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Surface-enhanced Raman spectroscopy (SERS) has shown
strength in non-invasive, rapid, trace analysis and has been
used in many fields in medicine. Machine learning (ML) is an
algorithm that can imitate human learning styles and structure
existing content with the knowledge to effectively improve
learning efficiency. Integrating SERS and ML can have a
promising future in the medical field. In this review, we

summarize the applications of SERS combined with ML in
recent years, such as the recognition of biological molecules,
rapid diagnosis of diseases, developing of new immunoassay
techniques, and enhancing SERS capabilities in semi-quantita-
tive measurements. Ultimately, the possible opportunities and
challenges of combining SERS with ML are addressed.

1. Introduction

Biological diagnostics are often used clinically as part of the
disease diagnosis, but traditional methods of analysis have the
disadvantages of being time-consuming, expensive and high
demanding on laboratory researchers, which makes the devel-
opment of a new rapid, inexpensive and immediate test of
great clinical importance.[1,2]

Raman spectroscopy is a molecular vibration-based method
applied in studying molecular structures. In 1974, the surface-
enhanced Raman spectroscopy (SERS) effect was first discov-
ered by Fleischmann et al. and it was found that the intensity
and frequency of the bands are increased compared with
Raman spectroscopy.[3] In the case of plasma nanostructure
aggregation, large field enhancements can be observed in the
slits between nanoparticles, which we call “hot spots”, where
the SERS signal is greatly enhanced and characteristic finger-
print peaks of the target material are obtained.[4–6] Researchers
have created “hot spots” for SERS by preparing different
nanoporous surface materials to enable more sensitive molec-
ular detection. The Raman signal reflects the fingerprint
information of a molecule, while SERS makes the fingerprint
information of a molecule more concrete and precise. By
monitoring the SERS signal, we can make a preliminary
determination of the presence of the target molecule, the
structure of the substance and the process by which the
reaction took place.[7–9] In recent years, SERS has increasingly
been viewed as one of the most vital research methods in the
field of single-molecule science, and as SERS becomes more
widely used, there is a high expectation for in vivo imaging,
rapid diagnosis of diseases, and rapid detection of trace
substances.[10–13] Recognizing this, there are a growing number
of auxiliary means designed to improve the depth and speed of
analysis. For instance, changing SERS substrates is a significant

factor to change the enhancement factor.[14–17] Alternatively,
exchanging the carrier for target molecules fulfills the multi-
plexed, molecular sensing and imaging simply and cost-
effectively.[18,19] These methodologies are beneficial for the rapid
and trace detection of target substances under non-invasive
conditions and can boost the intensity of SERS spectra under
certain conditions, which is highly effective for obtaining good
spectral profiles.

It is always pursued to be more efficient and accurate in
analyzing Raman spectra after obtaining more accurate Raman
spectra. ML is an algorithmic technique that can handle large,
complex, and different types of data, including such types as
Support vector machine (SVM), Neural networks (NN), Principal
component analysis (PCA), Partial least square (PLS), deep
learning, and decision tree learning. Such algorithms can be
applied to many aspects of healthcare, from diagnosis and
treatment to individualized drug selection. ML is expected to be
able to specify accurate medical solutions like excellent medical
doctors.[20–24]

SERS, when combined with ML algorithms, can be analyzed
with a higher degree of accuracy. Thus, the limitations imposed
by complex data can be addressed. The way we will introduce
has been proved to be highly effective because of the ability to
calculate SERS with quantum mechanical accuracy which is
greatly significant in thousands of molecular dynamics
conformations.[25] With the rapid development of SERS and ML,
its application is getting wider and wider in medicine.

Because both SERS and ML have a wide range of
applications in their respective fields, the combination of
machine learning and SERS has significant advantages. There-
fore, many research papers and reviews which combine ML
with SERS have been published in recent years. Some of these
reviews discuss their use in medical diagnostics and
treatments,[26,27] others describe machine learning driving the
development of sensors,[28,29] and others address their use in
DNA, protein and drug detection.[30] However, there is a lack of
comprehensive reviews on the use of ML in conjunction with
SERS in medicine.

The aim of this review is to fill a necessary gap in the
literature regarding the application of ML combined with SERS
in medicine and to provide a comprehensive overview of
articles published since 2015. Such reviews are essential for the
field to move forward.

Our review will present the application of SERS and how ML
has been used in conjunction with SERS applied in disease
classification, diagnosis of infectious diseases and cancer,
detection of metabolites in vivo, and the creation of medically
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relevant databases. Finally, possible opportunities and chal-
lenges of combining SERS with ML are addressed.

2. The Way Machine Learning Works

Machine learning is the part of artificial intelligence that
performs tasks that need to be done in a data-driven way.[31]

The fact that it works in a data-driven way means that it can
learn from the data and automatically improve the predictive
model, and that the predictive model becomes more accurate
as more data is fed in. Machine learning can extract data
features from raw data to obtain knowledge, and use this
acquired knowledge to make decisions to solve complex
practical problems. For example, machine learning models can
be used to diagnose or classify diseases by learning from a large
number of scanned images.[32–34]

The concept of machine learning can be traced back to
Turing’s ‘machine learning’ in the 1950s and the development
of the first neural network, which focused primarily on military
experiments. The opening of the Artificial Intelligence in
Medicine (AIME) conference in 1985 saw growing optimism
about the use of machine learning in medicine, and a series of

creative studies emerged. Since the 2010s, deep learning has
entered another phase of rapid development (Figure 1).[35]

Traditional methods of data analysis in medicine are mainly
based on the testing of causal hypotheses and the selection of
models around the significance and in-sample goodness of fit.
While machine learning focuses more on the predictive
performance of models in the mathematical dimension and the
generalizability of model generalization. It uses a subset of the
relevant characteristics of variables in different formats for
model creation and uses pattern analysis and dimensionality
reduction methods to train a model that best fits the character-
istics of the corresponding variables.[36,37] For precise recogni-
tion, it is necessary to establish a large reference sample library
with uniqueness and accuracy for each sample in the sample
library when performing machine learning. Machine learning
can learn data from a large amount of data to build a model
and improve the accuracy of the models as the learning time
increases, or experienced researchers can select analytical
models that correspond to the problem, thus solving data
processing where classical linear methods are inadequate(Fig-
ure 2).[38,39] After acquiring a large amount of data, it is also
necessary to classify the data into a train set and a test set. The
train set is the data set for developing the machine learning
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model and the test set is used to evaluate the resulting
machine learning model after the model has been trained.[40]

Machine learning encompasses very specific chemometric
methods, each of which can solve different practical problems.
Two of the main categories of machine learning are supervised
learning and unsupervised learning. Supervised learning is to
find the optimal algorithmic model based on an existing
dataset when the relationship between the input data and the
output data is clear. Whereas unsupervised learning is where
we do not know the relationship between the data in the set,
the features, but have to get the relationship between the data
based on a certain model or clustering.[41]

Several machine learning algorithms are used to analyze
Raman spectra, including many different sub-methods such as

principal component analysis (PCA), support random vector
machine (SVM), convolutional neural network (CNN), distributed
arithmetic (DA), Quadratic Discriminant Analysis (QDA), linear
discriminant analysis (LDA), partial least squares (PLS-DA),
artificial neural network (ANN), random forest (RF) and other
algorithms. Table 1 provides a brief description of the main
methods discussed in this paper, and the reader is referred to
other more detailed literature for detailed merits and demerits
of each method.[42–45]

Figure 1. Infographic depicting deep learning as a subset of artificial intelligence. Reproduced from Ref. [34] Copyright (2022), with permission from Elsevier.

Figure 2. General workflow of deep learning-based spectral data analysis for the discrimination of antibiotic- resistant bacteria. Reproduced from Ref. [39].
Copyright (2021), with permission from Springer Nature.
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3. The Application of SERS Combined with
Machine Learning in Medicine

Since machine learning offers the ability to learn from
examples, it is not a stretch to say machine learning can be
applied in prognosis, diagnosis, and treatment, which values
accurate and rapid techniques.[46] With the combination of
machine learning and SERS, further use of trace substances or
small molecules can be utilized to predict diseases or classify
diseases, bacteria and biomarkers. The strength of machine
learning is its ability to distinguish between two or more
substances rapidly and accurately that are so similar in the SERS
spectra that the human eye has difficulty distinguishing them.

3.1. The application in classifying biomolecules

Like many bacteria, viruses or DNAs are functionally or
structurally similar. The development of new rapid detection
methods is necessary because of the complex steps and high
demands placed on the laboratory personnel to carry out the
analysis using traditional methods.[47,48]

When classifying and identifying biomolecules, PCA meth-
ods are often used to reduce the dimensionality of complex
spectral data and simplify the resulting spectral data. The
selection of machine learning algorithms is then carried out,
with DNN and SVM being the common means of binary
identification. Alternatively, PCA can be used directly to identify
feature peaks that differ in the main components of the SERS
spectra. Combining the two machine learning algorithms some-
times results in better classification results.

3.1.1. The application in classifying in bacteria

Bacteria are often a common cause of infection and inflamma-
tion, and antimicrobial drugs are commonly applied as a
treatment for the diseases that result from bacterial infections.
Nevertheless, as the misuse of antimicrobials has led to the
growth of multidrug-resistant strains, it is essential to accurately
identify the sequence types of the different multidrug-resistant
strains for optimal disease control and infection prevention

strategies. Meanwhile, accurate identification of the type of
bacteria causing the disease is the most important means of
prescribing line-specific antibacterial drugs.[49,50] Genotyped
antibiotic susceptibility testing (AST) requires complete and
adequate training of the testers to identify resistance genes
which are truly capable of expressing resistance.[51]

Combining machine learning with SERS allows for more
reliable analysis and identification of different resistance genes
and the corresponding bacteria. The PCA algorithm can reduce
the dimensionality of complex SERS spectral data and simplify
the content of the dataset. Combined with the SVM algorithm
which can perform a better binary classification of the dataset,
these algorithms can solve many classification problems in
medicine. Measurement of SERS with direct gold nanoparticle
deposition as a substrate for E. coli ATCC25922 (control), E. coli
ST131:O75 and E. coli ST1193:O25 in blood yielded three similar
SERS spectra. During the measurement, the ring area of the
coffee swap effect is selected as the ideal location for detection
to obtain the best SERS enhancement and Raman signal. It is a
challenge to define the type of E. coli measured by operator
judgement. However, SVM-assisted PCA scoring plots showed
excellent performance in classifying these three types of
strains.[52]

Deep learning networks (DNNs) are self-learning and self-
algorithm selection and training by extracting features from
input data. It is a popular branch of machine learning in recent
years and is suitable for databases with large amounts of data
as well as image analysis. Aydin et al. employed a deep neural
network (DNN) with stacked autoencoders (SAE) on methicillin-
resistant Staphylococcus aureus (MRSA) and methicillin-suscep-
tible S. aureus (MSSA), which eliminates complex data pre-
processing steps, and achieved an accuracy of 97.66% and an
AUC of 0.99%.[39] By SERS signals obtained by mixing gold and
silver nanoparticles, Wang et al. compared three unsupervised
machine learning methods and ten supervised learning meth-
ods to classify the SERS spectra of 2752 staphylococci,
respectively, and the final results showed that convolutional
neural network (CNN) which is a branch of DNN was the best
model for predicting Staphylococcus species.[53] Wang and his
team used eight supervised learning methods to classify and
predict carbapenem-sensitive Klebsiella pneumoniae (CSKP)
and carbapenem-resistant Klebsiella pneumoniae (CRKP), respec-

Table 1. Brief description of the main methods discussed in this paper.

Name Function Description

PCA dimensionality reduction PCA simplifies the data set by converting multiple indicators into a few composite indicators
SVM Binary classification of

data
SVM performs non-linear classification by kernel method

CNN Representation learning CNNs are feed-forward neural networks that include convolutional computation and have a deep structure
ANN Simulation of neurons ANN is an information processing system that mimics the structure and function of the brain‘s neural networks
DA Global Optimization

Search
DA uses 5 formulas to determine the optimal algorithm

QDA Discriminant analysis QDA determines which of the known types the predicted item belongs to
PLS Minimisation of errors PLS is a mathematical optimization technique that allows for a minimalist approach to value
LDA Dimensionality reduction LDA clusters the data to make the different classes of data more discrete
RF Decision Trees The class of the decision tree output in a random forest is determined by the plurality of the classes of the individual

tree outputs
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tively, with the CNN algorithm performing the best out of the
eight.[54] Other researchers used a wide range of machine
learning algorithms to discriminate between 15 different genera
of bacterial pathogens in clinical settings, and ultimately found
that CNNs can accurately predict pathogen species with good
noise immunity. It can be shown that the CNN has good
performance in differentiating bacterial spectra.[55]

Zhao and his group utilized AgNR arrays deposited as SERS
substrates to obtain Raman signals and used RamanNet, a deep
learning algorithm designed for Raman spectroscopy data
analysis, to classify bacterial endotoxins, and the classifier
showed 100% accuracy. The emergence of RamanNet has also
given a strong impetus to the use of machine learning in
Raman data analysis.[56]

3.1.2. The application in identifying viruses

For SERS, modification of the substrate with a high binding
capacity receptor corresponding to a specific target substance
can improve the capture efficiency of the SERS signal of the
target substance.[57] The SERS spectra obtained in this way can
be more easily classified.[58]

PCA methods are widely used in the field of virus detection
as well. Luo et al. developed a ‘virus trap’ composed of gold
nanoneedles array modified with a functional host cell receptor

angiotensin converting enzyme 2 of coronavirus spinous
process protein (S protein) to capture the SERS signal of COVID-
19. After obtaining the SERS signal, PCA was used to obtain the
principal component coefficient in the spectrum. Then discrim-
inant analysis (DA) is used to classify unknown spectral samples.
The LOD of this method is as low as 80 mL� 1(Figure 3).[59] Li
et al. also applied the PCA algorithm to classify the serum and
saliva of three different viruses, including COVID-19, HAdV and
H1 N1, and the classifier showed good classification ability.[60]

Pan used the PCA-SVM method for the rapid detection of
COVID-19 as well.[61]

3.1.3. The application in classifying DNAs

When identifying and classifying different DNAs, it mainly relies
on four bases with different relative contents in DNA to
distinguish between different DNAs.[62] He et al. used silver
nanoparticle-modified in silico to capture signals from different
DNAs and trained the data with a very popular way called Deep
Neural Network (DNN) to find the most suitable model for data
analysis model. Selective identification of DNA targets with the
resulting model achieved an accuracy of 90.28%.[63] J. Vikesland
and co-workers used the method of slippery liquid infused
porous SERS for label-free detection of ssDNA and constructed

Figure 3. Schematic diagram of COVID-19 SERS sensor design and single-virus detection mechanism. (a) Schematic diagram of COVID-19 SERS sensor design
and operation procedure. (b) Schematic diagrams of single-virus detection by selectively capturing and trapping virus, and the multi-SERS enhancement
mechanism. (c) Key features of SERS patterns to classify the urine samples infected by VS (simulated contaminated water by SARS-CoV-2 virus), VN and
healthy people via PCA. (d) DA results to identify the urines for chronic nephritis and VS-containing chronic nephritis. The green, red, blue balls represent the
standard of negative urine, the standard of VS-positive urine, the standard of VN-positive urine. The green and red stars represent identified negative urine
and identified VS-positive urine. (e) DA results to identify VS and VN virus mixed in the adult’s urine (2200 copiesmL� 1). The green, red, blue balls represent
the standard of VS-negative urine, the standard of VS-positive urine, the standard of VN-positive urine. The red star represents identified VS-positive urine. (f)
SERS mapping (40×30 μm2) of 300 measuring area for one urine sample, 42 dot-measuring-area can be identified as VS-positive. Reproduced from Ref. [59],
Copyright (2021), with permission from Springer Nature.
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a Tr-SVM classifier to distinguish 12 different gene sequences,
with an accuracy of 90%.[64]

3.1.4. The application in identifying extracellular vesicles

Extracellular vesicles are a collective term for vesicular struc-
tures released by cells with various membrane structures, which
have different subpopulations and function to communicate
with cells. Nevertheless, extracellular vesicles are difficult to
detect and characterize because of their small size.[65,66]

Langugne-Labarthet and co-workers applied electron-beam
lithography (EBL) to fabricate plasma-activated gold nanopore
arrays of different sizes and shapes that can be used to capture
the SERS signal of specific extracellular vesicles depending on
size. The authors captured SERS spectra of extracellular vesicles
originating from pancreatic tissue (Panc-MSC) and bone marrow
(BM-MSC) and used principal component analysis (PCA) to
identify characteristic peaks of major component differences,
finally using logistic regression to achieve 89% accuracy, 89%
sensitivity and 88% specificity.[67] Tian et al. used polyethylene
glycol, which concentrates virus, to isolate extracellular vesicles
and particles from the culture medium and used in silico as a
SERS substrate to measure the SERS spectra of different
extracellular vesicles and used the PCA-SVM method to classify
the data. The results showed that the method is capable of
classifying extracellular vesicles and particles of different
cancers with an accuracy of 85% and precision and sensitivity
of up to 80%.(Figure 4)[68] P. Camey et al. adopted a plasmonic
gold nanocluster based on a quartz microfiber matrix as a SERS
substrate, which are modified with cysteamine to enhance the
adsorption of anionic EVs on the surface, allowing easier and
more efficient SERS signal acquisition of EVs. The authors used
the PCA-QDA classification method to analyze the collected
SERS signals for the rapid diagnosis of cancer. The method was
tested and achieved 87% accuracy, 100% sensitivity and 70%
specificity for the diagnosis of patients with head and neck
cancer.[69] Yang et al. used Ag nanoparticles embedded in multi-
layer black phosphorus nanosheets (Ag/BP-NS) for SERS signal
acquisition of different tumor exosomes, then classified them
by SVM method. The classifier can not only distinguish between
different tumor exosomes, but also effectively avoid the effect
of PBS on signal acquisition.[70] Hisey et al. used a SERS-active
thin film as a substrate to detect exosome signals, and then
used CNN to classify the obtained SERS signals. This novel
detection method may be one of the methods of liquid biopsy
for preeclampsia.[71] Venkatakrishnan and colleagues used a
dual machine learning approach of PCA-ANN to classify the
SERS signal of NK cell vesicles in glioblastoma, by which a
diagnosis of glioblastoma can be made with only 5 uL of
peripheral blood.[72]

3.2. The application in identifying diseases

SERS combined with ML can be applied to the detection and
analysis of proteins in body fluids such as urine, saliva and

blood, and can be further applied to the identification of
proteins with other biomolecules, which has promising clinical
applications.[73]

3.2.1. Identification of the diseased and healthy population

Blood tests, tissue biopsies and imaging tests are routinely used
in hospitals to diagnose disease, but these tests are often time-
consuming, expensive and highly demanding on the testers,
which means that new tests need to be developed.[74–76]

Biomarker is a species of protein. From the perspective of
identifying a disease, a biomarker for a particular disease is
likely to be a virus, an inflammatory factor or a specific amino
acid. Biomarkers can often be used in the identification and
diagnosis of diseases or as specific targets of drug therapy,
which are closely related to the development of precision
medicine.[77] As a rapid, non-invasive diagnostic technique, SERS
has improved its diagnostic accuracy when combined with
machine learning, which enables the technique to be used in
classifying. The spectral differences between diseased and
normal samples are not enormous when SERS is used as a label-
free method. Machine learning, a data analysis method, can
extract small differences in order to distinguish between the
diseased and the normal.[28] Researchers can find the chemical
origin of the spectral signature peaks observed in body fluid
samples such as serum and further explore whether inter-
individual variation in the substance of that origin covers the
spectral differences in the subject group to confirm the
biomarkers.[78]

Routine screening procedures for colorectal cancer are time-
consuming and uncomfortable colonoscopy and faecal immu-
nochemical tests. Gong et al. found that the concentrations of
tyrosine and phenylalanine in serum samples were a major
difference between colorectal cancer patients and healthy
individuals and that this difference could be well demonstrated
in the SERS spectra. The authors analyzed the spectral data
obtained using the PCA method and the SVM method
respectively, showing that the SVM method had better
classification results when using serum samples to identify
CRC.[79] Early lung cancer is screened by low-dose CT with
radiation risks, a method that is not friendly to special groups
such as pregnant women. Nevertheless, Yin et al. employed the
SVM method to analyze the SERS spectra of serum samples and
showed good screening for lung adenocarcinoma nodules with
an accuracy of 93.33%. This is not only highly accurate, which
assists in early screening, but also has the advantage of being
non-invasive and causing no harm to the patient.[80] Further-
more, both the PCA-RF algorithm and the PCA-kNN algorithm
developed by Elec et al. have good classification results for
serum samples of kidney cancer.[81]

Apart from blood samples, the method applies to the
analysis of a variety of other body fluid samples such as tears,
urine, saliva, etc. Omar and colleagues applied PCA-SVM to the
data analysis of the SERS profiles of saliva samples, which could
be classified by the presence or absence of NS1 spectral peaks
since this flavivirus biomarker was also detectable in saliva.[82]

ChemistryOpen
Review
doi.org/10.1002/open.202200192

ChemistryOpen 2023, 12, e202200192 (7 of 13) © 2023 The Authors. Published by Wiley-VCH GmbH

Wiley VCH Dienstag, 10.01.2023

2301 / 282896 [S. 80/86] 1



Looi et al. applied Screen-CNN to capture the characteristic
peaks of NS1 molecular fingerprint, and the final result achieved
100% performance of the classifier model for all performance
metrics compared to conventional ELISA kits.[83] Liu et al. used
dynamic surface-enhanced Raman spectroscopy (D-SERS) for
the trace detection of drug residues in urine and SVM for data
analysis of the obtained spectral information, which was used
to confirm the detection of the presence of the target drug in
urine.[84]

In clinical diagnosis, the importance of diagnostic accuracy
is one of the most important indicators to consider, and the PLS
method is frequently considered as an algorithm to minimize
the sum of error squares by finding some absolutely unknow-
able truth values in a minimalist way. Lin and his team used
PCA and PLS methods to extract SERS spectral features based
on SERS spectra of liver cancer (LS), nasopharyngeal cancer (NC)
and normal volunteer serum proteins purified by membrane
electrophoresis, and then used SVM for further diagnostic
classification. Lin’s final experimental results showed that the

Figure 4. Schematic of the isolation, detection, and classification of EVPs. (a) EVPs were released by cells, isolated with PEG, and cultured with AMO for Raman
enhancement. The “MVs” and “Exs” refer to “micro- vesicles” and “exosomes”, respectively. (b) The SERS spectra of cancer and normal EVPs. (c) The
classification results of EVPs by PCA and PCA-SVM classifier. Reproduced from Ref. [68] Copyright (2022), with permission from Royal Society of Chemistry.
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PLS-SVM method has excellent classification and prediction
ability between different diseases, achieving an accuracy of
95.09% in the experiments (Figure 5).[85]

LDA as a clustering method is also suitable for application
in the classification of clinical diagnoses. Neagoe et al. used
PCA-LDA to extract features and classify patients with breast
cancer, colorectal cancer, lung cancer, ovarian cancer and oral
cancer. The final results showed that the accuracy rate of oral
cancer diagnosis is 88%, colorectal cancer with 86% accuracy,

ovarian cancer with 80% accuracy, breast cancer with 76%
accuracy and lung cancer with 59% accuracy. Although there is
still some way to go before it can be used in the clinical setting,
it shows good promise.[86] Hepatocellular carcinoma (HCC) is
already the only cancer that can be diagnosed by imaging
techniques without histological formalities, but diagnostic
imaging techniques have limitations in terms of sensitivity, cost
and patient compliance. Bonifacio’s subject group combined
the RDCV method with the PCA-LDA method to analyze SERS

Figure 5. (a) Sample preparation and SERS measurement. (b) Schematic overview of the procedure for spectra classification and diagnosis. Reproduced from
Ref. [85] Copyright (2022), with permission from The Optical Society.
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spectra on serum samples from patients with hepatocellular
carcinoma and healthy individuals, and this method achieved
an average accuracy of 81%.[87]

In addition to using conventional SERS spectra for machine
learning analysis, first-order derivative transformation of SERS
spectra can also be a means of improving detection perform-
ance in specific cases. The area under the ROC curve for the
PCA-LDA was 0.927, compared to 0.860 without first-order
derivatization, which was a significant improvement in the
accuracy of the discrimination.[88]

When choosing a machine learning algorithm, it is not
necessary to choose the most popular algorithm to operate on
the model. In classifying healthy people as well as people with
bladder cancer, Elec et al. found that the naïve Bayes demon-
strated better performance than logistic regression and random
forest models when dealing with a small number of samples.[89]

3.2.2. Identification of different types or periods of the same
disease by label-free method

Biomarkers can also identify different stages of the same
disease, making up for the defect of blood detection due to the
lack of some important biomolecules in some stages, such as
circulating tumors only exist in the stage of metastasis. Different
periods of disease progression can lead to different biomarkers,
which in turn can lead to changes in the SERS spectra. K. Maiti
and his team, who used AuNPs as a SERS substrate to obtain
SERS spectra and used SVM to classify the resulting spectra,

successfully completed the classification of cervical exfoliated
cells from normal, high-grade intraepithelial lesions and cervical
squamous cell carcinoma in three samples of cervical cancer,
including single cells, cell pellets and extracted DNA. In
particular, the method of classifying the SERS spectra of
extracted DNA using SVM achieved an accuracy of 92%
(Figure 6).[90]

Different types of the same disease can also be identified
using similar methods. Choi et al. applied the SILAR technique
for deposition of golden nanoparticles on paper strips and such
a stable substrate to detect SERS in human tears, and then used
PCA-SVM, a machine learning tool, to classify the resulting SERS
profiles to identify adenoviral conjunctivitis, herpes simplex
keratitis and herpes zoster keratitis and healthy human eyes.[91]

3.2.3. Developing new immunoassay techniques

Traditional immunoassay methods rely on highly specific
molecular recognition between antigens and antibodies but
have the disadvantages of being complex and costly to operate.
The combination of SERS and machine learning can compen-
sate for the shortcomings of traditional immunoassay methods
and is a rapid, trace and non-invasive means of analysis.[92]

Wang’s team fabricated a sandwich immunoassay by using
AgNPs as immune probes and SiC@Ag@AgNPs as SERS
substrate can realize the simultaneous monitoring of PSA.
PSMA and hK2 biomarkers in prostate cancer. Combined with a
linear SVM pattern recognition model, this immunoassay

Figure 6. Schematic illustration of experimental design for differentiating three grades viz. normal (NRML), high grade intraepithelial lesion (HSIL), cervical
squamous cell carcinoma (CSCC) using SERS., a) Scrapping cells from the cervix using cytobrush, b) progression pattern of cervical cancer c) Set 1: single cell,
Set 2: cell pellet, Set 3: extracted DNA (mixed with AuNPs), d) independent SERS analysis of 1) single cell, 2) cell pellet, 3) extracted DNA in glass slide, d)
empirical signal monitoring of the three grades f) chemometric analysis. Reproduced from Ref. [90] Copyright (2020), with permission from Elsevier.
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method can detect the very low detection limit of these three
biomarkers, showing the excellent performance of this method
in clinical application.[93]

3.3. Study of the biochemical action of specific substances

In the conventional approach, the spectral expression of some
cellular components is not strong enough to be used for
reliable classification. However, combining machine learning
with SERS allows for the identification of previously weak
feature signals, enabling the identification of specific biochem-
ical responses in cell. Kneipp and team used SERS to identify
ingredients of lipid aggregates in living fibroblasts, measuring
the spectra of three tricyclic antidepressants (TCA) before and
after induction of the cell, respectively, and perform random
forest (RF) analysis, concluded that the majority of sphingolipids
accumulate in lysosomes following drug induction and also
yielded information on other accumulated lipids.[94]

3.4. Enhancing SERS capabilities in semi-quantitative
measurements

Due to lack of stability, SERS as a qualitative measurement tool
has certain disadvantages in terms of quantification. As a result
of the efforts of researchers, SERS is gradually expected to
become a trusted tool for semi-quantitative measurement and
analysis.[95,96] The use of machine learning for SERS contributes
to the application of SERS in the field of semi-quantitative
measurements. Barman et al. used Ag/SiNWs as Raman sub-
strates to measure the amount of glycated albumin (GA) in
blood and used partial least squares (PLS) and regression with
leave-on sample cross-validation (LOOCV) to make predictions
about glycated hemoglobin concentrations, reinforcing the
quantitative capability of SERS as a qualitative tool.[97] Masson
et al. used SERS to monitor seven metabolites around Hela and
HUVEC cells, and 1D CNN was used to analyze the data from
the SERS spectra. The results show that the method can show
to some extent the gradients of multiple metabolites in the
extracellular environment and can be able to provide detailed
information on metabolite uptake and secretion.[98]

4. Conclusion and Outlooks

In this review, we focussed on the application of SERS
combined with ML in medicine, including recognition of
biological molecules, rapid diagnosis of diseases, developing
new immunoassay techniques, and enhancing SERS capabilities
in semi-quantitative measurements. We identified that the
analysis of SERS is more accurate when combined with ML
algorithms, which is also increasing the breadth and depth of
SERS applications in the medical field.

We discovered that the application of machine learning
combined with SERS to medical problems in previous studies
not only overcomes the shortcomings of traditional clinical

testing tools, which are time-consuming, expensive and
demanding for the testers, but also provides highly accurate
results in classifying the presence or absence of disease and the
type of disease. The method has demonstrated superior
performance in comparison with other traditional methods.

At present, as a mature dimensionality reduction method,
PCA is widely used in SERS data processing. Combining PCA
with other machine learning algorithms has become the main
consideration for spectral data processing by many researchers,
and a large number of related studies and articles have
emerged this year.

Despite numerous merits, persistent developments are still
needed. For illustration, the PCA and SVM mentioned in the
paper apply to different sizes and dimensions of data sets, and
we need to analyze more experiments to find out the
algorithms that can be more universally applied to SERS
analysis, to obtain the large-scale application of this method in
medical analysis.

In the method of combining machine learning with SERS,
this approach suffers from drawbacks such as uncertainty,
probabilistic and wireless datasets of the algorithm due to the
insufficient amount of data in the training set, poor quality and
overfitting. These challenges of machine learning still need to
be overcome by a wide range of researchers through continu-
ous research and experimentation, so that the combined
machine learning and SERS approach can be better applied in
clinical settings.
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