [r =�0.45], pevonedistat
[r =�0.51], daporinad [r =�0.46], CR-1-31B [r =�0.49], narciclasine
[r =�0.456], PHA-793887 [r = �0.47], and STF-31 [r = �0.45]; Fig-
ures 4K and 4L) and eight PRISM-derived compounds (including hal-
cinonide [r =�0.38], VE-822 [r =�0.38], RKI-1447 [r =�0.67], ABT-
ge, stage, grade, gender, and AS score across ccRCC patients. (I) Multivariate Cox

FS. (J) Establishment of a nomogram that included stage, grade, and AS score in

n AS score.
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Figure 3. Characterization of AS score in the role of survival outcomes and TME immune regulation

(A and B) Differences in immune score and stromal score between high and low AS score groups. (C) The mRNA expression of HLA genes in two groups. (D) The abundance

of each tumor-infiltrating immune cell in two groups. (E) ThemRNA expression of immune checkpoints in two groups. (F) GSEA for the activated signaling pathways in the low

AS score group. (G) Correlation between the known signatures and AS score. Ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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702 [r = �0.47], BIBU-1361 [r = �0.42], flumethasone [r = �0.36],
YM-155 [r = �0.49], and GW-583340 [r = �0.62]; Figures 4M and
4N). The above compounds displayed lower estimated AUC values
932 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
in the high AS score group and were negatively associated with AS
score. The therapeutic potential of these compounds in ccRCC was
further investigated by Connectivity Map (CMap) analysis.



Figure 4. Characteristics of APA score in somatic mutation and prediction of candidate drugs against ccRCC

(A and B) Landscape of somatic mutation in high and low AS score samples. The number on the right represents the mutation frequency in each gene. The right bar plot

represents the proportion of each mutation type. (C–E) The differences in MSI, mRNAsi, and TMB in high and low AS score groups. (F) Survival analysis among four groups

stratified by AS score and TMB score (log rank test). (G–J) Estimated IC50 values of sorafenib, sunitinib, axitinib, and pazopanib in high and low AS score samples. (K and L)

Spearman’s correlation analysis and differential drug response analysis of eight CTRP-derived compounds in high AS score samples. Lower AUC value indicates higher drug

sensitivity. (M and N) Spearman’s correlation analysis and differential drug response analysis of eight PRISM-derived compounds in high AS score samples. (O) Validation of

the above compounds in the CMap database. Lower CMap score indicates higher therapeutic potential. ***p < 0.001.
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Narciclasine, GW-583340, and BIBU-1361, in which gene expression
increased in ccRCC tissues but decreased through treatment with
certain compounds, had potential therapeutic effects in ccRCCs
with a high AS score (Figure 4O).
Construction of APA RNA processing patterns with distinct

survival, activation of signaling pathways, TME, and

chemosensitivity

Growing evidence suggests that an APA event has a strong efficacy in
predicting clinical outcomes of human cancers.10 Herein, the distal
polyA site usage index (PDUI) value was used to indicate the fre-
quency of APA events. By applying the NMF algorithm, ccRCC pa-
tients were classified into two APA RNA processing patterns based
on the top 1,000 APA events with the most variance (Figures S6A–
S6C).We named the two patterns APA cluster 1 and 2. The APA clus-
tering patterns remained based on the top 5,000 AS events with the
most variance (Figures S7A–S7C) or MAD (Figures S8A–S8C). Sur-
vival analysis of the two patterns revealed a prominent survival
advantage in APA cluster 1 (p = 3.643 � 10�4; Figure 5A). APA is
a crucial event for gene regulation and is in relation to cancer progres-
sion. Thus, we determined the activation of Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways in two APA patterns through
GSVA enrichment analysis. In Figure 5B, carcinogenic activation
pathways (such as Notch signaling pathway, transforming growth
factor [TGF]-b signaling pathway, mammalian target of rapamycin
[mTOR] signaling pathway, and RCC and metabolism pathways
[such as aminoacyl tRNA biosynthesis, lysine degradation, selenoa-
mino acid metabolism, terpenoid backbone degradation, and citrate
cycle tricarboxylic acid (TCA) cycle]) were distinctly activated in
APA cluster 1. The ESTIMATE algorithm was employed for esti-
mating the overall infiltration of stromal and immune cells in ccRCC.
We found that APA cluster 2 was characterized by increased immune
score (p = 0.034; Figure 5C) and decreased stromal score (p = 0.00042;
Figure 5D). We then examined the expression of HLA genes and im-
mune checkpoints in APA cluster 1 and 2. Most of HLA genes (Fig-
ure 5E) and immune checkpoints (Figure 5F) displayed higher
expression in APA cluster 1 than 2. By single-sample GSEA (ssGSEA)
algorithm, tumor-infiltrating immune cell components were deter-
mined. Activated CD4 and CD8 T cells, central memory CD8
T cells, and CD56bright natural killer cells displayed significantly
higher infiltration levels in APA cluster 1 compared with 2 (Fig-
ure 5G). The above data indicated that APA was significantly associ-
ated with TME-infiltrating cell types and degree in ccRCC. Lower
IC50 values of sorafenib (p = 0.009; Figure 5H), axitinib (p =
5.53 � 10�8; Figure 5I), and pazopanib (p = 5.65 � 10�6; Figure 5J)
were found in APA cluster 1, indicating that patients in APA cluster 1
were more sensitive to the above targeted drugs. Meanwhile, APA
Figure 5. Construction of APA RNA processing patterns with distinct survival,

(A) Survival analysis of patients in APA cluster 1 and 2 (log rank test). (B) GSVA enrichmen

(C and D) The differences in immune score and stromal score between APA clusters. (E a

in APA clusters. (G) Heatmap of the infiltration levels in 28 immune cells between APA clu

and pazopanib between APA clusters. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.00
cluster 2 displayed higher sensitivity to sunitinib (p = 1.67 � 10�5;
Figure 5K).

Development of APA scoring system and characteristics of

clinical traits in APA-related phenotypes

To investigate the underlying biological behaviors of eachAPAmolec-
ular subtype, this study determined 161 APA-related genes through
the linear models for microarray data (limma) package and Boruta al-
gorithm (Table S2). Functional annotation analysis of theAPA-related
genes was performed via the clusterProfiler package. Gene ontology
(GO) enrichment results revealed that the above genes displayed
distinct enrichment in immunity-related biological processes and
pathways, such as interleukin-27- and interleukin-35-mediated
signaling pathways (Figures 6A–6D), confirming that APA events ex-
erted a non-negligible role in regulating cancer immunity. To further
observe this regulation mechanism, unsupervised clustering analysis
was employed to cluster patients into two genomic subtypes according
to the identified 161 APA-related genes (Figures S9A and S9B), which
was consistent withAPARNAprocessing patterns. APAgene cluster 1
exhibited a prominent survival advantage compared with APA gene
cluster 2 (p = 5.811� 10�4; Figure 6E). To accurately predict APApat-
terns in individual patients, this study developed an APA scoring sys-
tem for ccRCC, named the APA score. The alluvial diagram was de-
picted for visualizing the attribute change in each patient
(Figure 6F). Figure 6G depicted the significant difference in APA score
between gene clusters. APA gene cluster 1 had significantly higher
APA score than APA gene cluster 2 (p < 2.2 � 10�16). The efficacy
of the APA score in predicting ccRCC patients’ prognosis was further
evaluated. With the median value, patients were stratified into a high
or low APA score group. Patients with a low APA score exhibited a
markedly prominent advantage in OS (p = 8.326 � 10�4; Figure 6H),
DFS (p = 7.847� 10�4; Figure 6I), DSS (p = 3.061� 10�4; Figure 6J),
and PFI (p = 6.926� 10�6; Figure 6K). To better illustrate the clinical
characteristics of APA score, we examined the association between
APA score and age, gender, grade, and stage of ccRCC patients (Fig-
ure 6L). No significant difference in APA score was found between
age <65 and R65 patients. Male patients had a markedly higher
APA score compared with female patients (p = 0.0096). With the in-
crease of grade and stage, the APA score gradually increased. Further-
more, time-independent ROC curves confirmed the APA score
showed a good permance in predicting ccRCC prognosis (Figure 6M).
Multivariate Cox regression analysis confirmed APA score as an inde-
pendent predictor for assessing patients’OS (hazard ratio [HR] 1.017
[1.003–1.032] and p = 1.78� 10�2) and DFS (HR 1.018 [1.000–1.036]
and p = 4.48� 10�2), as shown in Figure 6N. To facilitate a personal-
ized clinical application, we established a nomogram, including inde-
pendent predictors (APA score, stage, and grade) for predicting 1-, 3-,
and 5-year survival times (Figure S10A). The ROC, calibration, and
activation of signaling pathways, TME, and chemosensitivity

t analysis for the differences in activation of KEGG pathways between APA clusters.

nd F) Heatmap for visualizing themRNA expression of HLA and immune checkpoints

sters. (H–K) The differences in estimated IC50 values of sorafenib, sunitinib, axitinib,

01.
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decisive curves confirmed the excellent predictive efficacy of this
nomogram in ccRCC patients’ OS (Figures S10B–S10H).

Characteristics of APA score in TME immune regulation

High APA score had the characteristics of increased immune score
(p = 0.0017; Figure 7A) and decreased stromal score (p = 0.00054; Fig-
ure 7B). As the APA score increased, the expression of HLA genes
showed a decreasing trend (Figure 7C). By the ssGSEA method, we
determined the immune cell types in ccRCC and compared the differ-
ences in immune cells between high and low APA scores. Our results
showed that a high APA score was characterized by adaptive immune
cell infiltration and immune activation, such as activated B cells, acti-
vated CD4 T cells, and activated CD8 T cells, whereas a lowAPA score
was characterized by innate immune cell infiltration, such as eosino-
phils, immature dendritic cells, mast cells, natural killer cells, neutro-
phils, and plasmacytoid dendritic cells (Figure 7D). Furthermore, we
found that the mRNAs of TNFSF9, PDCD1, LAG3, CD70, TMIGD2,
and TNFRSF18 were up-regulated in the high APA score group
whereas other immune checkpoints were up-regulated in the low
APA score group (Figure 7E). As shown in the GSEA, oncogenic path-
ways like ERBB, JAK-STAT,MAPK,mTOR, pathway in cancer, TGF-
b, and WNT pathways were distinctly activated in a low APA score
(Figure 7F). Spearman correlation analysis also demonstrated the
negative correlation betweenAPA score and stroma activation-related
pathways (WNT and EMT; Figure 7G). This indicated that a low APA
score was distinctly correlated to stromal activation.

Characteristics of APA score in tumor somatic mutation

The distribution of somatic mutation in high and low APA score
groups was visualized. VHL, PBTM1, and TTN were the most
frequently mutated genes in the two groups (Figures 8A and 8B). A
high APA score was significantly correlated to higher somatic copy-
number alteration (SCNA) (p = 0.0227; Figure 8C). We also evaluated
the MSI difference between groups. In Figure 8D, increased MSI was
found in the high APA score group (p = 0.00055). The TMB quanti-
fication analysis showed that the high APA score group exhibited
more extensive tumor somatic mutation compared with the low
APA score group (p = 0.08; Figure 8E). Also, high somatic TMB indi-
cated an unfavorable prognosis of ccRCC patients (p = 6.466 � 10�3;
Figure 8F). With stratified patients by APA score and TMB, we found
that patients with low TMB and low APA scores exhibited a distinct
survival advantage (p = 4.504 � 10�4; Figure 8G).

Estimation of candidate drugs for ccRCC patients based on APA

score

The response to common targeted drugs sorafenib, sunitinib, pazopa-
nib, and axitinib was estimated in the high and low APA score groups
Figure 6. Development of APA scoring system and characteristics of clinical t

(A–D) Biological processes, cellular components, molecular functions, and KEGG pathw

cluster 1 and 2 (log rank test). (F) The alluvial diagram for the attribute change of APA R

distribution of APA score in APA gene cluster 1 and 2. (H–K) OS, DFS, DSS, and PFI anal

different groups stratified by age, gender, grade, and stage. (M) Time-independent ROC

analysis of age, stage, gender, grade, and APA score for OS and DFS.
via the Genomics of Drug Sensitivity in Cancer (GDSC) database (Fig-
ures 9A–9D). We found that low APA score patients were more sensi-
tive to sorafenib (p < 1� 10�4), pazopanib (p = 0.00128), and axitinib
(p = 0.000783). By CTRP and PRISM projects, candidate compounds
were predicted for high APA score patients. This study identified two
CTRP-derived compounds (including brivanib [r = �0.56] and
ouabain [r =�0.76]); Figures 9E and 9F) and ten PRISM-derived com-
pounds (including YM-201636 [r = �0.66], bosutinib [r = �0.62],
GSK1904529A [r = �0.61], CNX-774 [r = �0.60], PD-0325901
[r = �0.45], mesna [r = �0.59], ciclesonide [r = �0.59], halobetasol-
propionate [r = �0.57], Ro-4987655 [r = �0.49], and PD-0325901
[r =�0.45]; Figures 9G and 9H). These compounds had increased esti-
mated AUC values in the high APA score group and were negatively
correlated to APA score. The therapeutic potential of these compounds
was verified through CMap analysis. PD-0325901 (CMap score <�65),
in which gene expression increased in ccRCC tissues but reduced by
treatment with certain compounds, possessed potential therapeutic
utility in ccRCCs with a high APA score (Figure 9I).

Crosstalk between APA and AS modulates survival outcomes

and tumor immune microenvironment

To explore the interaction between APA andAS, we calculated the cor-
relation between APA score and AS score among ccRCC samples and
found that there was a significantly positive correlation between APA
and AS (R = 0.45 and p < 2.2 � 10�16; Figure 10A). Survival analysis
showed that patientswith highAS andhighAPAscores had thepoorest
survival outcomes whereas those with low AS and low APA scores had
themost prominent survival advantage (p = 3.356� 10�8; Figure 10B).
An alluvial diagram depicted the changes of AS and APA scores in
ccRCC samples (Figure 10C). Figure 10D visualized the landscape of
AS andAPAevents across ccRCCpatients. Antitumor lymphocyte cells
exhibited the highest infiltration levels in patients with high AS and
high APA scores and had the lowest infiltration levels in those with
low AS and low APA scores (Figure 10E). Furthermore, most of HLA
genes and immune checkpoints had the highest mRNA expression in
the high AS and high APA score groups and had the lowest mRNA
expression in the lowAS and lowAPA score groups (Figure 10F). These
indicated that the crosstalk betweenAPA andASmay be important for
modulating survival outcomes andTME immune regulation in ccRCC.

DISCUSSION
Alternative RNA processing mechanisms, including AS and APA, are
increasingly recognized as important regulators of proteome expan-
sion and gene regulation.23,24 Growing evidence suggests that both
AS and APA events play prominent roles in inflammatory response,
innate immunity, and antitumor effects.25,26 For instance, immune-
related genes with APA events in the TME may be predictive of
raits in APA-related phenotypes

ays involved in the APA-related genes. (E) Survival analysis of patients in APA gene

NA processing pattern, APA gene cluster, APA score, and survival status. (G) The

ysis for patients in high and low APA score groups. (L) The differences in APA score in

curves of age, stage, gender, grade, and APA score. (N) Multivariate Cox regression
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Figure 7. Characteristics of APA score in TME immune regulation

(A and B) Differences in immune score and stromal score between high and low APA score groups. (C–E) Differences in HLAmRNA expression, infiltration levels of 28 immune

cells, and immune checkpoint mRNA expression between two groups. (F) GSEA for the activated KEGG pathways in low APA score group. (G) Correlation between APA

score and the known signatures. Ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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risk stratification and clinical outcomes for patients with grade II/III
gliomas.27 Because most studies center around individual tumor-infil-
trating immune cells, the overall TME infiltration features induced by
integrated implications of AS and APA events remain unrecognized.
Nevertheless, the influence of AS and APA events in ccRCC has not
been fully elucidated. Hence, identification of the roles of different AS
938 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
or APA RNA processing patterns in the TME immune regulation
may enhance the understanding of anticancer immune response,
which may guide more effective immunotherapeutic strategies.

Pre-mRNA APA and AS play important roles during eukaryotic gene
expression.28 Herein, on the basis of the top 1,000 AS or APA events
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with the most variance, we separately constructed two AS or APA
RNA processing patterns. These patterns were characterized by
distinct survival outcomes, immune response, immune cell infiltra-
tion, and activation of signaling pathways. This indicated that AS
or APA events were of great significance in reshaping distinct TME
landscape. Thus, comprehensive analysis of AS or APA patterns
may strengthen the understanding of TME immune regulation.
Furthermore, the mRNA transcriptome differences between distinct
AS or APA RNA processing patterns were closely related to im-
mune-related pathways. By the Boruta algorithm, we determined
AS- or APA-related genes to develop the AS or APA scoring system.
The AS or APA score was quantified to reflect the AS or APA patterns
of an individual tumor. Both high AS and APA scores were indicative
of undesirable survival outcomes. Our multivariate Cox regression
analysis confirmed AS or APA score as robust and independent prog-
nostic indicators of ccRCC patients. To facilitate clinical application,
we developed an AS or APA score-based nomogram for predicting
ccRCC prognosis. Moreover, a high AS or APA score was character-
ized by lowmutation burden and high immune infiltration, indicative
of higher sensitivity to immunotherapy. Hence, our AS and APA
scores displayed a predictive advantage in precision immunotherapy
in ccRCC. Our further analysis demonstrated that AS and APA scores
could be also predictive of the efficacy of adjuvant chemotherapy. Due
to poor prognosis for patients with a high AS or APA score, we
screened several potential small molecular compounds against these
patients. However, more experiments will be presented to verify the
therapeutic effects of these compounds in ccRCC.

Although polyadenylation and splicing were initially considered
different and independent events, it has recently been recognized
that these mRNA processing events are all intertwined and interre-
lated.29 For instance, in some cases, APA is known to couple with
AS to affect last intron removal.30 The remarkable correlation be-
tween AS and APA scores suggests that interactions between AS
and APA may provide a shared activation mechanism for mRNA 30

processing, splicing, and potentially other steps in RNA meta-
bolism.12 Our study found that the interplay between AS and APA
events played indispensable roles in prognosis and reshaping TME
for ccRCC. These indicated that the crosstalk between APA and AS
may be important for the generation of different RNA processing pat-
terns between individual tumors.

Collectively, this study for the first time identified the roles of AS and
APA events in ccRCC progression. Our findings uncovered the exten-
sive regulatory mechanisms by which they affected the tumor im-
mune microenvironment and their relationships with ccRCC survival
outcomes. The AS and APA scores were separately constructed to
quantify AS and APA RNA processing patterns in individual ccRCCs
and identified their therapeutic utility in immunotherapy and tar-
geted therapy. The interplay of the two posttranscriptional mecha-
Figure 8. Characteristics of APA score in tumor somatic mutation across ccRC

(A and B) Landscape of somatic mutation in high and low APA score groups. (C–E) Differe

and low TMB score groups (log rank test). (G) Survival differences among four groups
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nisms displayed the prominent clinical implications of ccRCC. Our
findings could help exploit personalized therapeutic strategies against
ccRCC patients.
MATERIALS AND METHODS
Data collection and preprocessing

The workflow of this study was depicted in Figure 11. RNA sequencing
(RNA-seq), somatic mutation, SCNA, and clinical information of
ccRCC samples were downloaded from TCGA (https://portal.gdc.
cancer.gov/repository).APA events in transcriptomedatawere assessed
according to the PDUI value. The PDUI values of all genes in ccRCC
samples were retrieved from The Cancer 30 Untranslated Region
(UTR)Atlas (TC3A; http://tc3a.org/).31 The PDUI value (range: 0–1)
indicated the frequency of APA events. The PDUI value was propor-
tional to the distal polyadenylation site of the transcript. AS events indi-
cated as PSI in ccRCC specimens were downloaded from the SpliceSeq
database (https://bioinformatics.mdanderson.org/TCGASpliceSeq/).32

ThePSI value (range: 0–100%) represented an intuitive ratio to calculate
the splicing efficiency of a gene sequence into a transcript isoform. For
generating a reliable set of AS events, a percentage of samples with a PSI
valueR75was set as the cutoff value. Themissing value of PDUI or PSI
value was filled using the K-nearest neighbors (KNN) algorithm.
Finally, data containing 8503 APA events in 529 ccRCC samples as
well as 20,802 AS events in 516 ccRCC samples were retrieved in our
study.
Consensus molecular clustering analysis

The PDUI and PSI values were separately curated and APA and AS
RNA processing patterns were clustered via the NMF algorithm based
on the top 1,000 AS or APA genes with the most variance.33 The
optimal k value was determined based on cophenetic, dispersion,
and silhouette coefficients. The t-SNE was applied for evaluating the
accuracy of classification. The clustering patterns were validated based
on the top 5,000 AS or APA genes with the most variance or MAD.
Gene set variation analysis (GSVA)

GSVA enrichment analysis, a non-parametric and unsupervised
method, was employed to estimate variations in pathway activity
across ccRCC samples.34 The gene set of c2.cp.kegg.v6.2.symbols
was retrieved from the Molecular Signatures Database (MSigDB).
The screening criteria of significant pathways were |log2fold-
change|>0.2 and adjusted p < 0.05.
Quantification of immune response predictors

The mRNA expression of HLA family genes and immune check-
points was quantified in each ccRCC sample. Stromal and immune
scores were calculated to infer the fractions of infiltrating stromal cells
and immune cells in ccRCC tissues utilizing the Estimation of STro-
mal and Immune cells in MAlignant Tumors using Expression data
C

nces in SCNA,MSI, and TMB between groups. (F) Survival differences between high

stratified by APA score and TMB score (log rank test).

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
http://tc3a.org/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/
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(ESTIMATE) algorithm.35 TMB and MSI status were calculated to
predict the response to immunotherapy.

Estimation of tumor-infiltrating immune cells

The ssGSEA algorithm was utilized for quantifying the relative abun-
dance of 28 tumor-infiltrating immune cells in ccRCC samples. The
gene set for marking each immune cell type was retrieved from the
study of Charoentong et al.36,37 The enrichment scores were calcu-
lated to represent the relative abundance of tumor-infiltrating im-
mune cells in ccRCC specimens.

Prediction of chemotherapeutic response

The response to targeted drugs was estimated through the GDSC
(https://www.cancerrxgene.org/) database.38 Four commonly applied
drugs against ccRCC were selected, including sorafenib, sunitinib, ax-
itinib, and pazopanib. By employing the pRRophetic package, the
IC50 was assessed with ridge regression analysis.39 The prediction ac-
curacy was estimated with 10-fold cross-validation.

Generation of AS or APA score

By the limma package, differential AS and APA events were deter-
mined between AS or APA RNA processing patterns.40 The differen-
tial AS and APA events with adjusted p < 0.05 were extracted for
feature selection by the Boruta package. Gene ontology (GO) and
KEGG enrichment analysis of genes within final determined AS
and APA events was performed with the clusterProfiler package,
with the cutoff value of adjusted p < 0.05.41 The PDUI or PSI values
of the selected AS or APA events were curated to perform principal-
component analysis (PCA). Principal components (PCs) 1 and 2 were
extracted and used as the signature score. As previously reported, the
formula was employed to define the AS or APA score: AS or APA
score =

P
(PC1i + PC2i), where i represented the PDUI or PSI value

of the selected AS or APA event.42,43

Gene set enrichment analysis (GSEA)

GSEA was presented for elucidating the molecular mechanisms
involved in the AS or APA score. GSEA was run through javaGSEA
3.0 on the basis of the MSigDB project.44 The c5.bp.v6.2.symbols.gm
gene set was retrieved to identify enriched KEGG pathways. Pathways
with false discovery rate <0.05 were considered significantly enriched.

Correlation between AS or APA score and several biological

processes

A set of gene sets that stored genes correlated to several biological
processes was retrieved according to previous studies, including
CD8 T effector, DNA damage repair, pan-fibroblast TGF-b
response signature (pan-F-TBRS), antigen processing machinery,
immune checkpoint, EMT markers (EMT1, EMT2, and EMT3),
Figure 9. Identification of candidate agents with high drug sensitivity in ccRCC

(A–D) Drug sensitivity to sorafenib, sunitinib, pazopanib, and axitinib between high and lo

response analysis of two CTRP-derived compounds in high APA score patients. Lower A

and differential drug response analysis of ten PRISM-derived compounds in high APA sc

analysis. ***p < 0.001.
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FGFR3-related genes, KEGG discovered histones, angiogenesis,
Fanconi anemia, cell cycle, DNA replication, nucleotide excision
repair, homologous recombination, mismatch repair, WNT target,
and cell-cycle regulators.45–47 Pearson correlation analysis between
AS or APA score and the above biological pathways was then
presented.
Prediction of drug response

Drug sensitivity data of human cancer cell lines (CCLs) were obtained
from the CTRP (https://portals.broadinstitute.org/ctrp) and PRISM
(https://depmap.org/portal/prism/) datasets, which may provide the
AUC values to evaluate the response to different compounds.
Through the KNN method, the missing AUC values were imputed.
The lower the AUC value, the higher the sensitivity to a specific com-
pound. Because the CCLs in both datasets were obtained from the
Cancer Cell Line Encyclopedia (CCLE) database (https://portals.
broadinstitute.org/ccle/),48 the expression profiles in CCLE database
were adopted for CTRP and PRISM analysis.
Assessment of mRNA expression-based stemness index

(mRNAsi)

Cancer stemness of ccRCC was quantified as described by Malta
et al.49 The mRNAsi was determined through a one-class logistic
regression machine learning algorithm, ranging from 0 (no gene
expression) to 1 (complete gene expression).
Statistical analysis

All analysis was generated by R 3.6.2. Kaplan-Meier curves and log
rank tests were utilized to assess the differences in OS, DFS, DSS,
and PFI between groups via the survminer package. Comparison be-
tween two groups was analyzed by student’s t test or Wilcoxon test,
while one-way analysis of variance or Kruskal-Wallis test was em-
ployed for comparison among three groups or more. The ROC curves
were conducted to evaluate the prognosis prediction efficacy of AS
score, APA score, age, stage, gender, and grade. Independent prog-
nostic factors for OS and DFS were screened with multivariate Cox
regression analysis, which were included for a nomogram model
that could predict the 1-, 3-, and 5-year survival probability via the
rms package. The predictive accuracy of the nomogram was assessed
through ROC, calibration, and decisive curves; p < 0.05 was consid-
ered statistically significant.
SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2022.01.014.
patients based on APA score

wAPA score patients. (E and F) Spearman’s correlation analysis and differential drug

UC value indicates higher drug sensitivity. (G and H) Spearman’s correlation analysis

ore patients. (I) Validation of the therapeutic utility of the above compounds by CMap
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Figure 11. Overview of study design
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