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Abstract

Within the human respiratory tract (HRT), virus diffuses through the periciliary fluid (PCF)

bathing the epithelium. But virus also undergoes advection: as the mucus layer sitting atop

the PCF is pushed along by the ciliated cell’s beating cilia, the PCF and its virus content are

also pushed along, upwards towards the nose and mouth. While many mathematical mod-

els (MMs) have described the course of influenza A virus (IAV) infections in vivo, none have

considered the impact of both diffusion and advection on the kinetics and localization of the

infection. The MM herein represents the HRT as a one-dimensional track extending from

the nose down towards the lower HRT, wherein stationary cells interact with IAV which

moves within (diffusion) and along with (advection) the PCF. Diffusion was found to be negli-

gible in the presence of advection which effectively sweeps away IAV, preventing infection

from disseminating below the depth at which virus first deposits. Higher virus production

rates (10-fold) are required at higher advection speeds (40 μm/s) to maintain equivalent

infection severity and timing. Because virus is entrained upwards, upper parts of the HRT

see more virus than lower parts. As such, infection peaks and resolves faster in the upper

than in the lower HRT, making it appear as though infection progresses from the upper

towards the lower HRT, as reported in mice. When the spatial MM is expanded to include

cellular regeneration and an immune response, it reproduces tissue damage levels reported

in patients. It also captures the kinetics of seasonal and avian IAV infections, via parameter

changes consistent with reported differences between these strains, enabling comparison

of their treatment with antivirals. This new MM offers a convenient and unique platform from

which to study the localization and spread of respiratory viral infections within the HRT.

Author summary

This work proposes a new way to think about and model the dissemination of an influ-

enza A virus (IAV) infection within the human respiratory tract (HRT). The computa-

tional model takes into account the physiological environment in which the infection
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takes place by representing the HRT spatially in one dimension (depth), and by incorpo-

rating the effect of virion diffusion within the periciliary fluid that bathes infectable cells,

and the remarkable physiological barrier that is the mucus escalator, sweeping virus

upwards. Cell regeneration, the immune response, and infection with human vs avian

IAV strains are explored in this spatial context. The numerical efficiency of this model,

compared to agent-based models, makes it an attractive alternative to model respiratory

virus infections in vivo.

Introduction

Mathematical models (MMs) of influenza A virus (IAV) infection kinetics are mainly based on

ordinary differential equations (ODEs) that describe the time evolution of infection (virus as a

function of time) with the implicit assumption that all cells see all virus and vice-versa, as dis-

cussed in several reviews [1–3]. A different approach from ODE MMs is to use agent-based

MMs which treat the dynamics of each cell, and even each virus, individually and track local

cell-virus interactions [4–6]. Such MMs are computationally intensive, restricting the number

of cells, and therefore the area, which can be represented, and often lack support or validation

in the form of experimental localization data [5, 7, 8]. Infection localization can also be mod-

elled by dividing the human respiratory tract (HRT) into compartments corresponding to dif-

ferent regions of the HRT, where each compartment has different parameters based upon

physiological differences [9, 10].

IAV infection spread faces a tremendous physical, spatial barrier in the form of the thick

mucus layer which lines the HRT [11, 12]. This mucus layer sits atop the PCF, which itself sits

atop and bathes the epithelial cells that line the HRT. As the ciliated epithelial cells’ coordi-

nated, beating cilia push the mucus layer upwards, it also pushes the PCF and the virus it con-

tains, upwards towards the nose and mouth, and out of the HRT [13, 14]. Virus entering via

the airways above the mucus layer, or progeny virus released at the base of the PCF by infected

cells, can either become trapped by the mucus acting like flypaper, or remain in the PCF and

get carried along with it, upwards and out of the HRT. These effective clearing mechanisms,

jointly referred to as the mucociliary escalator, are typically taken somewhat into account in

non-spatial ODE MMs via a term for the exponential clearance of virions. This simplification,

however, does not account for the fact that not all cells will have equal exposure to the virus:

cells that are downstream of the PCF flow (higher in the HRT) will have greater exposure to

virus than those upstream, located deeper within the HRT. To our knowledge, the effect of

virus entrainment due to the upwards advection of the PCF on IAV infection localization and

spread within the HRT has never been evaluated.

In this work, a spatiotemporal MM for the spread of IAV infection within the HRT using

partial differential equations (PDEs) is constructed. Through its one-dimensional representa-

tion of the HRT, the MM is used to study the effect of viral transport modes on the course of

an IAV infection in vivo. Via the addition of two spatial parameters whose value is relatively

well-established, namely the rate of diffusion and advection of virions, the MM produces a

richer range of IAV kinetics, and predicts spatial infection spread patterns consistent with that

observed in mice [15, 16]. The further addition of cellular regeneration and a simplified

immune response allow the MM to reproduce levels of tissue damage consistent with that

reported in patients [17]. The PDE MM is also used to explore differences in the kinetics of

IAV infection, in the absence and presence of antiviral therapy, for IAV infection with either a

seasonal or an avian-adapted strain, with the latter being typically more severe [18].
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Results

A spatial MM for IAV in the HRT

In the proposed spatial MM, the HRT is represented as a one-dimensional tract running along

the x-axis indicating the depth within the HRT, with x = 0 cm located at the top of the HRT

(nose), and x = 30 cm terminating somewhere within the bronchi [19, 20], as illustrated in Fig

1. It is an extension of the ‘standard’ MM for IAV in vitro [21–23] which adds: (1) the diffusion

of virions through the periciliary fluid (PCF) which lies between the cells’ apical surface and

the thick mucus blanket which lines the airways; (2) their advection due to the PCF being

pushed along by the ciliated cells’ beating cilia; and (3) their effect on the one-dimensional,

depth-dependent fraction of non-motile (stationary) cells in various stages of infection. The

spatial MM is formulated as
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The fraction of uninfected, target cells, T(x, t), located at a depth x at time t are infected at

rate βV(x, t), proportional to the concentration of virions, V(x, t), at that depth and time.

Fig 1. Representation of the human respiratory tract by the mathematical model. The MM Eq (1) represents the

HRT as a one-dimensional track, as illustrated. The MM considers only the virus that is located in, and diffusing within

the PCF, which also moves along with the PCF upwards at a fixed advection speed. What happens to the virus when it

reaches the bottom (reflective) or top (absorptive) of the MM-represented HRT is indicated. MM (1) describes the

interactions between the moving virus concentration in the PCF, and the stationary cells that carpet the HRT.

https://doi.org/10.1371/journal.pcbi.1007705.g001
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Newly infected cells are in the eclipse phase, Ei(x, t), i.e. they are infected but are not yet pro-

ducing virus. After an average time τE, infected cells leave the eclipse phase to become infec-

tious cells, Ij(x, t), producing virions at constant rate p for an average time τI until they cease

virus production and undergo apoptosis. As in [21, 22], the eclipse and infectious phases are

each divided into nE = nI = 60 age classes so that the time spent by cells in each phase follows a

normal-like distribution, consistent with biological observations [24].

The MM assumes virions are released from stationary infected cells into the PCF, so V(x, t)
is the concentration of virus in the PCF. The produced virions diffuse through the PCF at rate

DPCF, and are transported upwards (towards the nose) with the PCF at speed va, as the PCF is

pushed along by the beating cilia of the ciliated cells that line the HRT [13, 14]. The diffusion

coefficient of IAV in the PCF, DPCF, is estimated based on the Stokes-Einstein equation for

IAV diffusing in plasma at body temperature, namely DPCF� 10−12 m2/s [25, 26]. The advec-

tion speed of the PCF is set to that of the mucus layer, va = 40 μm/s, based on experiments by

Matsui et al. [27] wherein microspheres 0.2 μm in diameter, located within the mucus and the

PCF, in human tracheobronchial epithelial cell cultures grown in air-liquid interface, were

found to travel at the same speed. At the edges of the mathematically modelled HRT, when

virus in the PCF reaches the top of the HRT, it is lost (absorptive boundary conditions), and its

upwards advection ensures it cannot reach the bottom of the modelled HRT, which becomes

irrelevant, as will be shown later. Absorption of virions into the mucus blanket (out of the

PCF), their loss of viral infectivity over time (in the PCF), and other modes of non-specific

virion clearance are all taken into account via a single exponential viral clearance rate term, cV
(x, t). Virions contributing to the infection in this MM are those remaining in the PCF, in

direct contact with infectable cells.

In the spatial MM simulator, infection is initiated by a spatially localized, spray-like virus

inoculum deposited at depth xd within the HRT. The spray-like inoculum is represented by a

Gaussian centred at the site of deposition, with a standard deviation of 0.5 mm, about 10× the

size of a large cough droplet [28]. At sites far from x = xd, V(x, t = 0)�0. The baseline values of

the spatial MM’s parameters were all set to values estimated in Baccam et al. [29], obtained by

fitting a non-spatial MM to patient data from experimental primary infections with the influ-

enza A/Hong Kong/123/77 (H1N1) virus. Table 1 lists the initial conditions and parameters

used. A complete description of the spatial MM is provided in the Methods.

IAV kinetics in the presence of virus diffusion and advection

Infection of cells by the IAV, and the subsequent release of virions, occurs almost exclusively

at the apical surface of the epithelium [30, 31]. When advective motion of the PCF is neglected,

virions can be assumed to undergo Brownian motion and the virus concentration distribution

in the PCF will be governed by diffusion. Fig 2(a)–2(c) shows IAV infection kinetics in the

presence of diffusion alone, where quantities are shown averaged over all spatial sites as a func-

tion of time (see Methods). The infection takes place at a much slower pace in the spatial (dif-

fusion only) MM than in the non-spatial MM which implicitly assumes an infinite diffusion

coefficient. Fig 2(d)–2(f) shows the spatial extent of the infection dissemination (with diffusion

only) through the HRT at certain times post-infection. Virus becomes available to target cells

gradually as it diffuses away from the site of initial infection, xd = 15 cm, and the infection

wavefront moves outwards from that site symmetrically towards the two ends of the HRT at

x = 0 and xmax. S1 Video depicts the spatiotemporal course of the infection, in the presence of

diffusion only, in the form of a video.

There is an important distinction to be made between the actual virus concentration in the

PCF and the virus concentration measured experimentally. In a typical, non-spatial MM, the
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Table 1. Default initial conditions and parameter values.

Symbol Description Value� [Source]

— Spatial simulator parameters —

DPCF IAV diffusion coefficient in PCF at 37˚C 10–12 m2/s [25]

va advection speed of PCF 40 μm/s [27]

Δx size of one spatial grid site 100 μm (Nx = 3000 sites) [see Methods]

Δt duration of one time step 2.5 s (Δt = Δx/va) [see Methods]

— Initial conditions —

xd deposition depth of virus inoculum 15 cm

hV(x, t = 0)i initial virus inoculum averaged over x 7.5 × 10−2 TCID50/mL [29, �]

T(x, t = 0) initial fraction of uninfected target cells 1.0 8 x
Ei, Ij(x, t = 0) initial fraction of infected cells 0.0 8 x

— Infection parameters —

τE duration of eclipse phase 8 h (nE = 60) [�]

τI productively infected cell lifespan 20 h (nI = 60) [�]

c virus clearance rate 0.22 h−1 [29]

β infection rate of cells by virus 1.33 × 10−6(TCID50/mL)−1 � h−1 [29]

p virus production rate 8.4 × 10−6(TCID50/mL) � h−1 (11 × pBaccam) [�]

� These values are used in all simulations unless otherwise stated. The spatially averaged initial inoculum, hV(x,

t = 0)i, equals the value in [29] (see Methods). Values for τE and τI were chosen so as to lie near the middle of the

ranges of [6, 10] h and [10, 40] h, respectively, obtained from MMs of IAV infections in vitro [21, 22]. The value for p
is discussed in the next Section, and that for pBaccam is explained in Methods.

https://doi.org/10.1371/journal.pcbi.1007705.t001

Fig 2. IAV infection kinetics in the presence of diffusion alone (no advection). (Top) Time course (averaged over

space) of the infection for the fraction of cells in the (a) target/uninfected or (b) infectious state, and (c) the infectious

virus concentration, obtained using the non-spatial ODE MM (dashed) or the spatial (diffusion only) MM (solid).

(Bottom) Localized fraction of cells in the (d) target or (e) infectious state and (f) the infectious virus concentration as a

function of depth within the HRT shown at specific days post-infection (dpi).

https://doi.org/10.1371/journal.pcbi.1007705.g002
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virus concentration in the PCF is implicitly assumed equal everywhere, V(t), and can be com-

pared directly to the experimentally measured concentration at that time t. In the spatial MM,

the virus concentration depends not only on time but also on depth (x), i.e. V(x, t) rather than

just V(t). The virus concentration curves shown herein when the x-axis is time rather than

depth, correspond to the concentration averaged over all values of x 2 [0, 30] cm. S1 Fig

explores the impact of this choice on our findings below.

Along the length of the HRT, a layer of mucus about 0.5 μm–5 μm thick covers the PCF

[11]. The collective motion of the underlying epithelial cells’ beating cilia, dubbed the muco-

ciliary escalator, drives this mucus layer upwards. It also leads to an upward advection of the

PCF, at a speed similar to that of the mucus layer [27, 32], entraining any virus in the PCF

upwards at that speed. Given the advection speed of the mucus and PCF (va� 40 μm/s), any

newly produced or deposited virion would be cleared from the HRT in less than *12 min (30

cm/va). Thus, it is not surprising that adding advection to the spatial MM, while still using the

same parameter values, results in a subdued, low viral titer, slow-growing infection which still

has not peaked by 7 dpi. In contrast, viral titer in patients infected with influenza A/Hong

Kong/123/77 (H1N1) virus in Baccam et al. [29] peaks 2–3 dpi, which the non-spatial MM

with these same parameters reproduces well.

Fig 3(a)–3(c) shows the IAV infection kinetics in the presence of both diffusion and upward

advection as the virus production rate, p, is increased from the base value estimated by Baccam

et al. [29] for their non-spatial MM, pBaccam (see Methods). Increasing the virus production

rate to 11 × pBaccam yields an infection that peaks at *3 dpi. This adjusted value for the virus

production rate (p = 11 × pBaccam, see Table 1) is used in the remainder of this work, unless

stated otherwise, so that the spatial MM qualitatively reproduces the approximate timing of

viral titer peak in an IAV infection.

Using the new value for the virus production rate, Fig 3(d)–3(f) shows the spatial extent of

the infection dissemination in the presence of both diffusion and advection in the spatial MM.

It illustrates the protective effect of advection: preventing the infection from travelling much

beyond its initial deposition depth (xd = 15 cm), as seen from the target cell depletion shown

in Fig 3(d). Fig 3(g)–3(i) explores the effect of varying this depth of deposition of the initial

virus inoculum, xd. When the inoculum deposits lower in the HRT (as xd increases), the frac-

tion of HRT consumed by the infection increases, resulting in higher viral titer peak and total

virus yield. While such differences in viral titer could have clinical implications, the corre-

sponding changes in viral titer would not be experimentally detectable in light of typical uncer-

tainties (at least 10-fold) in titer measurements from nasal washes.

In the presence of both diffusion and advection in the spatial MM, the initial virus inocu-

lum travels quickly from its deposition site at a fixed speed up the HRT, leaving in its wake a

small, equal fraction of infected cells at all sites above the deposition point (8x< xd). As the

newly infected cells begin to release virus which is entrained up the HRT, uninfected cells are

only exposed to virus produced by cells lower than (upstream of) their own depth (greater x
value), such that cells higher in the HRT (smaller x value) are exposed to the most virus. Con-

sequently, infection in the upper HRT proceeds much faster than that in the lower HRT. Fig

3(j)–3(l) shows the localized fraction of target and infectious cells, and infectious virus concen-

tration over time at specific sites or depths along the HRT. Despite infection kinetic parame-

ters being the same at all sites, infection progresses faster at sites located higher in the HRT,

downstream of the virus flow.

Interestingly, the more rapid progression of the infection higher in the HRT makes it

appear as though the infection is moving downwards, from the top (nose, x = 0) towards the

bottom (x = 30 cm) of the HRT. Both the target cell depletion wavefront in Fig 3(d) and the

infected cell “pulse” in Fig 3(e) appear to be moving to the right (towards the lower HRT) as
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Fig 3. IAV infection kinetics in the presence of diffusion and advection. (a,b,c) Time course (averaged over space)

of the infection for the fraction of cells in the (a) target/uninfected or (b) infectious state, and (c) the infectious virus

concentration, obtained using the ODE MM (dashed) or the spatial MM (solid), as the rate of virus production, p, is

varied. (d,e,f) Localized fraction of cells in the (d) target or (e) infectious state and (f) the infectious virus concentration

as a function of depth within the HRT shown at specific days post-infection (dpi). (g,h,i) Same as (a,b,c) but varying

the depth of deposition of the initial virus inoculum (xd). (j,k,l) Similar to (a,b,c) but rather than being averaged over

space, the infection time course is shown at specific, spatially localized depths (x). Unless otherwise noted, p = 11 ×
pBaccam and xd = 15 cm.

https://doi.org/10.1371/journal.pcbi.1007705.g003
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time advances. This can be seen more clearly in the videos (S2 and S3 Videos) which depict the

spatiotemporal course of the infection, in the presence of both diffusion and advection. Cells

in the upper HRT are consumed first, after which the pulse of infected cells appears to slowly

move backwards, down the HRT, back to the initial deposition site, where it then slowly dissi-

pates. The observation that the infection appears to be progressing from the top towards the

bottom of the HRT has also been noted in experimental studies of mice infected with IAV

engineered to be fluorescent or bioluminescent [15, 16].

Fig 4(a) provides a more “zoomed-in” view of what happens to the pulse in Fig 3(e) at times

beyond 7 dpi. The pulse is shrinking and slowing down as it approaches the initial inoculum

deposition depth of xd = 15 cm. Fig 4(b) quantitatively displays the (nearly exponential) decay

of both the amplitude and speed of the pulse, as its peak’s position (μp) approaches its final,

asymptotic position of *14.1 cm, a little short of its initial deposition depth. Fig 4(c) shows

the difference between the pulses obtained in the presence of both diffusion and advection

minus that in the presence of advection alone (no diffusion). While advection dominates over

diffusion, the latter still plays a role in allowing a small amount of virus to travel upstream,

against the advection, which results in slightly more cells infected upstream and slightly less

downstream. The effect of diffusion in the presence of advection is most likely negligible (one

part in 105 in the fraction of cells infected) in light of typical, in vivo experimental variability

(*10-fold variability). As such, it could be omitted in future modelling efforts.

Finally, the robustness of these results to variations in the advection speed was evaluated.

Fig 5(a)–5(c) shows the effect of the advection speed on the infection kinetics when the virus

production rate is fixed to its value in the non-spatial model, pBaccam. In Fig 5(d)–5(f), the virus

production rate is increased as advection speed is increased so that the spatial MM approxi-

mately reproduces the timing of viral titer peak in the non-spatial MM for all values of the

advection speed. For the lowest advection speed considered (va = 4 μm/s), no adjustment to

the virus production rate was needed. Fig 5(g)–5(i) shows the spatial extent of the infection at

specific days post-infection for advection speed va = 4 μm/s and virus production rate pBaccam.

Even at a speed 10 × slower than that measured experimentally [27], the MM predicts advec-

tion would still prevent the infection from travelling beyond its initial deposition depth (herein

Fig 4. A closer look at infection resolution: the impact of deposition depth and diffusion. (a) A zoomed-in

continuation of Fig 3(e) showing the localized fraction of infectious cells as a function of depth within the HRT, at

times beyond 7 dpi. (b) The (nearly exponential) decay over time of the amplitude and speed of the Gaussian pulse of

fraction of infected cells shown in (a), and of its centre location (mean, μp) relative to its final, asymptotic location of

14.1 cm. The points are from the MM-simulated infection, and the lines are an exponential regression (linear

regression to the log of the quantities). (c) The fraction of infectious cells shown in (a) in the presence of diffusion and

advection (diff+adv) minus that obtained in the presence of advection only (adv only), i.e. when DPCF = 0.

https://doi.org/10.1371/journal.pcbi.1007705.g004
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xd = 15), and the infection still appears to be progressing downwards as the infection peaks

and resolves faster in the upper than in the lower HRT.

Target cell regeneration during IAV infection

During an uncomplicated IAV infection, viral loads typically fall below detectable levels

between 6 dpi–8 dpi [33, 34]. An experimental study in which mice were sacrificed at various

times over the course of an IAV infection [35] found that by 3 dpi, ciliated cells were rarely

observed on the tracheal surface, and instead the latter was mostly composed of a layer of

undifferentiated cells. By 5 dpi, signs of repair were apparent, by 10 dpi the tracheal surface

was covered with ciliated and nonciliated cells, and by 14 dpi the surface was indistinguishable

from the uninfected surface. Another experimental study in hamsters suggests that 6 d–7 d

after mechanical injury, most of the epithelium is comparable to that of control hamsters [36].

Fig 5. The effect of advection speed on the MM predictions of IAV infection kinetics. (a–f) Time course (averaged

over space) of the infection for the fraction of cells in the (a,d) target/uninfected or (b,e) infectious states, and (c,f) the

infectious virus concentration, as the advections speed (va) is varied either (a,b,c) on its own; or (d,e,f) along with the

virus production rate so as to keep virus peak titer and timing constant. (g–i) Spatial distribution of the infection at

various days post-infection for an advection speed va = 4 μm/s and virus production rate pBaccam.

https://doi.org/10.1371/journal.pcbi.1007705.g005
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A similar study in guinea-pigs suggests that 5 d after mechanical injury, the epithelium was cil-

iated and differentiated, and by 15 d it was indistinguishable from that of control guinea-pigs

[37]. Together, these studies suggest that the process of cellular regeneration following damage

caused by an IAV infection would at least begin, if not be well underway, before the IAV infec-

tion has fully resolved.

Following airway injury, numerous factors are thought to trigger the start of the repair pro-

cess [38]. Once triggered, it is believed neighbouring epithelial cells will try to stretch to cover

the denuded area, and divide so as to regain their normal shape while maintaining coverage.

As damage becomes more significant, progenitor cells, mainly basal cells exposed to the PCF

as the epithelial cells above them detach or are removed by apoptosis or damage, also undergo

proliferation and differentiation until the epithelium is restored to its pre-injury state [39].

With these processes in mind, cellular regeneration was implemented in the spatial MM by

replacing the equation for uninfected, target cells in MM Eq (1) with

@Tðx; tÞ
@t

¼ � bTðx; tÞVðx; tÞ þ rDTðx; tÞDðx; t � tDÞ ; ð2Þ

where

Dðx; tÞ ¼ 1 � Tðx; tÞ �
XnE

i¼1

Eiðx; tÞ �
XnI

j¼1

Ijðx; tÞ

" #

is the fraction of dead cells, i.e. the extent of the damage or injury. As such, cellular regenera-

tion in Eq (2) proceeds at a rate that is greater in the presence of greater damage (higher D)

and of greater fraction of cells available to regenerate (higher T). Parameter rD sets the scale of

the regeneration rate (which also depends on T and D), and τD is the regeneration delay such

that the current regeneration rate depends on the fraction of target cells (T) currently available

to repopulate the area, and on the amount of damage (D) that was perceived some time τD ago.

The delay between damage and regeneration accounts for the time required for the damage to

activate appropriate signalling pathways, and for both division and differentiation to take

place so that newly regenerated cells are susceptible to infection. This same equation has been

used by others to represent target cell regeneration during an IAV infection [40, 41], but the

authors therein did not include a delay (τD = 0).

An experimental study of cell regeneration in hamsters [36] suggests that in many cases,

between 18 h–24 h following a mechanical injury, cells have already stretched or migrated to

cover the complete denuded area and cell division has begun. A similar study in guinea-pigs

[37] also suggests that at 15 h after mechanical injury, cells have migrated to cover the denuded

area and cell proliferation is underway. This suggests that the delay between damage and the

start of cellular division is around 15 h–24 h. Herein, this delay—namely the time elapsed

between damage and the start of both cellular division and differentiation to an extent that

newly regenerated cells are susceptible to infection—was chosen to be τD = 1d, based on these

experimental studies. To select an appropriate value for the regeneration rate (rD), HRT epi-

thelial cell regeneration following mechanical injury was simulated using Eq (2). Results are

shown in Fig 6 for different regeneration rates and delays: the regeneration rate determines the

steepness of the regeneration, while the regeneration delay sets its timing. These parameters

should be easily identifiable if experimental data was available. An intermediate value of rD =

0.75 d−1 was chosen to ensure that with a delay of 1 d, regeneration is well underway by 5 d–8

d, and completely resolved by 12 d–14 d [35–37].

Fig 7 shows the infection kinetics in the presence of cellular regeneration. At this stage, and

over the range of values considered here, the spatial MM is insensitive to the choice of
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regeneration rate or its delay. This is largely due to the fact that, in the absence of an immune

response, the HRT above the inoculum deposition point is decimated by the infection at a rate

much faster than the density-dependent regeneration can counter. As damage increases, the

number of target cells available to replenish the lost cells also decreases dramatically, prevent-

ing any significant regeneration. To get a more realistic view of the role and impact of cellular

regeneration on infection kinetics, the protective role of the immune response must be

considered.

Fig 6. Target cell regeneration following a MM-simulated mechanical injury. Regeneration from mechanical injury

was simulated using Eq (2) in the absence of infection, i.e. V(x, t) = Ei(x, t) = Ij(x, t) = 0 and D(x, t) = 1 − T(x, t).
Initially, T(x, t = 0) = 0.01, D(x, t = 0) = 0.99, and D(x, t< 0) = 0, representing an injury inflicted at t = 0 which

removed 99% of all target cells. The effect of varying (a) the regeneration rate (rD) or (b) the regeneration delay (τD) are

shown. Unless varied, τD = 1 d and rD = 0.75 d−1.

https://doi.org/10.1371/journal.pcbi.1007705.g006

Fig 7. The effect of cellular regeneration on the MM prediction of IAV infection kinetics. The effect of varying (a–

c) the regeneration rate (rD) or (d–f) the regeneration delay (τD) are shown. Unless varied, τD = 1 s and rD = 0.75 d−1.

https://doi.org/10.1371/journal.pcbi.1007705.g007
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Immune response to an IAV infection

Past MM for IAV infection have incorporated one or more immune response components

with varying degrees of success [1, 41, 42]. Difficulties in incorporating an immune response

when modelling IAV infections include the complex nature of the interactions (large networks

of cells and signals), and the lack of appropriate data (quantity and quality) to inform the MMs

[3]. The simplified immune response considered herein comprises an innate response based

on interferon (IFN), a humoral response represented by antibodies (Abs), and a cellular

response embodied by cytotoxic T lymphocytes (CTLs). Since our aim is to display the MM’s

range of kinetics—rather than identify parameters, analyze data, or challenge hypotheses—a

parsimonious approach was preferred wherein key immune components are represented

using empirical curves that broadly reproduce the scale and timing of these experimentally

measured quantities (see Methods). Fig 8 shows the empirical MM curves against their corre-

sponding experimental time courses, for IFN, Abs, and CTLs, during experimental, in vivo

IAV infections.

IFN is known to have many effects [49–51], including making cells resistant to infection

and recruiting additional immune factors and cells to locally enhance cell killing and virus

neutralization. For simplicity, its effect herein is to reduce the rate of virus production p [29,

52], via resistance parameter, f50, analogous to the IC50 used to describe antiviral resistance.

The resistance is defined such that if f50 = 0.8, the virus production rate is halved when IFN

concentration is 80% of its peak value (see Methods). Fig 9(a)–9(c) shows the effect of IFN in

the MM as resistance to IFN, f50, is lowered (increased sensitivity). The initial viral titer peak is

reduced due to IFN presence, with lower resistance (smaller f50) having a greater impact. How-

ever, once IFN starts to decay, its effect rapidly dissipates, leading to a rise, or even a rebound,

in the viral load. On its own, IFN does not lead to infection resolution in this MM.

The effect of Abs herein, like elsewhere [17, 40, 47, 52, 53], is to enhance infectious virus

clearance such that c becomes c + kAA(t), where kA represents the neutralization rate of

infectious virus by Abs, A(t). Fig 9(d)–9(f) shows the effect of IFN+Abs in the MM as the neu-

tralization rate, kA, is increased. Low binding affinity Abs (kA� 200 h−1) cannot clear the

infection. As kA increases, viral titer decay rates increase, leading to infection resolution within

Fig 8. Time courses of key immune response components during IAV infections in vivo. Empirical MM curves

(solid, black) are shown against experimental measurements (dashed, coloured) for (a) interferon (IFN) [43–46], (b)

antibodies (Abs) [45, 47]; and (c) cytotoxic T lymphocytes (CTLs) [47, 48], taken over the course of in vivo IAV

infections in mice, unless otherwise specified.

https://doi.org/10.1371/journal.pcbi.1007705.g008
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11dpi–16dpi. However, the time to infection resolution remains longer than the 6dpi–8dpi

typically observed for IAV infections in humans [33, 34].

The effect of CTLs herein, like elsewhere [17, 40, 47, 53], is to increase the rate of loss of

infected cells expressing IAV peptides on their MHC-1. Infected cells begin expressing IAV

peptides *4 h post-infection [17, 54], or approximately halfway through the eclipse phase (8 h

in the spatial MM, see Table 1), such that all infected cells past the mid-point of their eclipse

phase will be removed at rate kCC(t), where kC represents the killing rate of infected cells by

CTLs, C(t). Fig 9(g)–9(i) shows the effect of IFN+Abs+CTLs in the MM as the killing rate, kC,

is increased. Higher CTL killing rates (kC) cause the infection to resolve earlier.

Fig 10 shows the MM predictions and experimental data of immune response knockout

experiments, wherein one component of the immune response is suppressed or neutralized.

Fig 9. Spatial MM-predicted IAV infection in the presence of key immune response components. (a–c) The effect

of interferon (IFN) as IFN resistance, f50, is decreased (sensitivity is increased). (d–f) The combined effect of IFN and

antibodies (Abs) as the rate of infectious virus neutralization by Abs, kA, is increased. (g–i) The combined effect of IFN

+Abs and cytotoxic T lymphocytes (CTLs) as the rate of infected cell killing by CTLs, kC, is increased. Unless otherwise

noted, f50 = 0.5 and kA = 500 h−1.

https://doi.org/10.1371/journal.pcbi.1007705.g009
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The MM prediction of an IFN knockout experiment is in good agreement with the experimen-

tal data of IFN knockout experiments [46, 55] at early time as both suggest IFN acts early and

helps to reduce the initial viral titer peak. The experimental Ab knockout experiment [45] sug-

gests Abs help reduce viral load at a later time in the infection but does not affect the initial

viral titer peak. The MM prediction also suggests Abs help reduce the viral load at a later time

but also affects the initial viral titer peak. This could be better reproduced by the MM by hav-

ing a lower initial amount of Abs (A0) so that Abs appear later and thus act later. Finally, the

MM prediction of the CTL knockout experiment is in good agreement with the experimental

data of CTL knockout experiments [56–58] as both suggest that CTLs act only at a late stage in

the infection, helping reduce infection duration. Generally, the experimental knockout appear

to show a greater impact for the knock-outs than predicted by the MM. This is likely due to

the intricate interaction network between the different immune response components in

vivo which makes it difficult to experimentally disrupt one component without affecting

another.

Capturing the kinetics of in vivo infections with seasonal and avian IAV

strains

The difference in infection severity between patients naturally infected with seasonal IAV

strain or avian-origin H5N1 strains is thought to be the result of a number of different possible

factors, including more rapid infection and replication kinetics, cell tropism, lack of pre-exist-

ing immunity, and/or an aberrant immune response [22, 55, 59–66]. Fig 11(a) shows viral load

measurements from pharyngeal swabs of patients (each point is a single measure from a single

patient) naturally infected with either a seasonal (H3N2 or H1N1) IAV strain or a strain of the

Fig 10. MM predictions vs experimental data of immune response knockout experiments. Experimental (top row)

or MM-simulated (bottom row) viral titer time course for IAV infections with a full immune response (solid lines) or

with one immune response component experimentally or mathematically disabled or knocked-out (dashed lines),

respectively. Either (a,d) the IFN response [46, 55], (b,e) the Ab response [45] or (c,f) the CTL response [56–58] were

disabled. In these experimental studies, the animal model is mice, except Seo et al. [55] which was conducted in pigs.

Experimental viral load is measured in TCID50/mL for [55], in TCID50/mouse (of lung homogenate) for [46], in

EID50/mL for [56], [58] and for [57] and in pfu/mL for [45]. The MM results are shown with f50 = 0.5, kA = 500 h−1 and

kC = 50 h−1, or disabled with F(t) = 0, A(t) = 0 or C(t) = 0 in (d,e,f), respectively.

https://doi.org/10.1371/journal.pcbi.1007705.g010
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H5N1 subtype. This study wherein these measures were taken over the same time period and

following the same methodology, such that viral loads for infection with seasonal and H5N1

strains can be readily compared, is the only one of its kind. Since patients were recruited into

the study days after illness onset, and began receiving antiviral therapy immediately upon hos-

pital admission, untreated infection kinetics leading up to and after admission are not avail-

able. The measured pharyngeal viral load (determined via qRT-PCR) is *100-fold higher for

patients infected with H5N1 than seasonal IAV strains. This could also be true of the infectious

viral titer (typically measured via TCID50 or PFU) which was not measured as part of this

study, although the ratio of infectious to total IAV is known to change over the course of an

infection, and inconsistently so between experiments [67]. Another feature is that H5N1-in-

fected patients reported to the hospital 3 d–4 d later after illness onset than those infected with

seasonal IAV strains. It is unclear whether this is due to a slower progression of infection with

an H5N1 strain, or because patients infected with H5N1 strains mostly came from remote

provinces and took longer to reach the city hospital than those infected with seasonal strains

which came from the city itself or neighbouring provinces.

From the data in Fig 11(a), two hypothetical infection time courses or portraits were devel-

oped for infection with IAV H5N1 strains, and one for seasonal strains, shown in Fig 11(b).

The IAV H5N1 portraits were constructed from the MM of the seasonal portrait by shifting

parameters controlling cell-virus interactions and immunity, in keeping with differences

believed to be responsible for that shift. These parameters are presented in Table 2. This

approach was chosen due to the limited data available on IAV H5N1 infection, and is simply

meant to display one of the MM’s possible applications. It is not intended as proof that these

differences in parameter values are responsible for the differences between a infection with

seasonal or H5N1 IAV strain.

The portrait for infection with a seasonal strain peaks at *103 –104 TCID50/mL at *3dpi,

and resolves by *8dpi [68, 69]. For infection with a strain of the H5N1 subtype, two options

Fig 11. Kinetics of infection in patients naturally infected with a seasonal or avian IAV strain. (a) Total viral load

measurements (cDNA/mL via qRT-PCR) from throat (pharyngeal) swabs of patients which naturally contracted

infections with either a seasonal (H3N2 or H1N1) or avian (H5N1) IAV strain (data taken from [59]). The shaded

polygons trace out the extent of the data points. (b) Proposed time courses for in vivo IAV infections with either a

seasonal (grey) or H5N1 (black) IAV strain. The solid and dashed black lines represent two plausible time courses for

infection with an IAV H5N1 strain: a more rapid rise to higher viral titers than for infections with seasonal strains

(solid); or a more moderate rise, similar to that seen for infections with seasonal strains, that grows to higher titer due

to lack of rapid and effective immune control (dashed). MM parameters for these curves are listed in Table 2. (c) The

possible effect of a delayed CTL response, i.e. one which peaks at 12dpi with a killing efficacy of kC = 50 h−1 (grey) in

both the early (solid) and late (dashed) infection time courses which are otherwise shown without a CTL response

(black).

https://doi.org/10.1371/journal.pcbi.1007705.g011
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are considered: the infection peaks early, at higher titers which are sustained over a longer

period; or the infection grows at a rate similar to infection with a seasonal strain, but that

growth is sustained over a longer period and thus peaks later, reaching higher titers than infec-

tion with a seasonal strain. For infection with an H5N1 strain, viral titer peak was chosen to be

100-fold higher, as observed for total viral loads, and the reported 3dpi –4dpi delay in hospital

admission was captured either as a longer, sustained infection in the early time course, or as a

longer delay to reach peak titer in the late time course. The shaded areas, which depict the

extent of the data points in Fig 11(a) where time is based on days since illness onset, are shown

time-shifted in Fig 11(b) where time is days post-infection. For a seasonal infection, the (pale

grey) area was shifted to one day later since there is generally a delay of one day between infec-

tion and symptom onsets [33]. For avian infections, the (dark grey) area was shifted to 4 days

later since reports suggest *3–5 days elapse between symptom onset and known potential

exposure to infected poultry [70–72].

For cell-virus interactions, the early time course relies on increased virus production (p),

increased virus infectivity (β), and a shorter eclipse phase (τE), consistent with shifts in these

parameters estimated from in vitro infections of A549 cells with seasonal (H1N1) versus H5N1

and H7N9 IAV strains [22]. In contrast, the late time course relies on lower virus infectivity

and a longer eclipse phase, along with a higher virus production rate. The early and late por-

traits also depend on 8- and 10-fold longer periods of virus production (infectious cell lifespan,

τI), respectively, compared to that for cells infected with a seasonal strain. In capturing differ-

ences in immunity, both the early and late portraits of infection with IAV H5N1 strains rely

on 10-fold increased resistance to the effect of IFN (f50), decrease in pre-existing immunity in

the form of a 200-fold decrease in the neutralizing effect of Abs, and the absence of a CTL

response. The resistance of H5N1 strains to the effect of IFN-α and -γ has been reported in

vitro in porcine cell cultures and in vivo in pigs [55]. The decrease in the neutralizing efficacy

of Abs is captured in the simplistic Ab MM utilized herein as a 200-fold decrease in their initial

quantity (A0) which means a longer time (*8 d longer) to reach maximal Ab activity, but can

equally be captured by a 200-fold decrease in the neutralization efficacy (kA) of Abs. A recruit-

ment study of patients naturally infected with avian H7N9 IAV strains reported that the

patient group with the earliest recovery, had a prominent CTL response by 10 d post admis-

sion and a prominent Ab response, 2–3 d later [73]. In contrast, the patient group with the

most delayed recovery had an Ab and CTL response that remained low even after 20 d post

admission. This suggests that an infection with an H5N1 strain, characterized by a prolonged

viral shedding period, would have delayed Ab and CTL responses. Because the portraits in Fig

11(b) only go up to 12dpi, the effect of these delayed CTLs would not be apparent. Fig 11(c)

illustrates what the time course of infection with an avian strain could look like in the presence

of a delayed CTL response, but one which would be as effective (same kC) as that for infection

with a seasonal strain. It shows an important role for CTLs in controlling the persistent

Table 2. Parameter values used to reproduce the IAV infection kinetics in Fig 11.

IAV strain β([V]−1 � d−1) p([V] � d−1) τE(h) τI(h) IFN, f50 Abs�, A0 CTLs, kC (h−1)

seasonal 1.0 × 10−6 2.0 × 107 8 10 0.5 2.0 × 10−3 50

avian (early) 1.5 × 10−6 5.0 × 107 6 80 5.0 1.0 × 10−5 —

avian (late) 1.0 × 10−7 5.0 × 107 12 100 5.0 1.0 × 10−5 —

� The rate of infectious virus neutralization by Abs was fixed to kA = 500 h−1 for all 3 infections.

https://doi.org/10.1371/journal.pcbi.1007705.t002
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shedding in these infections, consistent with the findings that a delayed CTL response corre-

lated with slower recovery from infection with H7N9 strains [73].

Fig 12 explores the impact of antiviral therapy with neuraminidase inhibitors (NAIs),

administered at various times post-infection, on the time courses for infection with seasonal or

avian IAV strains. These results should be treated as hypotheses, as the infection time courses

are hypothetical, and the results should serve as further display of the MM’s possible future

applications. Since NAIs block the release of newly produced virions, their effect is imple-

mented in the MM, as elsewhere [42, 74–80], as a reduction in the virus production rate,

namely (1 − εNAI)p, from the time treatment is administered, where εNAI 2 [0, 1] is the drug

efficacy. The efficacy of NAIs was set to εNAI = 0.98 to study the case of treatment with a high

efficacy. Table 3 quantitatively compares the impact of NAI treatment for various endpoints:

reduction in resolution time, peak viral titer, and area under the viral titer curve (AUC).

Fig 12. MM-predicted NAI antiviral therapy efficacy in patients infected with a seasonal or avian IAV strain. The

viral titer time course for IAV infections under antiviral therapy initiated at various times post infection (see legend)

with NAIs, captured as decreasing virus production rate. The effect of treatment is shown in the context of infection

with (a) a seasonal IAV strain; or with an avian IAV strain based on either the (b) early or (c) late infection portraits.

The drug efficacy, ε, was chosen to be 0.98. The other parameters used in the MM are those listed in Table 2.

https://doi.org/10.1371/journal.pcbi.1007705.g012

Table 3. Measures of the impact of NAI treatment under various conditions �.

tadm (dpi) Δ[Resolution time (d)] Δ[AUC (d � TCID50/mL)] Δ[Viral titer peak(TCID50/mL)]

—Seasonal —

2 7.3 − 3.3 = 4.0 104.5/103.1 = 101.4 104.4/103.7 = 100.7

3 7.3 − 4.2 = 3.1 104.5/104.2 = 100.3 104.4/104.4 = 100.0

6 7.3 − 6.4 = 0.9 104.5/104.5 = 100.0 104.4/104.4 = 100.0

— Avian (early) —

2 ND − 17 = ND 107.5/106.9 = 100.6 107.0/107.0 = 100.0

3 ND − 13 = ND 107.5/107.2 = 100.3 107.0/107.0 = 100.0

6 ND − 12 = ND 107.5/107.5 = 100.0 107.0/107.0 = 100.0

— Avian (late) —

2 ND − 15 = ND 107.3/103.1 = 104.2 106.8/102.6 = 104.2

3 ND − 17 = ND 107.3/104.4 = 102.9 106.8/104.2 = 102.6

6 ND − 16 = ND 107.3/106.8 = 100.5 106.8/106.7 = 100.1

� For NAI therapy administered at various times post infection (tadm), the change (Δ) in 3 commonly reported

endpoints are shown for the viral titer curves in Fig 12. The change in resolution time is computed as a difference (Δ

= without−with), whereas that for the area under the viral titer curve (AUC) and viral titer peak corresponds to the

fold-change (Δ = without/with). ND stands for not determined in cases where infection resolution (V(t) < 1 TCID50/

mL) was not achieved without treatment.

https://doi.org/10.1371/journal.pcbi.1007705.t003
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Human volunteer studies in patients experimentally infected with seasonal (H1N1) IAV

strains and treated with NAIs report that early treatment (24–32 h post infection) is effective

in reducing viral load [81–83], and one such study reports that delayed treatment (50 h post

infection) is less effective [82], in line with the MM results. A study of H5N1-infected patients

recruited days after illness onset, and beginning NAI treatment immediately after admission,

reports that late treatment (4–8 d after illness onset) is still effective in some patients, reducing

viral load and thus possibly also reducing time to infection resolution. This would be consis-

tent with some avian strain-infected patients experiencing an infection time course similar to

the early portrait with moderate to no benefit from delayed NAI treatment, and others

experiencing infection more consistent with the late portrait and benefiting from NAI therapy

even when treatment initiation is delayed.

Discussion

Mathematical models (MMs) for the course of an influenza A virus (IAV) infection in vivo typi-

cally assume the infection is spatially homogeneous, i.e. that all cells see all virus, and vice-versa,

instantly over all space. This simplification is reasonable in vitro in cell culture infections whose

spatial extent is often no more than one or two square centimetres [25], but it is unclear whether

it remains appropriate at the scale of the entire HRT. With simplicity and parsimony in mind,

the spatial MM introduced herein represents the HRT as a one-dimensional track that extends

from the nose down to a depth of 30 cm. It implements two modes of viral transport: advection

of virus upwards towards the nose, and diffusion of the virus within the periciliary fluid.

When diffusion alone is considered, infection in the spatial MM proceeds at a slower pace

than in the non-spatial MM, but virus production is sustained for longer. The diffusion initially

acts to spatially restrict the number of cells available to the infection, and then releases these cells

progressively as the diffusing infection wave reaches ever further in the HRT. When advection is

added to diffusion, the former dominates the infection kinetics, possibly requiring an increase

in the virus production rate to restore the timing and level of viral titer peak to that in the non-

spatial MM. This is noteworthy, firstly, because it shows that advection constitutes an effective

physiological mechanism to suppress infection. Secondly, it shows that use of a non-spatial MM

to analyze infection data possibly underestimates the virus production rate, and consequently

also the total amount of virus produced over the course of an infection. Since the more virus are

produced, the more mutations accumulate [74, 84, 85], underestimating the virus production

rate means underestimating the rate and likelihood of emergence of drug resistance.

Interestingly, the MM suggests that the depth at which the initial virus inoculum deposits

also plays a major role in determining the extent of HRT involvement in the infection. Specifi-

cally, the MM predicts no target cell consumption below the depth at which the initial virus

inoculum deposits. While deposition at depths lower than *15 cm did not result in experi-

mentally measurable differences in the viral titer time course, initial depositions above that

point both delayed and reduced peak titer. This is seen both for the basic, initial MM in

Fig 3(g)–3(i), and in S2 Fig for the full spatial MM which includes cellular regeneration and an

immune response. Whatever the true, biological deposition depth may be, in order to obtain

equivalent viral titer time courses as one decreases the deposition depth (deposition at higher

sites) in the spatial MM, one must increase the virus production rate to compensate for the

fewer available target cells. This is one more way a non-spatial MM might underestimate the

rate of virus production, and thus the likelihood of antiviral resistance emergence.

Herein, the depth of initial inoculum deposition in the MM was set arbitrarily to 15. In real-

ity, the most likely site of deposition would be very difficult to determine. There are many pos-

sible routes for IAV transmission—e.g. inhalation of an expulsion spray from a sneeze or a
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cough, direct contact with a contaminated person, or by indirect contact with a contaminated

object—all of which are believed to play some role, with no consensus on the most likely or

most common route [86]. Even if the route of transmission is known or assumed, for example

from a cough, there is a large range of potential particle sizes for this mode of transmission

[28], and particle size is believed to be inversely proportional to depth of deposition [87]. Even

if the most likely depth of deposition was known, the site of initial particle deposition is

unlikely to be the same as the site at which infection will first take hold because virus particles

that deposit along the airways have to traverse the mucus and PCF layers to reach infection-

susceptible epithelial cells, and advection in those layers would quickly drag virus away from

its initial deposition site.

An unexpected finding was that although kinetically in the spatial MM the infection depos-

its at some depth and is dragged upwards by advection, the infection appears to be moving

from the upper to the lower HRT. This is because the upper HRT is downstream of virus

advection and sees most of the virus produced, while the lower HRT is upstream and sees little

or none. Therefore, infection progresses, peaks and resolves faster in the upper HRT and

slower in the lower HRT. It is this difference in time scale which makes it appear as though the

infection is moving from the upper to the lower HRT. Experimental studies of mice infected

with IAVs engineered to be fluorescent or bioluminescent observe infection spread from the

upper towards the lower regions of the lung [15, 16], consistent with the MM’s predictions. In

the absence of sufficient immune control, this could serve to maintain the infection with,

wherein the slower, lower HRT infection could re-ignite more rounds of infection in the

upper HRT, depending on the delicate timing between infection time course in the lower HRT

and cell regeneration in the upper HRT.

The spatial MM was expanded to include density-dependent cell regeneration, and a sim-

plistic immune response comprising IFN acting to down-regulate the rate of virus production

by infected cells, Abs neutralizing infectious virions, and CTLs killing infected cells. In the

presence of this immune response, the MM-simulated IAV infection was well controlled and

resolved fully by 8 dpi. The spatial MM could also largely reproduce the key features of in vivo

immune response knockout experiments [1], although one should be cautious in extrapolating

conclusions from murine experiments to humans, and in assuming that experimental disrup-

tion of one immune component can be carried out without affecting another. In the MM-sim-

ulated infection (see Fig 9g), 10% of the HRT was involved in the infection by 3 dpi, around 6

dpi the fraction of cells involved in the infection peaked at 30%, and by 10 dpi 10% of the epi-

thelium had yet to regenerate, although viral titers had fallen below the detection limit (see Fig

9i). These numbers align well with a 1989 report in Russian cited by Bocharov and Romanyu-

kha in their 1994 IAV MM paper [17] of 10% damage at symptom onset, 30–50% of the upper

airway destroyed at the peak of the disease, and resolution of disease at a time when as much

as 10% of the normal epithelium is still damaged.

The full spatial MM was applied to simulate the kinetics of infection with either a mild, sea-

sonal IAV strain or a severe infection with an avian strain such as H5N1. Since complete,

untreated, infection kinetic time courses for infection with avian IAV strains are not available,

two different portraits were constructed to represent plausible time courses: one peaking early

with sustained, high titers over several days, and another rising slowly, similarly to seasonal

infections, but continuing on to reach high titers 3–4 days later. Differences in the hypothetical

time courses for infection with a seasonal vs avian IAV strain could be captured by the MM by

shifting the parameters in ways that are consistent with known or expected differences

between infections with seasonal and avian strains. The portraits were used to evaluate possible

impact of antiviral therapy with neuraminidase inhibitors. Treatment was most effective for

the seasonal and late peak avian IAV strain portraits when administered early during the
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infection at 2 dpi. Later treatment was of limited effectiveness for the seasonal IAV strain por-

trait, but was still effective in the late peaking portrait of infection with an avian IAV strain.

An important distinction between the spatial and non-spatial MMs is that while the latter

assumes a spatially uniform virus concentration V(t) that is directly compared against experi-

mental measurements at time t, virus concentration in the present MM depends on both time

and depth, V(x, t). Herein, V(t) was obtained by averaging V(x, t) over x 2 [0, 30] cm to com-

pare against experiments. This is equivalent to assuming that a patient sample, e.g. a nasal

wash, takes a somewhat uniform, mixed up sample of the virus concentration in the HRT

down to the 30 cm represented in the MM. It is likely that typical experimental measurements

sample the concentration over a shallower depth. The impact of this choice on our key findings

was explored in S1 Fig. Since advection prevents infection from spreading below the deposi-

tion depth, decreasing the depth over which V(x, t) is averaged excludes more of the infection-

free regions where V(x, t) = 0. This, in turn, slightly increases V(t), the estimate of the virus

concentration that would be measured experimentally. In the presence of the full immune

response, averaging only over the top 3 cm shortened the time for the virus concentration to

fall below 1 TCID50/mL by approximately one day. The spatial MM thus offers a unique

opportunity to explore how different HRT sampling methodologies might provide a different

picture of the infection course and outcome.

The spatial MM presented herein, despite its simplicity, offers a novel and interesting

opportunity to study the spatial localization and dissemination of IAV infections within the

HRT. In particular, it could serve to test if results obtained by non-spatial ODE MMs are mod-

ified when taking into account spatial aspects of IAV infections. In the future, the addition of

an explicit, dynamical immune response—to replace the empirical equations used herein as

stand-ins for immune response components—would enable the use of this MM to reproduce

the kinetics of re-infection, similar to the work done by others [41, 88]. Of particular interest

would be to explore the role of IFN secreted by infected cells in inducing an antiviral state in

neighbouring cells [50, 51]. This spatial MM would be ideal to explore the effect of diffusion

and advection in either enhancing this spatially local role of IFN by spreading it further afield,

or decreasing its role by either disseminating its concentration over a larger area or perhaps by

allowing IAV to outrun IFN’s localized antiviral effect. This has been explored to some extent

by others in the presence of diffusion alone [50, 51], but it would be particularly interesting to

revisit this process in the presence of both diffusion and upwards advection.

Methods

Numerical implementation of the mathematical model

The Euler method was used to numerically solve the cell population equations, namely

Tnþ1
m ¼ Tn

m � Dt bT
n
mV

n
m

Enþ1
1;m ¼ En

1;m þ Dt bT
n
mV

n
m �

nE

tE
En

1;m

� �

Enþ1
i;m ¼ Ei;m þ Dt

nE

tE
En

i� 1;m �
nE

tE
En

i;m

� �

i ¼ 2; 3; :::; nE

Inþ1
1;m ¼ In

1;m þ Dt
nE

tE
En

nE ;m
�

nI

tI
In

1;m

� �

Inþ1
j;m ¼ Inj;m þ Dt

nI

tI
Inj� 1;m �

nI

tI
Inj;m

� �

j ¼ 2; 3; :::; nI

ð3Þ

where Tn
m ¼ Tðxm; tnÞ, xm = mΔx, tn = nΔt, and Δx and Δt are the chosen spatial and temporal
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step sizes, respectively. We define Nx = xmax/(Δx) = 3000, the number of spatial boxes or sites

that make up the simulated HRT such that Δx = 0.3 m/(3000 sites) = 100 μm/site, the diameter

of *4–5 epithelial cells. This Nx was chosen by verifying that choosing a larger number of sites

(smaller Δx) did not affect the solution. When presenting the fraction of target cells or infec-

tious cells, or the virus concentration, as a function of time only, averaged over space, those are

computed as

TðtÞ ¼ Tn ¼
1

Nx

XNx

m¼1

Tn
m

IðtÞ ¼ In ¼
1

Nx

XNx

m¼1

XnI

j¼1

Inj;m

VðtÞ ¼ Vn ¼
1

Nx

XNx

m¼1

Vn
m

For the virus concentration, for simplicity, the diffusion and advection terms are each

treated separately, and are applied before the production and clearance terms are considered.

To solve the diffusion term, the Crank-Nicolson method was used, namely

@Vðx; tÞ
@t

¼ DPCF
@

2Vðx; tÞ
@x2

Vnþ1
m � Vn

m

Dt
¼

DPCF

2
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� 2Vnþ1

m þ Vnþ1
m� 1
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Þ
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where α = DPCF(Δx)2/(Δt). The rate of viral diffusion in the PCF was estimated based on the

Stokes-Einstein equation for IAV diffusing in plasma at body temperature as DPCF� 10−12

m2/s [25, 26]. An absorbing boundary condition was used at the top of the HRT, V(0, t) = 0 (or

Vn
0
¼ 0), to capture virus flow out through the mouth and nose. A reflective boundary condi-

tion, V(xmax + Δx, t) = V(xmax, t) (or Vn
Nxþ1
¼ Vn

Nx
), was used at the bottom of the HRT. The

bottom boundary condition becomes irrelevant once advection is introduced as the flow at x =

xmax becomes negligible. With these boundary conditions in place, the diffusion of virus over a

step size Δt can be expressed as
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The virus advection term can be written as follows

@Vðx; tÞ
@t

¼ va
@Vðx; tÞ
@x

Vnþ1
m � Vn

m

Dt
¼ va

Vn
mþ1
� Vn

m

Dx

Vnþ1
m ¼ 1 �

vaDt
Dx

� �

Vn
m þ

vaDt
Dx

� �

Vn
mþ1
:

ð4Þ

This simplistic numerical scheme is known to lead to a dispersion (diffusion) of the solution

[89]. However, the spatial MM simulator imposes vaΔt/(Δx) = 1, such that Eqn. (4) simplifies

to Vnþ1
m ¼ Vn

mþ1
, a trivial translation of the solution, which ensures the latter will remain stable

and will not disperse. The speed of the PCF is believed to be approximately the same as that of

the mucus blanket and is estimated to be va� 40 μm/s, based on experiments that measured

transport in the PCF and mucus layers, using real-time microscopy to observe fluorescent

markers in each layer in vertical profile sections of human tracheobronchial epithelial cell cul-

tures [27]. This requires the time step for the spatial MM simulator to be Δt = Δx/va =

(100 μm)/(40 μm/s) = 2.5 s. Here, the boundary condition at the top is irrelevant since the solu-

tion depends only on the downstream element (Vnþ1
1
¼ Vn

2
), and the boundary condition at

the bottom is chosen such that Vn
Nx
¼ 0, i.e. there is no virus beyond the end of the HRT. Once

diffusion and advection have been applied, the Euler method is used to solve the remaining

terms of the virus equation, namely

Vnþ1
m ¼ Vn

m þ Dt p
XnI

j¼1

Inj;m � cVn
m

" #

ð5Þ

The droplet-like, initial IAV distribution V(x, t = 0) is represented by a Gaussian centred at

the site of deposition,

V0
m ¼ Vðxm; t ¼ 0Þ ¼

V0�

ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

ðxm � xdÞ
2

2s2

� �

; ð6Þ

where xd is the site of deposition, σ = 0.5 mm, and V0� is chosen so that

hV x; t ¼ 0ð Þi ¼ 1

Nx

PNx
m¼1

V0
m ¼ 7:5� 10� 2 TCID50=mL, i.e. the spatial average of the initial

virus inoculum concentration in the spatial MM herein is equal to V(t = 0) in the non-spatial

ODE MM by Baccam et al. [29].

While most parameters were taken directly from [29], some were adapted. Whereas in Bac-

cam et al. [29] T + E + I = 4 × 108 corresponds to the number of cells, in the spatial MM herein,

fraction of cells in each state are considered instead such that T + E + I = 1. As such, what we

consider the Baccam et al. [29] virus production rate is converted from that reported in their

paper as

pBaccam ¼
0:046ðTCID50=mLÞ

d � cell

� �

� ð4� 108cellsÞ �
1 d
24 h

� �

¼ 7:67� 105ðTCID50=mLÞ � h� 1
:

Once advection is introduced (see Results), a value of 11 × pBaccam is used so that the virus

titer will peak at roughly 2–3 dpi, consistent with that observed in Baccam et al. [29].
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Empirical, mathematical representation of the immune response

The time course for interferon (IFN) is represented as

FðtÞ ¼
2

e� lg ðt� tpÞ þ eldðt� tpÞ
; ð7Þ

where λg and λd are the growth and decay rates of IFN respectively, and tp is the time of peak.

Since F(t) 2 [0, 1], F(t) represents the fractional amount of IFN, relative to peak IFN, at time t.
In the MM, λg = 2 d−1, λd = 1 d−1 and tp = 3dpi to match experimental data. Its effect in the

MM is to attenuate virus production, p, captured as

ð1 � εIFNÞ p ¼ 1 �
F

F þ f50

� �

p; ð8Þ

where f50 is the amount of IFN required to reduce the virus production rate to one half its nor-

mal value, i.e. p! p
2

when F = f50. In the MM, F(t) is normalized so as to have a maximum

value of 1 (Fmax = 1). As such, if f50 = 0.1, then p! p
2

when F = 0.1Fmax = 0.1.

The time course of antibodies (Abs) is represented as

AðtÞ ¼
1

1þ
1

A0

� 1

� �

e� at
;

ð9Þ

where A0 is the initial amount of Abs, and α is the growth rate of Abs. Since A(t) 2 [0, 1], A(t)
represents the fractional amount of Abs, relative to peak Abs, at time t. In the MM, α = 0.75

d−1 and A0 = 2 × 10−3 to match experimental data. The effect of Abs in the MM is to enhance

virus clearance, c, captured as

cþ kAAðtÞ ð10Þ

where kA (h−1) represents the binding affinity of Abs.

The time course of cytotoxic T lymphocytes (CTLs) is represented as

CðtÞ ¼
2

e� l
0
g ðt� t0pÞ þ el

0
dðt� t

0
pÞ
; ð11Þ

where l
0

g and l
0

d are the growth and decay rates of CTLs, respectively, and t0p is the time of

peak. Since C(t) 2 [0, 1], C(t) represents the fractional amount of CTLs, relative to peak CTLs,

at time t. In the MM, l
0

g ¼ 2 d� 1
, l
0

d ¼ 0:4 d� 1
and t0p ¼ 8 dpi to match experimental data.

The effect of CTLs in the MM is to increase the rate of loss of IAV-infected cells which CTLs

recognize as infected. Newly infected cells begin to present IAV peptides on their MHC-1 for

CTL recognition *4h after IAV infection [17, 54]. In our MM, this corresponds approxi-

mately to half the duration of the eclipse phase (τE/2 = 4h): cells in Ei¼ 1;nE=2½ � would not be pre-

senting peptides, while those in Ei¼nE=2þ1;nE
would be recognizable and thus could be killed by
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CTLs. As such, killing of recognizably-infected cells by CTLs in the MM is captured as

@Eiðx; tÞ
@t

¼ � � � � 0 for i ¼ 1; 2; :::;
nE

2

@Eiðx; tÞ
@t

¼ � � � � kC CðtÞ Eiðx; tÞ for i ¼
nE

2
þ 1; :::; nE

@Ijðx; tÞ
@t

¼ � � � � kC CðtÞ Ijðx; tÞ for j ¼ 1; 2; :::; nI

ð12Þ

where kC (h−1) provides the scale for the rate of infected cell killing by CTLs.

Supporting information

S1 Video. Spatiotemporal course of IAV infection in the presence of diffusion only (no

advection).

(MP4)

S2 Video. Spatiotemporal course of IAV infection in the presence of diffusion and advec-

tion.

(MP4)

S3 Video. Same as S2 Video where the fraction of target cells and infectious cells (top row)

are shown on a log-scale. This video better illustrates that, even when looking at cell concen-

trations down to one in a million (10−6), the infection still appears to move downwards along

the HRT.

(MP4)

S1 Fig. Effect of varying the length over which the virus concentration is measured. The

effect of the length, measured from x = 0 down to x = Ltop, over which V(x, t) in the spatial

MM is averaged to produce the curves showing Virus versus Time, for variants of the MM (a)

without cellular regeneration and a full immune response; (b) with cellular regeneration but

without a full immune response; and (c) with cellular regeneration and a full immune

response.

(PDF)

S2 Fig. Effect of the inoculum deposition depth on the complete spatial MM. Whereas

Fig 3(g)–3(i) shows the effect of deposition depth in the earliest version of the MM with diffu-

sion and advection alone, these graphs show the effect of deposition depth of the initial virus

inoculum (xd) in the complete spatial MM which includes cellular regeneration and a full

immune response.

(PDF)

Author Contributions

Conceptualization: Micaela B. Reddy, Catherine A. A. Beauchemin.

Formal analysis: Christian Quirouette, Catherine A. A. Beauchemin.

Funding acquisition: Catherine A. A. Beauchemin.

Investigation: Christian Quirouette, Nada P. Younis, Catherine A. A. Beauchemin.

Methodology: Christian Quirouette, Catherine A. A. Beauchemin.

Project administration: Catherine A. A. Beauchemin.

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling of influenza A virus localization in the human respiratory tract

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007705 April 13, 2020 24 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007705.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007705.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007705.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007705.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007705.s005
https://doi.org/10.1371/journal.pcbi.1007705


Software: Christian Quirouette, Catherine A. A. Beauchemin.

Supervision: Catherine A. A. Beauchemin.

Visualization: Christian Quirouette, Catherine A. A. Beauchemin.

Writing – original draft: Christian Quirouette, Catherine A. A. Beauchemin.

Writing – review & editing: Christian Quirouette, Micaela B. Reddy, Catherine A. A.

Beauchemin.

References

1. Dobrovolny HM, Reddy MB, Kamel MA, Rayner CR, Beauchemin CAA. Assessing mathematical mod-

els of influenza infections using features of the immune response. PLoS One. 2013; 8(2):e57088.

https://doi.org/10.1371/journal.pone.0057088 PMID: 23468916

2. Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, et al. Modeling influenza virus infec-

tion: A roadmap for influenza research. Viruses. 2015; 7(10):5274–5304. https://doi.org/10.3390/

v7102875 PMID: 26473911

3. Handel A, Liao LE, Beauchemin CAA. Progress and trends in mathematical modelling of influenza A

virus infections. Curr Opin Syst Biol. 2018; 12:30–36. https://doi.org/10.1016/j.coisb.2018.08.009

4. Strain MC, Richman DD, Wong JK, Levine H. Spatiotemporal dynamics of HIV propagation. J Theor

Biol. 2002; 218(1):85–96. https://doi.org/10.1006/jtbi.2002.3055 PMID: 12297072

5. Beauchemin C, Samuel J, Tuszynski J. A simple cellular automaton model for influenza A viral infec-

tions. J Theor Biol. 2005; 232(2):223–234. https://doi.org/10.1016/j.jtbi.2004.08.001 PMID: 15530492

6. Beauchemin C. Probing the effects of the well-mixed assumption on viral infection dynamics. J Theor

Biol. 2006; 242(2):464–477. https://doi.org/10.1016/j.jtbi.2006.03.014 PMID: 16650441

7. Bauer AL, Beauchemin CAA, Perelson AS. Agent-based modeling of host-pathogen systems: The suc-

cesses and challenges. Inform Sciences. 2009; 179(10):1379–1389. https://doi.org/10.1016/j.ins.2008.

11.012

8. Mitchell H, Levin D, Forrest S, Beauchemin CAA, Tipper J, Knight J, et al. Higher level of replication effi-

ciency of 2009 (H1N1) pandemic influenza virus than those of seasonal and avian strains: Kinetics from

epithelial cell culture and computational modeling. J Virol. 2011; 85(2):1125–1135. https://doi.org/10.

1128/JVI.01722-10 PMID: 21068247

9. Reperant LA, Kuiken T, Grenfell BT, Osterhaus ADME, Dobson AP. Linking influenza virus tissue tro-

pism to population-level reproductive fitness. PLoS One. 2012; 7(8):e43115. https://doi.org/10.1371/

journal.pone.0043115 PMID: 22952637

10. Gallagher ME, Brooke CB, Ke R, Koelle K. Causes and consequences of spatial within-host viral

spread. Viruses. 2018; 10(11):627. https://doi.org/10.3390/v10110627

11. Fahy JV, Dickey BF. Airway Mucus Function and Dysfunction. N Engl J Med. 2010; 363(23):2233–

2247. https://doi.org/10.1056/NEJMra0910061 PMID: 21121836

12. Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol.

2017; 9(4):a028241. https://doi.org/10.1101/cshperspect.a028241 PMID: 27864314

13. Hussong J, Lindken R, Faulhammer P, Noreikat K, Sharp K, Kummer W, et al. Cilia-driven particle and

fluid transport over mucus-free mice tracheae. J Biomech. 2013; 46(3):593–598. https://doi.org/10.

1016/j.jbiomech.2012.08.020 PMID: 23276626

14. Bermbach S, Weinhold K, Roeder T, Petersen F, Kugler C, Goldmann T, et al. Mechanisms of cilia-

driven transport in the airways in the absence of mucus. Am J Respir Cell Mol Biol. 2014; 51(1):56–67.

https://doi.org/10.1165/rcmb.2012-0530OC PMID: 24467665

15. Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, Garcı́a-Sastre A.

Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl

Acad Sci USA. 2010; 107(25):11531–11536. https://doi.org/10.1073/pnas.0914994107 PMID:

20534532

16. Tran V, Moser LA, Poole DS, Mehle A. Highly sensitive real-time in vivo imaging of an influenza reporter

virus reveals dynamics of replication and spread. J Virol. 2013; 87(24):13321–13329. https://doi.org/10.

1128/JVI.02381-13 PMID: 24089552

17. Bocharov GA, Romanyukha AA. Mathematical model of antiviral immune response III. Influenza A

virus infection. J Theor Biol. 1994; 167(4):323–360. https://doi.org/10.1006/jtbi.1994.1074 PMID:

7516024

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling of influenza A virus localization in the human respiratory tract

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007705 April 13, 2020 25 / 29

https://doi.org/10.1371/journal.pone.0057088
http://www.ncbi.nlm.nih.gov/pubmed/23468916
https://doi.org/10.3390/v7102875
https://doi.org/10.3390/v7102875
http://www.ncbi.nlm.nih.gov/pubmed/26473911
https://doi.org/10.1016/j.coisb.2018.08.009
https://doi.org/10.1006/jtbi.2002.3055
http://www.ncbi.nlm.nih.gov/pubmed/12297072
https://doi.org/10.1016/j.jtbi.2004.08.001
http://www.ncbi.nlm.nih.gov/pubmed/15530492
https://doi.org/10.1016/j.jtbi.2006.03.014
http://www.ncbi.nlm.nih.gov/pubmed/16650441
https://doi.org/10.1016/j.ins.2008.11.012
https://doi.org/10.1016/j.ins.2008.11.012
https://doi.org/10.1128/JVI.01722-10
https://doi.org/10.1128/JVI.01722-10
http://www.ncbi.nlm.nih.gov/pubmed/21068247
https://doi.org/10.1371/journal.pone.0043115
https://doi.org/10.1371/journal.pone.0043115
http://www.ncbi.nlm.nih.gov/pubmed/22952637
https://doi.org/10.3390/v10110627
https://doi.org/10.1056/NEJMra0910061
http://www.ncbi.nlm.nih.gov/pubmed/21121836
https://doi.org/10.1101/cshperspect.a028241
http://www.ncbi.nlm.nih.gov/pubmed/27864314
https://doi.org/10.1016/j.jbiomech.2012.08.020
https://doi.org/10.1016/j.jbiomech.2012.08.020
http://www.ncbi.nlm.nih.gov/pubmed/23276626
https://doi.org/10.1165/rcmb.2012-0530OC
http://www.ncbi.nlm.nih.gov/pubmed/24467665
https://doi.org/10.1073/pnas.0914994107
http://www.ncbi.nlm.nih.gov/pubmed/20534532
https://doi.org/10.1128/JVI.02381-13
https://doi.org/10.1128/JVI.02381-13
http://www.ncbi.nlm.nih.gov/pubmed/24089552
https://doi.org/10.1006/jtbi.1994.1074
http://www.ncbi.nlm.nih.gov/pubmed/7516024
https://doi.org/10.1371/journal.pcbi.1007705


18. Peiris JSM, de Jong MD, Guan Y. Avian influenza virus (H5N1): A threat to human health. Clin Microbiol

Rev. 2007; 20(2):243–267. https://doi.org/10.1128/CMR.00037-06 PMID: 17428885

19. Raabe OG, Yeh HC, Schum GM, Phalen RF. Tracheobronchial geometry: Human, dog, rat, hamster.

Lovelace Foundation; 1976.

20. Stoneham MD. The nasopharyngeal airway. Assessment of position by fibreoptic laryngoscopy. Anaes-

thesia. 1993; 48(7):575–580. https://doi.org/10.1111/j.1365-2044.1993.tb07119.x PMID: 8346770

21. Paradis EG, Pinilla LT, Holder BP, Abed Y, Boivin G, Beauchemin CAA. Impact of the H275Y and

I223V mutations in the neuraminidase of the 2009 pandemic influenza virus in vitro and evaluating

experimental reproducibility. PLoS One. 2015; 10(5):e0126115. https://doi.org/10.1371/journal.pone.

0126115 PMID: 25992792

22. Simon PF, de La Vega MA, Paradis E, Mendoza E, Coombs KM, Kobasa D, et al. Avian influenza

viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast

to human H1N1 viruses. Sci Rep. 2016; 6:24154. https://doi.org/10.1038/srep24154 PMID: 27080193

23. Pinilla LT, Holder BP, Abed Y, Boivin G, Beauchemin CAA. The H275Y neuraminidase mutation of the

pandemic A/H1N1 virus lengthens the eclipse phase and reduces viral output of infected cells, poten-

tially compromising fitness in ferrets. J Virol. 2012; 86(19):10651–10660. https://doi.org/10.1128/JVI.

07244-11 PMID: 22837199

24. Holder BP, Beauchemin CAA. Exploring the effect of biological delays in kinetic models of influenza

within a host or cell culture. BMC Public Health. 2011; 11(Suppl 1):S10. https://doi.org/10.1186/1471-

2458-11-S1-S10 PMID: 21356129

25. Holder BP, Liao LE, Simon P, Boivin G, Beauchemin CAA. Design considerations in building in silico

equivalents of common experimental influenza virus assays. Autoimmunity. 2011; 44(4). https://doi.org/

10.3109/08916934.2011.523267 PMID: 21244331

26. Beauchemin C, Forrest S, Koster FT. Modeling influenza viral dynamics in tissue. In: Bersini H, Carneiro

J, editors. Proceedings of the 5th International Conference on Artificial Immune Systems (ICARIS 06).

No. 4163 in Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg; 2006. p. 23–36.

27. Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. Coordinated clearance of periciliary liquid

and mucus from airway surfaces. J Clin Invest. 1998; 102(6):1125–1131. https://doi.org/10.1172/

JCI2687 PMID: 9739046

28. Yang S, Lee GWM, Chen CM, Wu CC, Yu KP. The size and concentration of droplets generated by

coughing in human subjects. J Aerosol Med. 2007; 20(4):484–494. https://doi.org/10.1089/jam.2007.

0610 PMID: 18158720

29. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of influenza A virus infection

in humans. J Virol. 2006; 80(15):7590–7599. https://doi.org/10.1128/JVI.01623-05 PMID: 16840338

30. Chan MC, Chan RW, Yu WC, Ho CC, Chiu W, Lo C, et al. Influenza H5N1 virus infection of polarized

human alveolar epithelial cells and lung microvascular endothelial cells. Respir Res. 2009; 10(1).

https://doi.org/10.1186/1465-9921-10-102 PMID: 19874627

31. Mora R, Rodriguez-Boulan E, Palese P, Garcı́a-Sastre A. Apical budding of a recombinant influenza A

virus expressing a hemagglutinin protein with a basolateral localization signal. J Virol. 2002; 76

(7):3544–3553. https://doi.org/10.1128/JVI.76.7.3544-3553.2002 PMID: 11884578

32. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian

airways. J Clin Invest. 2002; 109(5):571–577. https://doi.org/10.1172/JCI15217 PMID: 11877463

33. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time Lines of Infection

and Disease in Human Influenza: A Review of Volunteer Challenge Studies. Am J Epidemiol. 2008; 167

(7):775–785. https://doi.org/10.1093/aje/kwm375 PMID: 18230677

34. Balasingam S, Wilder-Smith A. Randomized controlled trials for influenza drugs and vaccines: A review

of controlled human infection studies. Int J Infect Dis. 2016; 49:18–29. https://doi.org/10.1016/j.ijid.

2016.05.013 PMID: 27208631

35. Ramphal R, Fischlschweiger W, Shands JW Jr, Small PA Jr. Murine influenzal tracheitis: A model for

the study of influenza and tracheal epithelial repair. Am Rev Respir Dis. 1979; 120(6):1313–1324.

PMID: 517860

36. Keenan KP, Wilson TS, McDowell EM. Regeneration of hamster tracheal epithelium after mechanical

injury. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983; 43(3):213–240. https://doi.org/10.1007/

bf02932958 PMID: 6194612

37. Erjefält JS, Erjefält I, Sundler F, Persson CGA. In vivo restitution of airway epithelium. Cell Tissue Res.

1995; 281(2):305–316. https://doi.org/10.1007/bf00583399 PMID: 7648624

38. Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol.

2010; 298(6):L715–L731. https://doi.org/10.1152/ajplung.00361.2009 PMID: 20363851

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling of influenza A virus localization in the human respiratory tract

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007705 April 13, 2020 26 / 29

https://doi.org/10.1128/CMR.00037-06
http://www.ncbi.nlm.nih.gov/pubmed/17428885
https://doi.org/10.1111/j.1365-2044.1993.tb07119.x
http://www.ncbi.nlm.nih.gov/pubmed/8346770
https://doi.org/10.1371/journal.pone.0126115
https://doi.org/10.1371/journal.pone.0126115
http://www.ncbi.nlm.nih.gov/pubmed/25992792
https://doi.org/10.1038/srep24154
http://www.ncbi.nlm.nih.gov/pubmed/27080193
https://doi.org/10.1128/JVI.07244-11
https://doi.org/10.1128/JVI.07244-11
http://www.ncbi.nlm.nih.gov/pubmed/22837199
https://doi.org/10.1186/1471-2458-11-S1-S10
https://doi.org/10.1186/1471-2458-11-S1-S10
http://www.ncbi.nlm.nih.gov/pubmed/21356129
https://doi.org/10.3109/08916934.2011.523267
https://doi.org/10.3109/08916934.2011.523267
http://www.ncbi.nlm.nih.gov/pubmed/21244331
https://doi.org/10.1172/JCI2687
https://doi.org/10.1172/JCI2687
http://www.ncbi.nlm.nih.gov/pubmed/9739046
https://doi.org/10.1089/jam.2007.0610
https://doi.org/10.1089/jam.2007.0610
http://www.ncbi.nlm.nih.gov/pubmed/18158720
https://doi.org/10.1128/JVI.01623-05
http://www.ncbi.nlm.nih.gov/pubmed/16840338
https://doi.org/10.1186/1465-9921-10-102
http://www.ncbi.nlm.nih.gov/pubmed/19874627
https://doi.org/10.1128/JVI.76.7.3544-3553.2002
http://www.ncbi.nlm.nih.gov/pubmed/11884578
https://doi.org/10.1172/JCI15217
http://www.ncbi.nlm.nih.gov/pubmed/11877463
https://doi.org/10.1093/aje/kwm375
http://www.ncbi.nlm.nih.gov/pubmed/18230677
https://doi.org/10.1016/j.ijid.2016.05.013
https://doi.org/10.1016/j.ijid.2016.05.013
http://www.ncbi.nlm.nih.gov/pubmed/27208631
http://www.ncbi.nlm.nih.gov/pubmed/517860
https://doi.org/10.1007/bf02932958
https://doi.org/10.1007/bf02932958
http://www.ncbi.nlm.nih.gov/pubmed/6194612
https://doi.org/10.1007/bf00583399
http://www.ncbi.nlm.nih.gov/pubmed/7648624
https://doi.org/10.1152/ajplung.00361.2009
http://www.ncbi.nlm.nih.gov/pubmed/20363851
https://doi.org/10.1371/journal.pcbi.1007705


39. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse

trachea and human airway epithelium. Proc Natl Acad Sci USA. 2009; 106(31):12771–12775. https://

doi.org/10.1073/pnas.0906850106 PMID: 19625615

40. Hancioglu B, Swigon D, Clermont G. A dynamical model of human immune response to influenza A

virus infection. J Theor Biol. 2010; 246(1):70–86. https://doi.org/10.1016/j.jtbi.2006.12.015

41. Cao P, Yan AWC, Heffernan JM, Petrie S, Moss RG, Carolan LA, et al. Innate immunity and the inter-

exposure interval determine the dynamics of secondary influenza virus infection and explain observed

viral hierarchies. PLoS Comput Biol. 2015; 11(8):e1004334. https://doi.org/10.1371/journal.pcbi.

1004334 PMID: 26284917

42. Cao P, McCaw JM. The mechanisms for within-host influenza virus control affect model-based assess-

ment and prediction of antiviral treatment. Viruses. 2017; 9(8):E197. https://doi.org/10.3390/v9080197

PMID: 28933757

43. Fritz RS, Hayden FG, Calfee DP, Cass LMR, Peng AW, Alvord WG, et al. Nasal cytokine and chemo-

kine response in experimental influenza A virus infection: Results of a placebo-controlled trial of intrave-

nous zanamivir treatment. J Infect Dis. 1999; 180(3):586–593. https://doi.org/10.1086/314938 PMID:

10438343

44. Saenz RA, Quinlivan M, Elton D, MacRae S, Blunden AS, Mumford JA, et al. Dynamics of influenza

virus infection and pathology. J Virol. 2010; 84(8):3974–3983. https://doi.org/10.1128/JVI.02078-09

PMID: 20130053

45. Iwasaki T, Nozima T. Defense mechanisms against primary influenza virus infection in mice. I. The

Roles of Interferon and Neutralizing Antibodies and Thymus Dependence of Interferon and Antibody

Production. J Immunol. 1977; 118(1):256–263. PMID: 401512

46. Hoshino A, Takenaka H, Mizukoshi O, Imanishi J, Kishida T, Tovey MG. Effect Of Anti-Interferon

Serum Of Influenza Virus Infection In Mice. Antiviral Res. 1983; 3(1):59–65. https://doi.org/10.1016/

0166-3542(83)90015-3 PMID: 6191656

47. Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, et al. Quantifying the

early immune response and adaptive immune response kinetics in mice infected with influenza A virus.

J Virol. 2010; 84(13):6687–6698. https://doi.org/10.1128/JVI.00266-10 PMID: 20410284

48. McLaren C, Butchko GM. Regional T- and B-cell responses in influenza-infected ferrets. Infect Immun.

1978; 22(1):189–194. https://doi.org/10.1128/IAI.22.1.189-194.1978 PMID: 365744

49. Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014; 14(5):315–

328. https://doi.org/10.1038/nri3665 PMID: 24762827

50. Huang Y, Dai H, Ke R. Principles of robust innate immune response to viral infections: a multiplex net-

work analysis. Front Immunol. 2019; 10:1736. https://doi.org/10.3389/fimmu.2019.01736 PMID:

31396233

51. Domingo-Calap P, Segredo-Otero E, Durán-Moreno M, Sanjuán R. Social evolution of innate immunity

evasion in a virus. Nat Microbiol. 2019; 4(6):1006. https://doi.org/10.1038/s41564-019-0379-8 PMID:

30833734

52. Handel A, Longini IM, Antia R. Towards a quantitative understanding of the within-host dynamics of

influenza A infections. J R Soc Interface. 2010; 7(42):35–47. https://doi.org/10.1098/rsif.2009.0067

PMID: 19474085

53. Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, Mosmann TR, et al. Simulation and prediction

of the adaptive immune response to influenza A virus infection. J Virol. 2009; 83(14):7151–7165.

https://doi.org/10.1128/JVI.00098-09 PMID: 19439465

54. Wu T, Guan J, Handel A, Tscharke DC, Sidney J, Sette A, et al. Quantification of epitope abundance

reveals the effect of direct and cross-presentation on influenza CTL responses. Nat Commun. 2019; 10

(1):2846. https://doi.org/10.1038/s41467-019-10661-8 PMID: 31253788

55. Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine

responses. Nat, Med. 2002; 8(9):950–954. https://doi.org/10.1038/nm757

56. Yap KL, Ada GL. Cytotoxic T cells in the lungs of mice infected with an influenza A virus. Scand J Immu-

nol. 1978; 7(1):73–80. https://doi.org/10.1111/j.1365-3083.1978.tb00428.x PMID: 305613

57. Wells MA, Albrecht P, Ennis FA. Recovery from a viral respiratory infection: 1. Influenza pneumonia in

normal and T-deficient mice. J Immunol. 1981; 126(3):1036–1041. PMID: 6970211

58. Kris RM, Yetter RA, Cogliano R, Ramphal R, Small PA. Passive serum antibody causes temporary

recovery from influenza virus infection of the nose, trachea and lung of nude mice. Immunology. 1988;

63(3):349–353. PMID: 2832312

59. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, Chau TNB, et al. Fatal outcome of human

influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006; 12

(10):1203–1207. https://doi.org/10.1038/nm1477 PMID: 16964257

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling of influenza A virus localization in the human respiratory tract

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007705 April 13, 2020 27 / 29

https://doi.org/10.1073/pnas.0906850106
https://doi.org/10.1073/pnas.0906850106
http://www.ncbi.nlm.nih.gov/pubmed/19625615
https://doi.org/10.1016/j.jtbi.2006.12.015
https://doi.org/10.1371/journal.pcbi.1004334
https://doi.org/10.1371/journal.pcbi.1004334
http://www.ncbi.nlm.nih.gov/pubmed/26284917
https://doi.org/10.3390/v9080197
http://www.ncbi.nlm.nih.gov/pubmed/28933757
https://doi.org/10.1086/314938
http://www.ncbi.nlm.nih.gov/pubmed/10438343
https://doi.org/10.1128/JVI.02078-09
http://www.ncbi.nlm.nih.gov/pubmed/20130053
http://www.ncbi.nlm.nih.gov/pubmed/401512
https://doi.org/10.1016/0166-3542(83)90015-3
https://doi.org/10.1016/0166-3542(83)90015-3
http://www.ncbi.nlm.nih.gov/pubmed/6191656
https://doi.org/10.1128/JVI.00266-10
http://www.ncbi.nlm.nih.gov/pubmed/20410284
https://doi.org/10.1128/IAI.22.1.189-194.1978
http://www.ncbi.nlm.nih.gov/pubmed/365744
https://doi.org/10.1038/nri3665
http://www.ncbi.nlm.nih.gov/pubmed/24762827
https://doi.org/10.3389/fimmu.2019.01736
http://www.ncbi.nlm.nih.gov/pubmed/31396233
https://doi.org/10.1038/s41564-019-0379-8
http://www.ncbi.nlm.nih.gov/pubmed/30833734
https://doi.org/10.1098/rsif.2009.0067
http://www.ncbi.nlm.nih.gov/pubmed/19474085
https://doi.org/10.1128/JVI.00098-09
http://www.ncbi.nlm.nih.gov/pubmed/19439465
https://doi.org/10.1038/s41467-019-10661-8
http://www.ncbi.nlm.nih.gov/pubmed/31253788
https://doi.org/10.1038/nm757
https://doi.org/10.1111/j.1365-3083.1978.tb00428.x
http://www.ncbi.nlm.nih.gov/pubmed/305613
http://www.ncbi.nlm.nih.gov/pubmed/6970211
http://www.ncbi.nlm.nih.gov/pubmed/2832312
https://doi.org/10.1038/nm1477
http://www.ncbi.nlm.nih.gov/pubmed/16964257
https://doi.org/10.1371/journal.pcbi.1007705


60. Cheung CY, Poon LLM, Lau AS, Luk W, Lau YL, Shortridge KF, et al. Induction of proinflammatory cyto-

kines in human macrophages by influenza A (H5N1) viruses: A mechanism for the unusual severity of

human disease? Lancet. 2002; 360(9348):1831–1837. https://doi.org/10.1016/s0140-6736(02)11772-7

PMID: 12480361

61. Chan M, Cheung C, Chui W, Tsao S, Nicholls J, Chan Y, et al. Proinflammatory cytokine responses

induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir

Res. 2005; 6(1):135. https://doi.org/10.1186/1465-9921-6-135 PMID: 16283933

62. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: Influenza virus receptors in the

human airway. Nature. 2006; 440(7083):435–436. https://doi.org/10.1038/440435a PMID: 16554799

63. Thompson CI, Barclay WS, Zambon MC, Pickles RJ. Infection of human airway epithelium by human

and avian strains of influenza A virus. J Virol. 2006; 80(16):8060–8068. https://doi.org/10.1128/JVI.

00384-06 PMID: 16873262

64. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME, et al. H5N1

virus attachment to lower respiratory tract. Science. 2006; 312(5772):399. https://doi.org/10.1126/

science.1125548 PMID: 16556800

65. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME, et al. Human

and avian influenza viruses target different cells in the lower respiratory tract of humans and other mam-

mals. Am J Pathol. 2007; 171(4):1215–1223. https://doi.org/10.2353/ajpath.2007.070248 PMID:

17717141

66. Hsieh SM, Chang SC. Insufficient perforin expression in CD8+ T cells in response to hemagglutinin

from avian influenza (H5N1) virus. J Immunol. 2006; 176(8):4530–4533. https://doi.org/10.4049/

jimmunol.176.8.4530 PMID: 16585542

67. Petrie SM, Guarnaccia T, Laurie KL, Hurt AC, McVernon J, McCaw JM. Reducing uncertainty in within-

host parameter estimates of influenza infection by measuring both infectious and total viral load. PLoS

One. 2013; 8(5):e64098. https://doi.org/10.1371/journal.pone.0064098 PMID: 23691157

68. Hayden FG, Tunkel AR, Treanor JJ, Betts RF, Allerheiligen S, Harris J. Oral LY217896 for Prevention

of Experimental Influenza A Virus Infection and Illness in Humans. Antimicrob Agents Chemother.

1994; 38(5):1178–1181. https://doi.org/10.1128/aac.38.5.1178 PMID: 8067760

69. Reuman PD, Bernstein DI, Keefer MC, Young EC, Sherwood JR, Schiff GM. Efficacy and safety of low

dosage amantadine hydrochloride as prophylaxis for influenza A. Antivir Res. 1989; 11(1):27–40.

https://doi.org/10.1016/0166-3542(89)90018-1 PMID: 2712549

70. Hien TT, Liem NT, Dung NT, San LT, Mai PP, van Vinh Chau N, et al. Avian influenza A (H5N1) in 10

patients in Vietnam. N Eng J Med. 2004; 350(12):1179–1188. https://doi.org/10.1056/NEJMoa040419

71. Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, Chunsuthiwat S, Sawanpanyalert P, Kijphati

R, et al. Human disease from influenza A (H5N1), Thailand, 2004. Emerg infect Dis. 2005; 11(2):201–

209. https://doi.org/10.3201/eid1102.041061 PMID: 15752436

72. Oner AF, Bay A, Arslan S, Akdeniz H, Sahin HA, Cesur Y, et al. Avian influenza A (H5N1) infection in

eastern Turkey in 2006. N Engl J Med. 2006; 355(21):2179–2185. https://doi.org/10.1056/

NEJMoa060601 PMID: 17124015

73. Wang Z, Wan Y, Qiu C, Quinones-Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is

associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun. 2015;

6:6833. https://doi.org/10.1038/ncomms7833 PMID: 25967273

74. Handel A, Longini IM Jr, Antia R. Neuraminidase inhibitor resistance in influenza: Assessing the danger

of its generation and spread. PLoS Comput Biol. 2007; 3(12):e240. https://doi.org/10.1371/journal.pcbi.

0030240 PMID: 18069885

75. Dobrovolny HM, Baron MJ, Gieschke R, Davies BE, Jumbe NL, Beauchemin CAA. Exploring cell tro-

pism as a possible contributor to influenza infection severity. PLoS One. 2010; 5(11):e13811. https://

doi.org/10.1371/journal.pone.0013811 PMID: 21124892

76. Dobrovolny HM, Gieschke R, Davies BE, Jumbe NL, Beauchemin CAA. Neuraminidase inhibitors for

treatment of human and avian strain influenza: A comparative study. J Theor Biol. 2011; 269(1):234–

244. https://doi.org/10.1016/j.jtbi.2010.10.017 PMID: 20970433

77. Beggs NF, Dobrovolny HM. Determining drug efficacy parameters for mathematical models of influ-

enza. J Biol Dyn. 2015; 9(sup1):332–346. https://doi.org/10.1080/17513758.2015.1052764 PMID:

26056712

78. Dobrovolny HM, Beauchemin CAA. Modelling the emergence of influenza drug resistance: The roles of

surface proteins, the immune response and antiviral mechanisms. PLoS One. 2017; 12(7):e0180582.

https://doi.org/10.1371/journal.pone.0180582 PMID: 28700622

79. Liao LE, Kowal S, Cardenas DA, Beauchemin CAA. Exploring virus release as a bottleneck for the

spread of influenza A virus infection in vitro and the implications for antiviral therapy with neuraminidase

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling of influenza A virus localization in the human respiratory tract

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007705 April 13, 2020 28 / 29

https://doi.org/10.1016/s0140-6736(02)11772-7
http://www.ncbi.nlm.nih.gov/pubmed/12480361
https://doi.org/10.1186/1465-9921-6-135
http://www.ncbi.nlm.nih.gov/pubmed/16283933
https://doi.org/10.1038/440435a
http://www.ncbi.nlm.nih.gov/pubmed/16554799
https://doi.org/10.1128/JVI.00384-06
https://doi.org/10.1128/JVI.00384-06
http://www.ncbi.nlm.nih.gov/pubmed/16873262
https://doi.org/10.1126/science.1125548
https://doi.org/10.1126/science.1125548
http://www.ncbi.nlm.nih.gov/pubmed/16556800
https://doi.org/10.2353/ajpath.2007.070248
http://www.ncbi.nlm.nih.gov/pubmed/17717141
https://doi.org/10.4049/jimmunol.176.8.4530
https://doi.org/10.4049/jimmunol.176.8.4530
http://www.ncbi.nlm.nih.gov/pubmed/16585542
https://doi.org/10.1371/journal.pone.0064098
http://www.ncbi.nlm.nih.gov/pubmed/23691157
https://doi.org/10.1128/aac.38.5.1178
http://www.ncbi.nlm.nih.gov/pubmed/8067760
https://doi.org/10.1016/0166-3542(89)90018-1
http://www.ncbi.nlm.nih.gov/pubmed/2712549
https://doi.org/10.1056/NEJMoa040419
https://doi.org/10.3201/eid1102.041061
http://www.ncbi.nlm.nih.gov/pubmed/15752436
https://doi.org/10.1056/NEJMoa060601
https://doi.org/10.1056/NEJMoa060601
http://www.ncbi.nlm.nih.gov/pubmed/17124015
https://doi.org/10.1038/ncomms7833
http://www.ncbi.nlm.nih.gov/pubmed/25967273
https://doi.org/10.1371/journal.pcbi.0030240
https://doi.org/10.1371/journal.pcbi.0030240
http://www.ncbi.nlm.nih.gov/pubmed/18069885
https://doi.org/10.1371/journal.pone.0013811
https://doi.org/10.1371/journal.pone.0013811
http://www.ncbi.nlm.nih.gov/pubmed/21124892
https://doi.org/10.1016/j.jtbi.2010.10.017
http://www.ncbi.nlm.nih.gov/pubmed/20970433
https://doi.org/10.1080/17513758.2015.1052764
http://www.ncbi.nlm.nih.gov/pubmed/26056712
https://doi.org/10.1371/journal.pone.0180582
http://www.ncbi.nlm.nih.gov/pubmed/28700622
https://doi.org/10.1371/journal.pcbi.1007705


inhibitors. PLoS One. 2017; 12(8):e0183621. https://doi.org/10.1371/journal.pone.0183621 PMID:

28837615

80. Palmer J, Dobrovolny HM, Beauchemin CAA. The in vivo efficacy of neuraminidase inhibitors cannot be

determined from the decay rates of influenza viral titers observed in treated patients. Sci Rep. 2017;

7:40210. https://doi.org/10.1038/srep40210 PMID: 28067324

81. Hayden FG, Treanor JJ, Betts RF, Lobo M, Esinhart JD, Hussey EK. Safety and efficacy of the neur-

aminidase inhibitor GG167 in experimental human influenza. JAMA. 1996; 275(4):295–299. PMID:

8544269

82. Hayden FG, Treanor JJ, Fritz RS, Lobo M, Betts RF, Miller M, et al. Use of the oral neuraminidase inhib-

itor oseltamivir in experimental human influenza: Randomized controlled trials for prevention and treat-

ment. JAMA. 1999; 282(13):1240–1246. https://doi.org/10.1001/jama.282.13.1240 PMID: 10517426

83. Barroso L, Treanor J, Gubareva L, Hayden FG. Efficacy and tolerability of the oral neuraminidase inhibi-

tor peramivir in experimental human influenza: Randomized, controlled trials for prophylaxis and treat-

ment. Antivir Ther. 2005; 10(8):901–910. PMID: 16430195

84. Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA. 1993; 90

(9):4171–4175. https://doi.org/10.1073/pnas.90.9.4171 PMID: 8387212

85. Perelson AS, Rong L, Hayden FG. Combination antiviral therapy for influenza: Predictions from model-

ing of human infections. J Infect Dis. 2012; 205(11):1642–1645. https://doi.org/10.1093/infdis/jis265

PMID: 22448006

86. Killingley B, Nguyen-Van-Tam J. Routes of influenza transmission. Influenza Other Respir Viruses.

2013; 7:42–51. https://doi.org/10.1111/irv.12080 PMID: 24034483

87. Carvalho TC, Peters JI, W RO III. Influence of pARTICLE size on regional lung deposition–what evi-

dence is there? Int J Pharm. 2011; 406(1-2):1–10. https://doi.org/10.1016/j.ijpharm.2010.12.040 PMID:

21232585

88. Yan AWC, Zaloumis SG, Simpson JA, McCaw JM. Sequential infection experiments for quantifying

innate and adaptive immunity during influenza infection. PLoS Comput Biol. 2019; 15(1):e1006568.

https://doi.org/10.1371/journal.pcbi.1006568 PMID: 30653522

89. Morton KW, Mayers DF. Numerical solution of partial differential equations: An introduction. 2nd ed.

Cambridge, UK: Cambridge University Press; 2005.

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling of influenza A virus localization in the human respiratory tract

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007705 April 13, 2020 29 / 29

https://doi.org/10.1371/journal.pone.0183621
http://www.ncbi.nlm.nih.gov/pubmed/28837615
https://doi.org/10.1038/srep40210
http://www.ncbi.nlm.nih.gov/pubmed/28067324
http://www.ncbi.nlm.nih.gov/pubmed/8544269
https://doi.org/10.1001/jama.282.13.1240
http://www.ncbi.nlm.nih.gov/pubmed/10517426
http://www.ncbi.nlm.nih.gov/pubmed/16430195
https://doi.org/10.1073/pnas.90.9.4171
http://www.ncbi.nlm.nih.gov/pubmed/8387212
https://doi.org/10.1093/infdis/jis265
http://www.ncbi.nlm.nih.gov/pubmed/22448006
https://doi.org/10.1111/irv.12080
http://www.ncbi.nlm.nih.gov/pubmed/24034483
https://doi.org/10.1016/j.ijpharm.2010.12.040
http://www.ncbi.nlm.nih.gov/pubmed/21232585
https://doi.org/10.1371/journal.pcbi.1006568
http://www.ncbi.nlm.nih.gov/pubmed/30653522
https://doi.org/10.1371/journal.pcbi.1007705

