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Abstract
Background Lung perfusion is one of the key components of
oxygenation. It is hampered in pulmonary arterial diseases and
secondary due to parenchymal diseases.
Methods Assessment is frequently required during the
workup of a patient for either of these disease categories.
Results This review provides insight into imaging techniques,
qualitative and quantitative evaluation, and focuses on clinical
application of MR perfusion.
Conclusion The twomajor techniques, non-contrast-enhanced
(arterial spin labeling) and contrast-enhanced perfusion techni-
ques, are discussed.
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Contrast-enhanced perfusion

Introduction

Perfusion of the lung is one of the main components re-
quired for pulmonary gas exchange. Pulmonary perfusion is
altered in physiological and pathological conditions such as

pulmonary embolism, pulmonary hypertension and chronic
obstructive disease. Therefore, assessment of the pulmonary
perfusion is of physiological and clinical importance. As the
lung is a large, diffuse and inhomogeneous organ it can only
be studied in detail with techniques providing good to
excellent spatial resolution. One of these techniques is mag-
netic resonance imaging (MRI). For more than 20 years
MRI has been available as a technique for assessment of
pulmonary perfusion [1]. Two principal techniques are
established: arterial spin-labeling and contrast-enhanced
perfusion [2]. Especially the tremendous technical develop-
ments of the recents years regarding hardware and new
sequences make MR-based perfusion imaging broadly
available. Therefore, this review article will elucidate the
current state of the art sequences, clinical applications and
future developments of each technique.

Non-contrast-enhanced pulmonary perfusion

Technique

MR offers the possibility to mark a specific part of spins
magnetically by selective radiofrequency (RF) excitation,
leading to a specific magnetisation to a selected fraction of
blood. This technique is called arterial spin labeling (ASL)
and requires no intravenous application of contrast material
and is therefore considered to be completely non invasive
[3].

It has the advantage that measurements can be made
repeatedly over very short time periods (seconds). The ab-
sence of contrast also means that the measurements can be
repeated indefinitely as it has not to be cleared out from the
blood before reimaging is possible (also, the absolute num-
ber of measurements is limited by the total amount of
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contrast material that can be applied in 1 day). There are
some limitations of these techniques: (1) more difficult to
implement compared with dynamic contrast-enhanced imag-
ing; (2) requires a regular cardiac cycle; (3) single slice tech-
nique and 5–8 slices have to be acquired to cover the whole
lung; (4) the limited voxel resolution (i.e. 5×5×30 mm3)
[4].

In essence, two ECG-gated images of a selected slice are
taken 5–8 s apart during a single apnea. The two images
differ only in the way that tagging radiofrequency (RF)
pulses change the signal of blood flowing into the imaged
section while keeping the signal from the stationary struc-
tures unchanged between images. Subtraction of the two
images leaves an image in which the signal from a volume
element (voxel) is proportional to the amount of pulmonary
arterial blood delivered during the previous heart cycle [3,
5–11]. In principle, ASL preparation can be combined with
many fast data recording techniques. True fast imaging with
steady precession (true FISP) sequences in particular has
been found to be ideally suited for assessment of pulmonary
perfusion.

Specific types of ASL techniques that allow for quantifi-
cation of regional pulmonary perfusion during a single
breath hold are called “Flow-sensitive Alternating Inversion
Recovery” (FAIR) and “Flow-sensitive Alternating Inver-
sion Recovery with an Extra Radio frequency (RF) pulse”
(FAIRER). Detailed descriptions of the different principles
are given elsewhere [4, 12]. Perfusion-weighted images are
obtained from the subtraction of a control and tag images,
which are interleaved and can be acquired within one
breathholding period of 20–27 s (for each slice) [13]. The
potential sources of artefacts are cardiac and respiratory
motion. Cardiac motion and pulsatile flow of the descending
aorta can generate smearing and flow artefacts, respectively.
Spatial variation between the control images can lead to
ghosting of the blood vessels, and spatial movement be-
tween the control and tag images causes the appearance of
the adjacent dark-bright pairs of the blood vessels.

A closely related technique, called the T1 method, has also
been used to measure pulmonary perfusion (Fig. 1) [14, 15].
Methodologically, this technique is similar to the ASL tech-
niques. It differs primarily in how the experiment is con-
ceptualised—as the delivery of a bolus of tagged spins or as
an apparent alteration of the longitudinal relaxation time.
Perfusion-weighted images are acquired in a single shot by
completely saturating the static background tissue before
image acquisition. The decrease of the lung T1 values in
the same slice position from the global to the selective
experiment is statistically significant and results from the
wash-in effect of the noninverted blood water 1H spins
outside the imaging slice. Because the perfusion-weighted
image is acquired in a single shot, artefacts arising from
patient motion or different respiratory levels can be avoided.

Furthermore, only very short acquisition times (≤ 5 s per
slice) are required for the perfusion-weighted image, facili-
tating rapid and comfortable examinations. This is especially
important for lung imaging, as some patients are not able to
hold their breath for more than a few seconds.

Quantification

ASL-based techniques allow for calculation of relative pulmo-
nary blood flow (rPBF) in ml/100 g/min [12, 16, 17]. For
conversion of rPBF into PBF the lung density is required,
which is usually assumed to be constant with 0.33 g/ml (at
functional residual capacity) [18]. However, this might not be
the case in lung diseases like fibrosis or emphysema. Normal
values are reported to be in the range of 5.5 ml/g/min.

Using a rapid IR Snapshot FLASH technique, a spin
labeling method within the imaging slice was used in com-
bination with a simple two-compartment lung tissue model.
The measured pulmonary perfusion rates of the healthy lung
parenchyma were on the order of 400 to 600 ml/100 g/min,
depending on the subject investigated and the actual slice
position in the lung [19].

In healthy volunteers (n06) a quantitative comparison
between non contrast-enhanced and contrast-enhanced tech-
niques was performed [20]. Two coronal slices (middle and
dorsal part of the lung) were assessed and maps of relative
pulmonary blood flow (rPBF) were calculated—no absolute
perfusion measures were calculated. By placing ten regions
of interest in each lung, a right-to-left perfusion ratio analysis
was performed. For the dorsal slice the differences between
both techniques were not statistically different. The middle
position however showed a 16–43% underestimation of
FAIR-derived rPBF in the right lung. This was explained by
tracer saturation for the right lung as the right pulmonary
artery is in the plane of both pulses needed for tagging and

Fig. 1 Arterial spin labeling (ASL) image in a healthy volunteer
(sagittal orientation, right lung). The spatial resolution is 3.9×3.9×
10 mm, which allows for visualisation of the major and minor fissure.
On the other hand the signal-to-noise ratio is low, making an detailed
evaluation difficult
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readout. In an internal control this difference was not present if
slices were acquired in a sagittal orientation.

Application

Based on the strength and limitations noted above, the
clinical application so far has been limited. However, the
strength of the techniques lies in the ability to study phys-
iological aspects of the lung perfusion on a regional level
[21–24]. Important for all perfusion studies is to notice that
the SNR of ASL images is low, particularly in the anterior
portions of the lung. Therefore, positioning the patient so
that the area of interest is down-gravity may increase SNR
and improve visibility of perfusion defects. Also, signal
intensity and subsequently perfusion increases during exam-
ination on end-expiratory breath-hold compared to end-
inspiratory breath-hold [25, 26].

Normal aging is associated with a decline in pulmonary
function and efficiency of gas exchange. The effect of aging
on spatial heterogeneity of pulmonary perfusion was studied
on 56 healthy, non smoking volunteers with an age range of
21–76 years [27]. Relative dispersion increased significantly
with increasing age by 0.1/decade until age 50–59 years,
and a significant positive relationship between relative dis-
persion and age was found. No regional lung density meas-
urements were performed. Therefore, it was not possible to
investigate if the age-related parenchymal changes were the
cause for this phenomenon. In an early study Keilholz et al.
demonstrated the ability of ASL to depict the gravity-
dependent perfusion effects [28]. Healthy volunteers were
placed inside the scanner on their right and left lateral side
and coronal images were acquired within a 10-s breath-hold
using a FAIRER HASTE sequence. In both positions, an
increase in the intensity of the dependent lung was found
(229% for left lateral, 40% for right lateral). No change was
seen along an isogravitational plane. These results were
confirmed for volunteers lying on their back [15].

In six rabbits a pulmonary emboli model was introduced
using a balloon catheter that was placed in the left pulmo-
nary artery [29]. After occlusion of the left pulmonary artery
a set of FAIRER images followed by a contrast-enhanced
angiography was performed. The huge perfusion defect
(whole left lung) was depicted by both imaging techniques.
It has to be noted again, that 8 s were required for a single
slice of ASL, while the 3D acquisition of the contrast-
enhanced perfusion needed 30 s. A similar experiment was
done in 5 rabbits were ASL perfusion and ventilation
images using hyperpolarised 3helium were assessed [30].
After occlusion of the pulmonary artery by a balloon cath-
eter the ventilation was unchanged and the ASL perfusion
images demonstrated the large perfusion defect.

In patients susceptible to high altitude pulmonary oedema
(HAPE) it was possible to demonstrate the uneven hypoxic

pulmonary vasoconstriction compared to non-susceptible
patients by assessing the relative dispersion of blood flow
[31].

Future developments

Up to now, only few reports exist on the clinical application
of non contrast-enhanced perfusion techniques. Due to the
lengthy acquisition times and relatively low signal increase,
the clinical usage will be limited in the future. It may be the
imaging technique of choice for pregnant women to rule out
pulmonary emboli. However, in this stetting other native
imaging techniques, like steady-state free precession
sequences, also showed a good clinical potential [32].
Therefore, the main application will be in exploration of
physiological processes where the possibility of unrestricted
measurements outweighs the prolonged acquisition time [3].

Contrast-enhanced MR perfusion

Technique

MRI of contrast-enhanced lung perfusion is realised by
rapid imaging of the first pass of contrast material through
the lungs after intravenous bolus injection. Two-
dimensional approaches can be acquired in a fast fashion
such as 0.3 s for each slice. On the other hand, they lack
sufficient spatial resolution and anatomic coverage to char-
acterise most of the perfusion defects or inhomogeneities.
For this purpose 3D techniques are mandatory. To visualise
the peak enhancement of the lungs, the temporal resolution
of contrast-enhanced MRI of lung perfusion has to be below
the transit time of a contrast bolus through the lungs, being
in the range of 3 to 4 s [33]. Additionally, for clinical usage a
reasonable spatial resolution and anatomic coverage are
required to allow for visualisation of perfusion changes on
a segmental level. The most frequently used technique is a
3D gradient echo pulse sequence (FLASH) with a short TE
and TR with a resulting temporal resolution of 1.0 to 1.5 s
for each 3D data set, dependent on the used slice thickness
of 10 mm down to 5 mm [34, 35]. Improvements in k-space
sampling techniques such as the use of parallel imaging
techniques allow for increased spatial resolution without
reduction of temporal resolution. A second strategy is to
use echo sharing (like TREAT), where the low frequency k-
space data are updated more often than the high frequency
k-space data, which is interpolated between consecutive
time frames, thus leading to an effective shortening of the
total acquisition time [36]. Image quality of both techniques
was assessed in nine patients [37]. Using the same temporal
resolution the voxel size was decreased by 24% in the
TREAT data sets compared to the standard perfusion
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technique (both techniques used parallel imaging with an
acceleration factor of 2). For central and peripheral vascular
perception the TREAT perfusion was rated significantly
superior to the standard technique. Basic evaluation of MR
perfusion was performed qualitatively in comparison to
perfusion scintigraphy. Intermodality comparison showed a
good agreement (kappa00.74) in 14 patients with various
diseases (COPD, lung cancer, etc.) [38]. A direct compari-
son between different k-space acquisition techniques was
performed recently [39]. Three k-space acquisition techni-
ques were compared for image quality and SNR: (1) gener-
alised autocalibrating partial parallel acquisition (GRAPPA)
with an internal acquisition of reference lines, (2) GRAPPA
with a single “external” acquisition of reference lines before
the measurement, and (3) a combination of GRAPPA with
an internal acquisition of reference lines and view sharing.
All examinations were performed in ten healthy volunteers
(5 ml Gadubutrol with an injection speed of 2.5 ml/s) with a
constant voxel size: 3.9×3.9×5 mm3. At 1.5 T, view sharing
resulted in the best image quality and SNR. Furthermore,
the temporal resolution was the shortest with 1.07 s.

So far, most of the studies used 0.1 mmol Gd-DTPA/kg
bodyweight for visualisation of pulmonary perfusion. Dif-
ferent amounts of contrast media (0.05 mmol/kg body-
weight and 0.1 mmol/kg bodyweight), contrast media
concentrations (0.5 mmol/l and 1 mmol/l), and injection
protocols (2.5 ml/s and 5 ml/s) were compared in 10 healthy
volunteers [40]. By analysing the signal-to-noise ratio no
difference was found between the different contrast media
concentrations giving the same injection speed. For both
contrast agents a dose of 0.1 mmol/kg bodyweight was
superior to the half dose protocol. In combination with a
rapid injection (5 ml/s) the highest SNR in all vascular
segments were achieved. Regarding the contrast media in-
jection speed, a small bolus profile and fast attenuation of
the lung parenchyma is optimal. It was found that with
increased speed, the mean transit time (MTT) for the pul-
monary arteries decreased significantly [41]. However, this
decrease was not linear: a four-fold increase in injection rate
led to a two-fold decrease in MTT. In the same study it was
found, that the cardiac function parameters had no signifi-
cant influence on the bolus profile. Overall, an injection
speed of 3 ml/s was recommended for pulmonary perfusion
[42].

Basic post-processing for improvement of visualisation
of perfusion is done by subtraction of the data set with the
highest signal intensity from a baseline data set (Fig. 2). In
most cases this allows for a rapid analysis of the clinical
situation of the patient. However, for any detailed analysis,
therapy monitoring or presurgical estimation of the regional
pulmonary function, a quantitative analysis is important. A
summary of frequently used contrast media injection regi-
mens are provided in Table 1.

Quantification

Quantification of pulmonary perfusion is based on the indi-
cator dilution theory where the maximum of signal intensity
and the temporal course of the signal change are used. For
quantification an arterial input function (AIF) has to be
defined by placing a region of interest (ROI) in the main
pulmonary artery. The tissue response function of the lung
parenchyma can be either determined by multiple single
small ROIs or, better, for the whole lung.

Assuming a linear relation between the signal and the
concentration of contrast agent, signal-time curves are con-
verted to concentration-time curves [43]. Hypothesising a
negligible amount of extravasating contrast agent during the
first pass of the bolus in the lungs, the principles of the
indicator dilution theory [44] were applicable. The central
volume theorem states the relationship between the perfu-
sion parameters regional pulmonary blood flow (PBF ml/
100 ml lung tissue/min), regional pulmonary blood volume
(PBV ml/100 ml lung tissue), and the mean transit time
(MTT, s):

MTT ¼ PBV

PBF

Regional PBV can be calculated by normalising the area
under the tissue concentration-time curve to the integral of
the arterial input function AIF:

PBV ¼
R
CðtÞdt

R
AIFðtÞdt

In consideration of the finite length of the bolus and its
dispersion during its way to the tissue volume, the relation-
ship between the AIF and the tissue concentration-time
curve is described by the convolution of the AIF and a
residue function R(t):

CðtÞ ¼ PBF

Z
AIFðtÞ � Rðt � tÞdt

where R(t) is the amount of contrast agent remaining in the
tissue at time t. PBF is therefore the initial height of R(t 0),
respectively, the maximum of R(t) in case of a delay be-
tween the AIF(t) and C(t), and can be assessed by decon-
volving AIF(t) and C(t). The deconvolution of the last
equation is performed using singular value decomposition
(SVD) [45], a model-independent nonparametric deconvo-
lution analysis with the potentiality of reducing the noise
contribution by applying a suitable threshold to a singular
value matrix. This method has shown reliable results for
first-pass bolus tracking in clinical studies [46].

Inclusion of the central pulmonary arteries leads to a
systematic overestimation of pulmonary perfusion. There-
fore, the use of small ROIs in the lung periphery can be

64 Insights Imaging (2012) 3:61–71



beneficial. However, if the spatial distribution of the under-
lying lung disease is unknown, or if lung perfusion quanti-
fication is required for an entire lung (e.g. to assess side
differences of lung perfusion) a measurement of a limited
lung sample in a small ROI will only reflect a poor estimate
of lung perfusion. One study used a cross-correlation anal-
ysis (CCA) of perfusion data sets for suppression of central

pulmonary vessels [47]. CCA has previously been used to
improve the SNR and arteriovenous separation in time-
resolved MR angiography [48, 49]. It was shown that it is
feasible to identify vessels with a similar signal-intensity
time curve as a reference vessel using CCA. For this pur-
pose reference ROIs have to be drawn in the pulmonary
artery and pulmonary vein. The approach was evaluated in

Table 1 Summary of used
contrast media injection
protocols and spatial resolution
of perfusion-weighted MR

Injection speed [ml/s] Dose Spatial resolution [mm3] Reference

2.5 5 ml Gadubutrol 3.9×3.9×5 [39]

5 5 ml Magnevist 1.9×1.8×10 [56]

3 0.05 mmol/kg BW Magnevist 3.9×3.9×6.3 [59]

4 0.125 mmol/kg BW Magnevist 2.9×1.6×10 [76]

5 5 ml Omniscan 1.9×1.8×12 [63]

5 0.1 mmol/kg BW Magnevist 3.5×1.9×4 [65]

5 0.1 mmol/kg BW Magnevist 1.9×3.8×3.6 [66]

5 0.1 mmol/kg BW Multihance 1.9×3.8×4 [69]

3-5 3-5 ml Magnevist 1.9×1.8×10 [34]

5 0.1 mmol/kg BW Omniscan 1.9×3.6×4 [73]

Fig. 2 Concept of subtraction of perfusion images in a healthy volu-
neer. (a) represents the data set with the maximum contrast enhance-
ment. (b) is an early data set without contrast media. Subtraction of

both data sets (c) results in an image with suppressed background and
therefore enhanced perfusion. The 3D nature of the data sets allow for
reformation in any plane, like axial (d) or sagittal (e)
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seven healthy volunteers. The quantification of PBV and
PBF resulted in an average reduction of 25% for PBV and
15% for PBF compared with the segmentations without
vessel exclusion. A comparison of the manual exclusion of
vessel structures and the CCA revealed an average reduction
of 13% for the PBV and 8% for PBF. The reduction by
applying the CCAwas significant (P≤0.001) compared with
the results with manual and without blood vessel exclusion
for all calculated parameters.

Basically, during quantitative perfusion evaluation the
signal-time curves are converted into concentration-time
curves. Therefore, a linear relationship between signal in-
tensity and concentration is mandatory. This is especially
important for the arterial input function where all contrast
media passes by in a compact bolus [50]. A linear relation-
ship, however, is only seen for a small range of concentra-
tions of 3, 4 or 5 mmol/l as seen in in-vitro experiments [51–
53]. The linearity between signal and concentration is de-
pendent on the sequence and parameters used (like TE).
Thus, the use of a saturation recovery prepared FLASH
sequence was proposed [53], which is often used in myo-
cardial perfusion imaging, to improve the linearity of the
measurements and thus the contrast-to-noise ratio (CNR) at
higher doses. Applied to volunteers the usage of
0.057 mmol/kg bodyweight was feasible [53], while in an
animal experiment it was found that already 0.05 mmol Gd-
DTPA/kg bodyweight resulted in in-vivo concentrations
outside the linearity range [52]. However, comparing the
quantitative measures of the 0.05 mmol/kg bodyweight the
values were too high compared to results from PET where
PBF was found to be 121 ml/min/100 ml [54] and PBV 17–
20 ml/100 ml [55]. In a prospective trial different injection
protocols and contrast media concentrations were investi-
gated and compared to quantitative analysis of perfusion
SPECT [56]. The amount of the MR contrast bolus was
fixed with 5 ml and an injection speed of 5 ml/s, followed
by a 20 ml saline flush. This approach ensured similar bolus
widths in all applications. It was found that for patients
weighing less than 70 kg a concentration of 0.3 mmol/ml
showed the highest accordance to SPECT and 0.5 mmol/ml
for patients weighing more than 70 kg. However, this study
used 10-mm-thick slice partitions. Therefore, the small
amount of 5 ml of contrast media resulted in an appropriate
contrast-to-noise ratio.

Another solution for this complex problem was the usage
of a dual bolus approach [51]. In this experiment, the arterial
input function is determined by a low volume application of
contrast media (i.e. 0.01 mmol/kg bodyweight) to achieve a
linear relationship between contrast-agent concentration and
signal intensity in the large pulmonary vessels. This is
followed by boluses with higher doses to obtain sufficient
CNR in lung tissue. This may allow absolute quantification
as well as the visual analysis of perfusion in lung tissue,

which is often not possible when a single low dose is used
for absolute perfusion quantification. The drawback of this
approach is the small and therefore short bolus (i.e. 1.5 ml)
for the arterial input function, which requires an extremely
high temporal resolution of the perfusion sequence to asses
the peak signal. The combination of a small prebolus
(0.01 mmol/kg bodyweight) with a main bolus of
0.04 mmol/kg bodyweight resulted in perfusion parameters
best comparable with literature data. A combination of the
prebolus with a main bolus of 0.08 mmol/kg bodyweight
resulted in an underestimation of PBV [51].

For perfusion imaging of the lung, the optimal combina-
tion of temporal resolution and contrast-to-noise ratio is
essential. This complex interaction was studied using a
Monte-Carlo simulation and volunteer examinations [57].
It was found that a temporal resolution of approximately 2 s
has to be achieved for correct application of the deconvolu-
tion algorithm. The influence of noise in the data is especially
relevant for the estimates of PBF: high noise levels (i.e. low
CNR values) lead to a substantial underestimation and a
significant loss of accuracy in the PBF estimates. It was
concluded that the assessment of PBF might benefit from less
aggressive acceleration, for example, by a lower acceleration
factor of 2. The CNR can be notably increased if larger voxel
sizes are employed; the voxel size should thus be chosen as
large as clinically acceptable.

Repeatability of quantitative perfusion measurements
was tested in two patient groups and one large volunteer
study. In one study ten patients with bronchioalveolar car-
cinoma were scanned twice within 3 days in inspiratory
breath-hold [56]. Evaluation was performed by manually
placing three regions of interest in the data set. An excellent
agreement between both measurements was found, without
any significant difference. Ten patients with pulmonary
hypertension were re-scanned 3 weeks after the initial scan
[58]. Three-dimensional perfusion data sets were acquired
in inspiratory breath-hold and evaluation comprised the
whole lung. No significant difference was found for PBF,
PBV, and MTT. Fourteen volunteers were examined twice
after 24 h in inspiratory and expiratory breath-hold [59].
Evaluation was done comprising quantitative whole lung
evaluation and was performed by two observers. No signif-
icant difference was found for the pair of measurements
performed in expiration and evaluated by the same observer.
The inspiratory data sets however showed significant differ-
ences for PBF. Significant differences were found in inspi-
ration and expiration for the interobserver variability. These
three studies demonstrate the significant influence of the
observer on the quantitative results. Therefore, for a broad
usage of the technique an automatic segmentation approach
assisting evaluation should be developed. Especially in data
sets with pathologically changed perfusion (i.e. peripheral
perfusion defects), automatic segmentation algorithms will
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be difficult to be implemented. An initial study used mor-
phological HASTE images for segmentation of the lung
borders [60]. These contours were applied to the perfusion
data sets after image registration of the HASTE and perfu-
sion images. This reduced the time needed for evaluation of
the perfusion data sets to approximately 10 min. However,
this technique was only applied to data sets of healthy
volunteers and no reproducibility experiments were
performed.

So far MR perfusion of the lung parenchyma has been
performed at 1.5 T. Given the benefits of higher field strengths
(like 3 T) a higher SNR can be expected, which should be
beneficial regarding quantification or which allows an increase
in spatial resolution.

Application

In clinical routine, contrast-enhanced perfusion can be eas-
ily applied for visual assessment of disease characteristics.
For a qualitative approach the discussion of temporal reso-
lution and contrast media dose is obsolete and it can be
performed at any MR scanner. Perfusion defects due to
vascular obstruction show a typical wedge shape including
the lung periphery (Fig. 3) [61]. In 41 patients with acute PE
the agreement of MR perfusion with single-photon emission
computed tomography (SPECT) perfusion for perfusion
defects down to the subsegmental level was assessed [62].
MR perfusion showed a very high agreement with SPECT
(kappa value per examination 0.98, and 0.98, 0.83, and 0.69
for lobar, segmental, and subsegmental perfusion defects,
respectively). By a quantitative segmental perfusion analy-
sis in patients with acute pulmonary embolism it was pos-
sible to determine the obstruction index [63]. This
perfusion-based index showed a higher correlation with

clinical severity and also was a significant predictor of
outcome. This initial report brings MR perfusion in the pole
position for being discussed as new modality of choice for
PE assessment. Furthermore, this radiation-free technique is
optimally suited for follow-up studies and treatment moni-
toring [64]. Visual evaluation is also sufficient to differenti-
ate between different causes of pulmonary hypertension
(PH) like PAH and chronic thromboembolic PH (CTEPH)
[65]. Perfusion was diffusely reduced in PAH and focal
defects occurred in CTEPH (Fig. 4, Fig. 5). In 45 patients
with moderate to severe COPD, perfusion was matched to
parenchymal alterations demonstrated by MDCT [66]. A
high agreement on a lobar level was found between paren-
chymal destruction and reduction of perfusion in patients
with severe emphysema (kappa of 0.8). In patients with
cystic fibrosis the functional score, based on the visual
evaluation of the perfusion defects, showed an acceptable
intra- and interreader agreement (concordance correlation
coefficient 0.89 and 0.8, respectively) [67].

Semi-quantitative analysis of 3D perfusion data sets in
eight healthy volunteers allowed for calculation of the left-
to-right perfusion ratio (ratio 0.9), which was confirmed by
phase-contrast flow measurements [68]. Furthermore, a
shorter transit time and higher peak signal were found in
the dorsal lung regions. Quantitative evaluation of perfusion
was compared to perfusion scintigraphy for assessment of
left-to-right perfusion ratios in 23 patients with various lung
diseases [69]. The MR estimations of left-to-right perfusion
ratios correlated significantly with those of perfusion scin-
tigraphy scans (P<0.01). The MR ratios computed from
PBF showed the highest accuracy, followed by those from
peak concentration and PBV.

One important clinical field for perfusion assessment is
estimation of post-surgical lung function, for example, after
lung cancer resection. So far, perfusion scintigraphy is rou-
tinely used for this purpose. In 60 patients with lung cancer,
regional blood flow was assessed by scintigraphy and MR
[34]. MR outperformed scintigraphy for assessment of post-
operative FEV 1 (r00.93 and r00.89, respectively). There-
fore, it was concluded that perfusion MR is a feasible
alternative to pulmonary perfusion scintigraphy for predict-
ing postoperative lung function in patients with lung cancer.

Quantitative evaluation of different physiological effects
was performed in nine healthy volunteers [70]. Examina-
tions were performed in inspiratory and expiratory breath-
holds. A significantly higher perfusion was observed at
expiratory breath-hold. Also a higher PBF was observed
for the right lung. However, no ventro-dorsal perfusion
gradient was observed, which was explained by the inclu-
sion of central pulmonary vessels in the evaluation. After
application of a vasodilatative agent (inhalation of 100%
oxygen) a significant increase and redistribution of the pul-
monary perfusion were found in ten healthy volunteers [71].

Fig. 3 Coronal 10-mm maximum intensity projection (MIP) image in
a patient in a follow-up examination after acute pulmonary emboli.
There is a residual occlusion of the middle lobe leading to a wedge-
shaped perfusion defect on the right. There are also residual subtotal
obstructions noted in the left upper and lower lobe characterised by a
reduced perfusion
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Therefore, MR perfusion seems to be suited for estimation
of therapy response in patients with PH after administration
of vasodilatative drugs.

In a group of 13 COPD patients, the pulmonary perfusion
was found to be heterogeneously altered—PBF and PBV
were significantly reduced and MTT prolonged [72].

Despite the pure quantification, another aspect of perfusion,
although harder to establish, is the degree of homogeneity. In
patients susceptible to high-altitude pulmonary oedema
(HAPE-S) the perfusion inhomogeneity was compared be-
tween HAPE resistant volunteers and HAPE-S patients after
2 h of hypoxia (being equivalent to an altitude of 4,500 m)
[73]. Parameters indicating perfusion inhomogeneity

increased during hypoxia in both populations, particularly
in HAPE-S subjects where they increased significantly for
almost all evaluations. These results were in accordance
with those obtained by ASL technique [31]. Therefore, this
kind of analysis, although not yet broadly used, may be
important for future applications in diseases with peripheral
vasoconstriction like pulmonary hypertension. So far, only
conventional perfusion parameters have been assessed in
patients with pulmonary hypertension. Compared to healthy,
aged-matched volunteers, perfusion parameters are different
in patients with pulmonary hypertension, with reduced PBF
and PBV and increased MTT [74, 75]. Only the MTT
showed a moderate linear relationship with MPAP (r00.54

Fig. 4 Same patient as in Fig. 3.
Absolute quantification of
perfusion parameters
(a) pulmonary blood flow and
(b) pulmonary blood volume.
Especially the pulmonary blood
flow nicely pronounces the
area of the perfusion defect as
well as the areas with reduced
perfusion. Original perfusion-
weighted data set (presented as
maximum intensity projection)
See Fig. 3

Fig. 5 Patient with pulmonary
arterial hypertension
[(a) pulmonary blood flow and
(b) pulmonary blood volume].
An overall reduced perfusion
especially involving the lung
periphery is noted. However,
subpleural perfusion is still
present and no wedge-shaped
perfusion defects are seen (c)
Original perfusion-weighted
data set (presented as 10mm
maximum intensity projection)
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and r00.56, respectively). Therefore, a severity assessment
for pulmonary hypertension is currently not possible. It
remains to be determined if perfusion MR might have a role
for follow-up after treatment [58].

Future developments

Contrast-enhanced pulmonary perfusion can be routinely
acquired on the present hardware. However the large data
sets are difficult to handle and even visual evaluation might
be challenging. Therefore, future developments needs to
aim at providing easy-to-use post-processing utilities for
visual and quantitative evaluation.

Conclusion

Non contrast-enhanced techniques for assessment of pulmo-
nary perfusion are an important tool for understanding of
lung physiology. Given the low spatial resolution and lim-
ited signal-to-noise ratio, a broad clinical application
appears to be difficult. Contrast-enhanced perfusion techni-
ques are broadly available and are easily and quickly per-
formed, even in critical ill patients. Perfusion MR has shown
good agreement with perfusion scintigraphy and SPECT.
Therefore, this technique is ready to be used in a broader
clinical area.
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