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the entropy production for thermal 
operations
H. Dolatkhah1, S. Salimi1, A. S. Khorashad1 ✉ & S. Haseli2

According to the first and second laws of thermodynamics and the definitions of work and heat, 
microscopic expressions for the non-equilibrium entropy production have been achieved. Recently, a 
redefinition of heat has been presented in [Nature Communications volume 8, Article number: 2180 
(2017)]. Since thermal operations play an important role in the resource theory of thermodynamics, it 
would be very interesting to find out the effect of the above-mentioned definition on the expression 
of the entropy production for these kind of operations. this is one of the aims of the present paper. 
Using the new definition of heat, it is shown that the entropy production is the same as the mutual 
information between a system and a bath both for thermal operations and, if the system-bath initial 
state is factorized, for entropy-preserving operations. It is also discussed that how one can recognize 
the type of the correlation between a system and a bath through knowledge of the initial state of the 
system only. It is shown that if the initial state of a system is diagonal in the energy basis, the thermal 
operations cannot create a quantum correlation between the system and the bath, however, if the 
system initial state is coherent Gibbs state, there cannot be classical correlation due to the thermal 
operations.

Recently, study on thermodynamic behavior of quantum mechanical systems has attracted much attention. In 
fact, providing a clear understanding about the fundamental concepts such as work and heat, and obtaining a 
deep knowledge of thermodynamics laws in quantum world, have been the main topic of many researches1–11. 
To understand the foundations of quantum thermodynamics, one can consider it as a resource theory. There 
are different models for the resource theories of thermodynamics12–14, which vary mostly on the set of allowed 
operations. One of the most important models is the resource theory of thermal operations (TOs). TOs were 
introduced in ref. 15 and applied later in refs. 16–19.

The set of TOs, {εT}, consists of all maps acting on the state of a system as15–17:

ρ ε ρ ρ′ = = ′Tr( ) ( ), (1)S T S B SB

in which TrB is partial trace over the bath, and ρ ′
SB is the state of the composite system after the evolution, i.e.,

ρ ρ ρ= ⊗′ †U U( ) ,SB SB S B
eq

SB

where

 1. USB is an energy-preserving unitary operator applied to the system and the bath satisfying

+ =U H H[ , ] 0, (2)SB S B

here, HS and HB are Hamiltonians of the system and the bath, respectively.
 2. ρB

eq is a thermal state of the bath at some fixed temperature,

ρ =
β−e

Z
,

(3)B
eq

H

B

B

where β =
k T

1

B
 (throughout the paper it is assumed that kB = 1), and Z tr e( )B

HB= β−  is known as the partition 
function.

1Department of Physics, University of Kurdistan, P. O. Box: 66177-15175, Sanandaj, Iran. 2Faculty of Physics, Urmia 
University of Technology, Urmia, Iran. ✉e-mail: a.sorouri@uok.ac.ir

open

https://doi.org/10.1038/s41598-020-66416-9
mailto:a.sorouri@uok.ac.ir
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66416-9&domain=pdf


2Scientific RepoRtS |         (2020) 10:9757  | https://doi.org/10.1038/s41598-020-66416-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

There are two important properties for TOs which are20,21:

 1. They have time translation symmetry,

ε ρ ε ρ=− −e e e e( ) ( ) , (4)T
iH t

S
iH t iH t

T S
iH tS S S S

 2. They preserve the thermal state,

ε ρ ρ= .( ) (5)T S
eq

S
eq

Regarding the first law of thermodynamics and this fact that the thermal bath is an incoherent mixture of 
energy states, Eq. (4) indicates conservation of energy. Equation (5) expresses that it is impossible to change 
a thermal state without doing any work. This means that there cannot exist any machine working in a cycle 
and converting thermal energy into work completely. This is actually the physical meaning of the second law of 
thermodynamics.

The conservation of energy in thermodynamic systems is the topic of the first law of thermodynamics, which 
states that every increase in the internal energy of a system is due to the following two ways: (a) the work per-
formed on the system and/or (b) the heat absorbed by the system. Irreversible processes are described by the 
second law of thermodynamics. According to this law, the entropy production is always non-negative; it is zero 
only when the system and the environment are in thermal equilibrium. Regarding the first and second laws of 
thermodynamics, one can derive microscopic expressions for the non-equilibrium entropy production in quan-
tum systems22–27,45.

Recently, a new definition of heat has been provided in which the authors introduced heat by properly refer-
ring to the information flow and thereby restoring Landauer’s erasure principle28. Here, the effect of the defini-
tion on the expression of the entropy production for TOs is determined. Since microscopic expression of the 
non-equilibrium entropy production depends on the definition of heat, one can expect that any new definition of 
it might change the expression of the entropy production. It is also shown that TOs cannot generate quantum cor-
relation from incoherent input states, however, if the initial state of a system is a coherent Gibbs state, correlation 
between the system and the bath is quantum correlation.

In the following, firstly, free energy definition and heat definitions are presented. Secondly, using the heat 
definitions, the corresponding expressions of non-equilibrium entropy production are obtained. Finally, the role 
of quantum coherence in the entropy production for TOs is studied.

preliminary
The non-equilibrium free energy for a system in a state ρS with Hamiltonian HS, which interacts with a thermal 
bath at temperature T, is defined as:

ρ ρ= −F E TS( ) ( ), (6)S S S

where ES = tr(HSρS) is internal energy and S(ρS) = −tr(ρSln(ρS)) is the von Neumann entropy of the system. If one 
uses H ln ln Z( ( ) ( ))S S

eq
S

1 ρ= − +
β

, the non-equilibrium free energy can be written as

F F TS( ) ( ), (7)S eq S S
eqρ ρ ρ= +

where =
β

−F ln Z( )eq S
1  is the free energy in thermal equilibrium, and ρ ρS( )S S

eq  is the relative entropy. It is worth 
mentioning that ρ ≥F F( )S eq due to the non-negativity of the relative entropy.

Usually, heat is defined as the change in the internal energy of the bath29,31,

Δ = −Δ .Q E (8)B

Although many researchers have used this definition in their works24,29,31, it has been recently shown that it is 
not a perfect definition for heat28. To provide a more proper definition, one can assume that there is a thermal 
bath whose state is initially given by a thermal state ρB

eq and it is subject to Hamiltonian HB at temperature T. In a 
process, where the bath state ρB

eq transforms to ρ ′
B under the condition that the Hamiltonian HB is remained 

unchanged, heat is defined as28

β
∆ = − ∆ − ∆ =

−
∆Q E F S( ) 1 ,

(9)B B B

where ρ ρ∆ = −′F F F( ) ( )B B B
eq  is the change in the free energy of the bath which is stored in the bath as the extract-

able work. S S S( ) ( )B B B
eqρ ρ∆ = −′  is the change in the von Neumann entropy of the bath due to the state transfor-

mation. Since in this approach heat is expressed in terms of the entropy difference of the bath, one can say that 
there is an explicit relation between heat and information flow to or from the bath. This is consistent with 
Landauer’s erasure principle30. According to Eq. (9), heat is also responsible for the change in the internal energy 
of the bath. However, the bath internal energy can be varied through other form of energy flow on the condition 
that entropy is preserved. This form of energy flow is stored as extractable work. Comparing Eq. (8) with Eq. (9), 
one has
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Δ = Δ + Δ .Q Q F (10)B

Since ΔFB is always non-negative (due to this fact that the initial state of the bath is thermal and the free 
energy for this state has its minimum value), one comes to

Δ ≥ Δ .Q Q (11)

If the bath deviates from thermal equilibrium by small variation through a TO, ρ ρ ε+′ ~B B
eq , one will have 

ρ ρ ε∆ = || ∼′F TS( )B B B
eq 2 which goes to zero in the limit of large bath. Therefore, both definitions are consistent.

New entropy production for thermal operations
When a system experiences a dynamical process, the change in its entropy, ΔSS, includes a reversible and an irre-
versible contribution. The reversible contribution is due to the heat flow, which can be addressed as the entropy 
flow βΔ = ΔS Qrev , and the irreversible one is called entropy production ΔSirr. Therefore, one can write

Δ = Δ + Δ .S S S (12)S
irr rev

Regarding the usual definition of heat, Eq. (8), and the total change in the entropy of a system, Eq. (12), one 
can obtain the entropy production for TOs,

¯ β ρ ρ ρ ρ∆ = − ∆ = || − ||'S F S S( ) ( ), (13)
irr

S S S
eq

S S
eq

which is the familiar form of the entropy production for TOs23,35 (see Methods for more detail). ΔS̄irr is always 
non-negative due to the contraction of the quantum relative entropy32. As a result

Δ ≤F 0, (14)S

meaning that free energy of the system is decreasing under TOs18,20. According to the definition of TO, Eq. (13) 
can be written as24,25:

ρ ρ ρ∆ = || +' 'S̄ S I( ) ( ), (15)
irr

B B
eq

SB

where ρ ρ ρ ρ= − −′ ′ ′ ′I S S S( ) ( ) ( ) ( )SB S B SB  is the mutual information between the system and the bath. Equation 
(15) shows that the change in the state of the bath along with the mutual information is responsible for the 
entropy production variation.

Now, let us obtain an expression for the entropy production for TOs based on the new definition of heat pre-
sented in the previous section. If one uses Eq. (9) in Eq. (12), one obtains

β ρ ρ ρ ρ ρ ρΔ = − Δ + Δ = − −′ ′S F F S S S( ) ( ) ( ) ( ), (16)
irr

S B S S
eq

S S
eq

B B
eq

which is the new form of the entropy production for TOs, more detail can be found in Methods. Considering the 
definition of TO, Eq. (16) can be rewritten as

ρΔ = .′S I( ) (17)
irr

SB

Since ρ ′I( )SB  is always non-negative, one comes to ΔSirr ≥ 0. As can be seen in Eq. (17), it is just the mutual 
information which determines the entropy production; there is no term showing the change of bath state. It is 
important to note that for entropy-preserving operations28 if the initial state of the composite system SB is factor-
ized, Eq. (17) is also true (see Methods).

Regarding the non-negativity of ΔSirr together with Eq. (16), one obtains

Δ + Δ ≤F F 0, (18)S B

which means that sum of the system and the bath free energies is decreasing under TOs. Equation (18) can be 
rewritten as

Δ ≤ −ΔF F , (19)S B

which introduces an upper bound for ΔFS. As can be seen, unlike Eq. (14), this upper bound depends on the 
change in the free energy of the bath. Also, it is tighter than Eq. (14), due to the positivity of ΔFB.

Quantum coherence and entropy production
Quantum coherence is one of the most important concepts in quantum physics. Recently, the role of the quantum 
coherence in determining the behavior of the entropy production has been investigated35. It has been shown that 
the non-equilibrium free energy of a system can be written as20,35,36:

F F TS TC( ) ( ( ) ) ( ), (20)S eq H S S
eq

SS
ρ ρ ρ ρ= + Δ +

where . ||.S( ) is quantum relative entropy and C(ρS) is relative entropy of coherence33,34,
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ρ ρ ρ= Δ −C S S( ) ( ( )) ( ), (21)S H S SS

where

E E E E( )H S
i

i S i i iS ∑ρ ρΔ =

is a dephasing map acting on density matrix ρS and removing all coherences in the energy basis |E({ })i , (see 
Methods). According to Eq. (20), the entropy production is divided into two parts: classical and quantum35,36,

Δ = Δ + Δ¯ ¯ ¯S S S , (22)
irr

C
irr

Q
irr

where

'¯ ρ ρ ρ ρ∆ = ∆ || − ∆ ||S S S( ( ) ) ( ( ) ) (23)C
irr

H S S
eq

H S S
eq

S S

is the classical part, and

ρ ρ∆ = − 'S̄ C C( ) ( ) (24)Q
irr

S S

is the quantum one. Since the diagonal elements of a density matrix are transformed independently of the 
off-diagonal ones in state-to-state transformation under TOs, ΔS̄C

irr  is non-negative. Also, ΔS̄Q
irr  is positive 

because TO is incoherent33. A quantum operation is coherence-preserving if and only if it is unitary and incoher-
ent37. Therefore, the unitary operator USB, introduced in the definition of TO, is a coherence-preserving operator. 
Thus, the total coherence of system+bath remains unchanged under the operation of USB,

C C U U C C( ) ( ( ) ) ( ) ( ), (25)SB SB S B
eq

SB S B
eq

S
†ρ ρ ρ ρ ρ ρ= ⊗ = ⊗ =′

which is due to this fact that the relative entropy of coherence is additive on tensor product states and ρB
eq is an 

incoherent state. Substituting Eq. (25) into Eq. (24), one obtains35

' 'ρ ρ∆ = +S̄ C C( ) ( ), (26)Q
irr

cc SB B

where ρ ρ ρ ρ= − −′ ′ ′ ′C C C C( ) ( ) ( ) ( )cc SB SB S B  is called correlated coherence38,39.
One can repeat the above procedure to obtain the classical and quantum parts of the entropy production for 

the new expression, Eq. (16). As was seen before, the entropy production can be divided into two parts,

Δ = Δ + ΔS S S , (27)
irr

C
irr

Q
irr

where

S S S S( ( ) ) ( ( ) ) ( ( ) ) (28)C
irr

H S S
eq

H S S
eq

H B B
eq

S S B
ρ ρ ρ ρ ρ ρΔ = Δ − Δ − Δ′ ′

is the classical part, and

ρ ρ ρ ρΔ = − − =′ ′ ′S C C C C( ) ( ) ( ) ( ) (29)Q
irr

S S B cc SB

is the quantum one. As can be seen, the new definition of heat results in that only the correlated coherence 
appears in the entropy production expression with no coherence of subsystems, in spite of what is mentioned in 
ref. 35.

Using relative entropy of coherence, one obtains39

ρ ρ ρ= − Δ .′ ′
+

′C I I( ) ( ) ( ( )) (30)cc SB SB H H SBS B

Regarding Eq. (30), the entropy production in Eq. (17) can be written as

ρ ρ ρ ρΔ = = Δ + − Δ′
+

′ ′
+

′S I I I I( ) [ ( ( )] [ ( ) ( ( ))], (31)
irr

SB H H SB SB H H SBS B S B

hence, the classical and quantum parts of the new entropy production can be written, respectively, as

S S S S I( ( ) ) ( ( ) ) ( ( ) ) ( ( )), (32)C
irr

H S S
eq

H S S
eq

H B B
eq

H H SBS S B S B
ρ ρ ρ ρ ρ ρ ρΔ = Δ − Δ − Δ = Δ′ ′

+
′

and

S C I I( ) ( ) ( ( )) (33)Q
irr

cc SB SB H H SBS B
ρ ρ ρΔ = = − Δ .′ ′

+
′

Since I( ( ))H H SBS B
ρΔ +

′  is always non-negative, one comes to Δ ≥S 0C
irr . ΔSQ

irr  is also non-negative due to the 
data-processing inequality related to strong-subadditivity of the von Neumann entropy leading to this fact that 
mutual information decreases subject to local operations40,41. ΔSQ

irr  can be considered as a discord quantifier 
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which depends on the basis and is established on the concept of local projective measurements detecting the 
quantumness of correlations42,43.

It should be mentioned that if the initial state of the system is diagonal in the energy basis, meaning that 
C(ρS) = 0, one comes to

C C C( ) ( ) ( ) 0, (34)S B cc SBρ ρ ρ= = =′ ′ ′

which indicates that the system and the bath states remain diagonal subject to time evolution. Also

S C I I( ) ( ) ( ( )) 0, (35)Q
irr

cc SB SB H H SBS B
ρ ρ ρΔ = = − Δ =′ ′

+
′

therefore

ρΔ = Δ = Δ +
′S S I( ( )), (36)

irr
C
irr

H H SBS B

as can be seen, only the classical part appears. Hence, one can say that if the initial state of the system is diagonal 
in the energy basis, it is impossible to create a quantum correlation between the system and the bath by applying 
TOs (see Fig. 1). However, if the initial state of the system is the coherent Gibbs state20,44,

e
Z

E: ,
(37)

S
i

E

S
i

i

∑λ| 〉 = | 〉
β−

one comes to ( )H S S
eq

S
λ λ ρΔ | 〉 〈 | =  and therefore λ λ ρ∆ | 〉 | || =S( ( ) ) 0H S S

eq
S

. From Eq. (32) and this fact that ΔSC
irr is 

a non-negative quantity, one can conclude that Δ =S 0C
irr . Hence, for this case, there is no classical part in the 

entropy production expression,

ρ∆ = ∆ = ′S S C ( ), (38)
irr

Q
irr

cc SB

which is in contrast to the previous case, Eq. (36), (see Fig. 1). It should be mentioned that the above results are 
true for the entropy production introduced in Eq. (22); if the initial state of the system is incoherent, one obtains 
Δ =S̄ 0Q

irr , meaning that only the classical part appears in the entropy production expression, and if the system is 
initially in a coherent Gibbs state, one arrives at Δ =S̄ 0C

irr , meaning that only the quantum part is left.

example
To illustrate the above-mentioned results, let us consider a two-level system whose Hamiltonian is given by 

ω ω= +H a a b bS a b , where ωa > ωb (Fig. 2). The bath is assumed to be a huge reservoir out of which one can 
freely and repeatedly, in each run of the protocol, pick one copy of a virtual or ancillary two-level system (qubit) 
which is on resonance with the system45–47. The bath Hamiltonian is ω ω= + +H H1 1 0 0B redu

B
1 0 , where 

ω1 > ω0, and Hredu
B  is the Hamiltonian describing the dynamical behavior of the rest of the bath. The initial state of 

the bath is assumed to be a thermal state, therefore, the state of the virtual qubit can be expressed as

ρ = +q q1 1 0 0 , (39)vir 1 0

Thermal operation Thermal operation

Classical correlation Quantum correlation
(a) (b)

Incoherent state Coherent Gibbs state

B

B

B

B

S

S S

S

Figure 1. (Color online) (a) TOs cannot generate quantum correlation from incoherent input states. (b) If 
input state of the system is coherent Gibbs state, correlation between system and bath is quantum correlation.
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where =
βω−

qi
e

Z

i

B
. Also, the resonance condition is assumed to be

ω ω ω ω− = − . (40)a b 1 0

The “thermal contact” between the system and the bath is described by the interaction Hamiltonian,

γ= ⊗ + ⊗H b a a b( 1 0 0 1 ), (41)int

where γ is coupling strength, and it is assumed that = 1 . The time evolution of the total system is then governed 
by the unitary operator = − + +U exp i H H H t[ ( ) ]t S B int . After an infinitesimal time δt the state of the total system 
evolves to

ρ δ ρ= δ δt U U( ) (0) , (42)SB t SB t

where the initial state ρSB(0) is a direct product of the system and the bath initial states.
Let us examine the above example for two different initial states of the system. Firstly, the initial state of the 

system is assumed to be an incoherent state,

ρ = + −p a a p b b(0) (1 ) , (43)S

where ≤ ≤p0 1. In Fig. 3, entropy production, its classical and quantum parts for this state are plotted versus the 
parameter p. The plots show that the quantum contribution of the entropy production is zero, hence, the entropy 
production is the same as the classical part. Secondly, let us assume that the initial state of the system is pure and 
has coherence in the energy basis,

ψ = + − .p a p b(1 ) (44)S

In Fig. 4, the same three quantities as in Fig. 3 for this state are plotted versus the parameter p. As can be seen, 
when the initial state of the system is the coherent Gibbs state, p = 0.35, the classical contribution of the entropy 
production is zero, which is consistent to what is mentioned before.

Discussion. In this paper, using the new definition of heat28, the corresponding expression for entropy pro-
duction was obtained. The difference between this expression and the old one is a term which goes to zero in the 
limit of large baths, meaning that both expressions come close to each other in this limit.

Furthermore, it was shown that the new definition of heat leads to this fact that the entropy production is the 
same as mutual information between a system and a bath for TOs; it is also true for entropy-preserving operations 
provided that the initial state of the system-bath is a tensor product state.

Figure 2. (Color online) Schematic diagram of a bath of virtual qubits. The system is modeled as a two-level 
system. The bath is in thermal equilibrium at temperature T and one can repeatedly pick one virtual qubit out of 
the bath in each single run of the protocol.

https://doi.org/10.1038/s41598-020-66416-9
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It was also shown that the upper bound of the free energy change of a system under TOs is tighter due to this 
new definition of heat.

Finally, the role of quantum coherence in the new expression of entropy production was studied and it was 
realized that if the initial state of a system is diagonal in the energy basis, one cannot create a quantum correlation 
between the system and its bath, subject to TO. On the other hand, it turned out that the correlation between a 
system and a bath is quantum correlation if the initial state of the system is a coherent Gibbs state.

Methods
In this section, the derivation of Eqs. (13), (15), (16), (17) and (20) is detailed. The approach is slightly different 
from the previous methods22–25. First of all, it is necessary to note that the following relations are true for TOs:

Δ + Δ =E E 0, (45)S B

ρ = Δ + Δ′I S S( ) , (46)SB S B

and

ρ ρ∆ = .′F TS( ) (47)B B B
eq

Equation (45) is true because of the energy conservation condition, Eq. (46) comes from this condition that 
the initial total state is a direct product of the system and bath states and the total state evolves unitarily, 
S S U U S S( ) ( ( ) ) ( ) ( )SB SB S B

eq
SB S B

eqρ ρ ρ ρ ρ= ⊗ = +′ † , and Eq. (47) is due to the fact that the initial state of the bath is 
a thermal state.

Derivation of eq. (13). According to Eq. (12), the entropy production is given by

Figure 3. (Color online) (a) Variation of the entropy production, its classical and quantum parts with respect 
to the parameter p. The initial state of the system is assumed to be an incoherent state. Numerical values are 
q1 = 0.35, q0 = 0.65 and γt = 0.01.

Figure 4. (Color online) The black (solid), the blue (dashed), and the red (dot-dashed) curves represent how 
entropy production, its classical and quantum parts change over the parameter p, respectively. The initial state of 
the system is assumed to be ψ = + −p a p b(1 )S

. Numerical values are q1 = 0.35, q0 = 0.65 and 
γt = 0.01.
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Δ = Δ − ΔS S S , (48)irr
S

rev

in which ΔSS is the change in the entropy of the system and ΔSrev is equal to βΔQ. Regarding Eq. (8) as the defi-
nition of heat, one obtains

β βΔ = Δ − Δ = Δ − Δ = Δ + Δ¯ ¯S S S S Q S E , (49)
irr

S
rev

S S B

which leads to

β βΔ = Δ − Δ = − ΔS̄ S E F , (50)
irr

S S S

due to Eq. (45) and the definition of the free energy. Since ρ ρ ρ= + ||F F TS( ) ( )S eq S S
eq , one obtains

β ρ ρ ρ ρ∆ = − ∆ = || − || .¯ 'S F S S( ) ( ) (51)
irr

S S S
eq

S S
eq

Derivation of eq. (15). Substituting Eqs. (45), (46) and (47) into Eq. (50) and keeping in mind the definition 
of the free energy, one arrives at

' ' ' '¯ β β∆ ρ β ρ β ρ ρ ρ∆ = − ∆ = ∆ − = − ∆ + ∆ = + ∆ = + ||S F S E I S E I F I S( ) ( ) ( ) ( ), (52)
irr

S S S SB B B SB B SB B B
eq

which is Eq. (15).

Derivation of eq. (16). The approach is similar to the one used to obtain Eq. (13), the only difference is that 
here Eq. (9) is considered as the definition of heat. Starting with Eq. (12) and considering the definition of heat 
according to Eq. (9), one comes to

β β βΔ = Δ − Δ = Δ − Δ = Δ + Δ = Δ + Δ − ΔS S S S Q S S S E F , (53)irr
S

rev
S S B S B B

which, together with Eq. (45) and the definition of the free energy, gives

β∆ = − ∆ + ∆ .S F F( ) (54)irr
S B

Now, replacing ΔFB and ΔFS from Eqs. (47) and (51), respectively, results in Eq. (16),

β ρ ρ ρ ρ ρ ρ∆ = − ∆ + ∆ = − − .′ ′S F F S S S( ) ( ) ( ) ( ) (55)
irr

S B S S
eq

S S
eq

B B
eq

Derivation of eq. (17). To obtain Eq. (17), one can use the definition of the free energy and Eqs. (45) and 
(46) to rewrite Eq. (54) as

β β ρ∆ = − ∆ + ∆ = ∆ + ∆ − ∆ + ∆ = .′S F F S S E E I( ) ( ) ( ) (56)
irr

S B S B S B SB

For entropy-preserving operations ( ρ ρ ρ= Λ =′S S S( ) ( ( )) ( )SB SB SB ), if the initial state of the composite system 
SB is factorized (ρSB = ρS⊗ρB), one will have

ρ ρ ρ ρ= = + .′S S S S( ) ( ) ( ) ( ) (57)SB SB S B

Regarding Eq. (57) and the definition of the mutual information, one obtains ρ = ∆ + ∆′I S S( )SB S B, 
therefore

β ρ∆ = ∆ − ∆ = ∆ − ∆ = ∆ + ∆ = ′S S S S Q S S I( ), (58)
irr

S
rev

S S B SB

which is the same as Eq. (56).

Derivation of eq. (20). The free energy for a system in a state ρS is

ρ ρ ρ= − .F tr H TS( ) ( ) ( ) (59)S S S S

Substituting ρ= − +
β

H ln ln Z( ( ) ( ))S S
eq

S
1  into the above equation, one obtains

ρ ρ ρ= + ||F F TS( ) ( ), (60)S eq S S
eq

where =
β

−F ln Z( )eq S
1  is the free energy in thermal equilibrium and ρ ρ ρ ρ ρ ρ|| = −S tr ln tr ln( ) ( ( )) ( ( ))S S

eq
S S S S

eq  is 
quantum relative entropy. Regarding ρ ρ ρ ρ= ∆tr ln tr ln( ( )) ( ( ) ( ))S S

eq
H S S

eq
S

, one comes to

ρ ρ ρ ρ ρ ρ ρ ρ= − + ∆ + ∆ || = + ∆ || +F F TS TS TS F TS TC( ) ( ) ( ( )) ( ( ) ) ( ( ) ) ( ), (61)S eq S H S H S S
eq

eq H S S
eq

SS S S

where ρ ρ ρ= ∆ −C S S( ) ( ( )) ( )S H S SS
 is relative entropy of coherence.
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