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Abstract

In this paper, the perceptive user, who could identify the high-quality objects in their initial

lifespan, is presented. By tracking the ratings given to the rewarded objects, we present a

method to identify the user perceptibility, which is defined as the capability that a user can

identify these objects at their early lifespan. Moreover, we investigate the behavior patterns

of the perceptive users from three dimensions: User activity, correlation characteristics of

user rating series and user reputation. The experimental results for the empirical networks

indicate that high perceptibility users show significantly different behavior patterns with the

others: Having larger degree, stronger correlation of rating series and higher reputation. Fur-

thermore, in view of the hysteresis in finding the rewarded objects, we present a general

framework for identifying the high perceptibility users based on user behavior patterns. The

experimental results show that this work is helpful for deeply understanding the collective

behavior patterns for online users.

Introduction

Collective behaviors have been extensively investigated to quantitatively explore the behavior

patterns of online social systems [1–3], such as the bursty nature, heavy-tailed distribution of

inter-event time [4, 5], and so on. Many remarkable patterns and mechanisms of collective

behaviors have been proposed, such as the task-based queuing model [6, 7], interest-driven

model [8, 9] and radiation model [10], which are gradually applied in the rumor spreading

[11, 12], disease spreading [13–15] and recommendation systems [16–18], etc.

Recently, the online user behavior patterns have attracted more and more attention

[19–21]. The abundance of available information increases the difficulty in making choices for

users: Buy objects, borrow DVDs, or watch movies. Nowadays, online rating systems provide

channels for users to show their preferences in the form of ratings [22–24], which can be repre-

sented as growing weighted bipartite networks where users are linked with the rated objects

over time and the weights are the ratings. Preferential attachment [25, 26], the users connect

objects in terms of the object degree preferentially, has been widely used to interpret user rat-

ing or selecting behaviors, presenting a homogeneous population composed of users driven by
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object popularity. Meanwhile, Liu et al [17] found that users are heterogeneous in selecting the

rated objects: Some objects are collected by almost all users, while some small-degree objects

are only collected by large-degree users, indicating that the users’ tastes could be expressed by

two categories: Popular one and special one. The work of Ni et al [27] also described this idea.

Inspired by these work, we carry on investigating the heterogeneity [28–31] of users in their

rating patterns. An interesting phenomenon is found: While the majority of users usually col-

lect the popular objects, some users frequently attach to the high-quality objects (which is

rewarded finally) when they are rarely concerned, in which the latter group of users are our

focus in this paper.

We divide objects into two sets: High-quality objects and the others, in which the high-

quality objects are defined as rewarded objects here, e.g. Oscars Award for film, Grammy

Award for music, Emmy Award for television, Tony Award for theater, etc. There will be

many users focusing on the rewarded objects when they become widely accepted, while an

interesting phenomenon is found: There exist some users paying attention to the rewarded

objects long before they actually be widely approved (finally rewarded), i.e. at their early life-

span. Here we present two definitions: Perceptive user and user perceptibility. Perceptive user

is defined as the user who can make high appraisals of the rewarded objects long before they

actually be rewarded. Meanwhile, the degree to which the user can identify the rewarded

objects in their initial lifespan is defined as the user perceptibility.

Meanwhile, we present a method to identify the user perceptibility based on online user rat-

ing behaviors. Then we investigate the behavior patterns of the perceptive users from three

aspects: User activity, correlation characteristics of user rating series and user reputation.

Experimental results indicate that high perceptibility users show different behavior patterns

than others. Finally, considering the hysteresis in finding the rewarded objects, we present a

framework for identifying high perceptibility users based on users’ behavior patterns.

Material and methods

Data sets

In this paper, two empirical data sets containing timestamps and ratings for movies: Movie-

Lens and Netflix are investigated. The MovieLens data set is downloaded from the GroupLens

(http://www.grouplens.org), consists 943,355 ratings given by 4,295 users to 3,706 movies dur-

ing 1,039 days. The Netflix data set is provided by the Netflix Prize (http://www.netflixprize.

com), consists 37,755,925 ratings delivered by 218,319 users on 7,803 movies during 2,241

days. The MovieLens and Netflix ratings are both given by the integer ratings scaling from 1 to

5. Meanwhile, each user has at least 50 ratings for two data sets. Here, two object sets men-

tioned above, high-quality objects and the others, are divided based on the Oscars awards. We

select movies nominated for the best picture category at the Annual Academy Awards, popu-

larly known as Oscars (http://www.filmsite.org), as the high-quality objects. There are 162 and

150 rewarded movies in the MovieLens and Netflix data sets, respectively.

Method description

The rating system can be modeled by a weighted bipartite network, where the users and objects

are denoted by U = {u1, u2, . . ., u|U|}, O = {o1, o2, . . ., o|O|}. We use the Latin and Greek letters

to represent the users and objects, respectively. The rating riα given by user ui to object oα is

the weight of the link connecting nodes ui and oα in the bipartite network. The timestamp of

rating riα is denoted by tiα and the highest rating is recorded as rh. The user set Uα is defined

as the users who rate to object oα, and the object set Oi is recorded as the objects rated by user

ui. In addition, the degrees of user ui and object oα are denoted as ki and ρα, respectively. Two
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object sets, rewarded and non-rewarded ones, are denoted by object set O1 and O2, respec-

tively, satisfying O1

S
O2 = O and O1

T
O2 = {⌀}. What’s more, the numbers of rewarded and

non-rewarded objects are denoted by n1 and n2, respectively, n1 + n2 = |O|.

For each rewarded object, we track the ratings given by users who give the highest rating rh

at the early lifespan of the object. The number of these links Di created by user ui can be

expressed as,

Di ¼ Soa2O1
Dia; ð1Þ

Dia ¼
1 if ria ¼ rh; tia � ta1 þ ðtara

� ta1Þ � y

0 else
; ð2Þ

(

where Diα is a binary event to measure whether the user ui can make a high evaluation of object

oα(oα 2 O1) during the initial θ(0< θ< 1) of its lifespan, tα1 and tαρα are the timestamps of the

first and last ratings the object oα received, respectively. The quantity Di is the number of iden-

tifying rewarded objects at their early lifespan for user ui and 0� Di� n1. Meanwhile, θ is a

tunable parameter and the value of Di increases with the parameter θ. It should be noted that

there is no rating to be considered (Di = 0, i = 1, 2, . . ., |U|) when θ = 0 and the whole lifespan

is viewed as the initial lifespan when θ = 1.

Finally, we define the perceptibility pi as the proportion of Di in the number of rewarded

objects n1 for user ui,

pi ¼ Di=n1: ð3Þ

Results

The identification of the user perceptibility could quantitatively measure the degree to which

the user can identify the rewarded objets in their lifepan. To qualitatively measure whether a

user is a perceptive user, we a introduce a free-parameter bootstrap analysis [32–34]. The boot-

strap sampling results show that, for the MovieLens and Netflix data sets, there are 5 and 27

identified perceptive users, respectively (accounting for 0.12% and 0.012% of all users, respec-

tively). Here the parameter θ is set to 0.3 and 0.6 for the MovieLens and Netflix data sets,

respectively. It should be noted that a larger parameter θ for the Netflix data set is selected

due to the few rewarded objects with regard to the size of the whole objects and ratings

(150 rewarded objects, 7803 objects and 37755925 ratings).

Moreover, we investigate whether the identification of user perceptibility is of significance.

To this end, we calculate the average perceptibility of the first L users who give the rating 5 (the

highest rating) in order of time for each object in two empirical data sets, denoted by hpLiα for

objects oα. The parameter L is set to 10 in the following analysis. All objects are divided into

two groups based on their corresponding average perceptibility hpLi: Objects rated by high

perceptibility users (recorded as object set Θ) and the others (recorded as object set Λ), in

which the objects in set Θ are selected as top q(0< q< 1) high hpLi objects. Firstly, we track

the links attached to all objects in the future time window and calculate the average degree

hρO(t)i of two divided object groups as a function of time t, in which the length of the future

time window are 100 and 200 days for the MovieLens and Netflix data sets, respectively. Fig 1

(a) and 1(b) shows the degree evolution of two divided object groups with the parameter

q = 10% for the MovieLens and Netflix data sets, respectively. One can find that the average

degrees of objects in set Λ in the future time window are larger than those of objects in set Θ,

showing that the objects rated by high perceptibility users become less popular than the others,

indicating that user perceptibility has little impact on finding the popular objects.

Online user percepability measurement
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Subsequently, we investigate the ratio ϕ of rewarded objects in two divided object groups with

different parameter q (Fig 1(c) and 1(d)). One can find that the ratio ϕ of rewarded objects in

object set Θ is larger than that in object set Λ with different parameter q for two empirical data

sets. For instance, the ratio ϕ of rewarded objects in object set Θ is larger than that in object

set Λ by 263.0% and 722.0% with the parameter q = 5% for the MovieLens and Netflix data

sets, respectively. Meanwhile, the ratios ϕ of rewarded objects in two divided object groups

with θ = 0.2, 0.4 for MovieLens and θ = 0.5, 0.7 for Netflix show the similar results. Therefore,

the results indicate that the user perceptibility is of significance in finding the rewarded objects

rather than popular objects.

Fig 1. (Color online) Degree evolution hρO(t)i of two divided object groups (a,b) and the ratio ϕ of rewarded objects in two divided object

groups with different parameter q (c,d) for two empirical data sets, in which the time t is measured in days, and the parameter θ is set to 0.3 and

0.6 for the MovieLens and Netflix data sets, respectively. From the subplots (a,b) one can find that the average degrees of objects rated by high

perceptibility users in the future time window are larger than those of the other objects. From the subplots (c,d) one can find that the ratio ϕ of rewarded

objects in objects rated by high perceptibility users is higher than that in the other objects with different parameter q. The results indicate that the user

perceptibility is helpful to find the potential rewarded objects.

https://doi.org/10.1371/journal.pone.0178118.g001
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Furthermore, we investigate the relations between user perceptibility and user collective

behavior patterns. All users are divided into two groups: High perceptibility users (recorded as

user set F) and the others (recorded as user set Δ), in which the high perceptibility users are

denoted as top q(0< q< 1) high perceptibility users. We investigate the collective behavior

patterns of two divided user groups from three aspects: User activity, correlation characteris-

tics of user rating series and user reputation. User activity (denoted by kU), namely user degree,

is one of the most important user characteristics in social systems [27, 35]. The larger user

degree, the more active the user would be. In our analysis, correlation characteristics of user

rating series is described by detrended fluctuation analysis (short for DFA), which is widely

used for analyzing the statistical self-affinity of a time series [36–39], calculated by the scaling

exponent η. The quantity η> 0: η< 0.5 corresponds to anti-correlated series; η = 0.5 corre-

sponds to uncorrelated white noise; η> 0.5 corresponds to correlated series. User reputation

is proposed to measure the user ability of rating accurate assessments of various objects

[40, 41]. So far, many reputation ranking methods have been widely investigated [42–44]. In

this paper, we use the correlation based ranking algorithm [41] to calculate the user reputation

denoted by μ. The quantity μ lies in [0, 1] and larger μ means higher user reputation.

Fig 2 shows the average degree hkUi, scaling exponent hηi, reputation hμi of two divided

user groups with different parameter q for the MovieLens and Netflix data sets, respectively.

One can find that the average hkUi, hηi and hμi of user set F (high perceptibility users) are

larger than those of user set Δ (the other users) with different parameter q for two empirical

data sets. For instance, the average hkUi, hηi and hμi of user set F are larger than the ones of

Fig 2. (Color online) The average degree hkUi, scaling exponent hηi, reputation hμi of two divided user groups with different parameter q for (a,

c,e) MovieLens and (b,d,f) Netflix data sets, in which the parameter θ is set to 0.3 and 0.6, respectively. One can find that the average hkui, hηi and

hμi of high perceptibility users are larger than those of the other users with different parameter q for two empirical data sets, which indicates that high

perceptibility users show different collective behavior patterns than the other users: Larger activity, stronger correlation of rating series and higher

reputation.

https://doi.org/10.1371/journal.pone.0178118.g002
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user set Δ by 180.1%, 11.8% and 17.3%, respectively with the parameter q = 5% for the Movie-

Lens data set. For the Netflix data set, the increases are 120.5%, 6.3% and 11.6%, respectively

with the parameter q = 5%. The collective behavior patterns of two divided user groups with

θ = 0.2, 0.4 for MovieLens and θ = 0.5, 0.7 for Netflix show the similar results. The results indi-

cate that high perceptibility users show larger activity, stronger correlation of rating series and

higher reputation than other users.

A framework for high perceptibility user identification

High perceptibility users are denoted as top q(0< q< 1) high perceptibility users, the identifi-

cation of high perceptibility users is closely linked with the identification of user perceptibility.

User perceptibility is calculated by tracking the ratings to the rewarded objects, while the dis-

covery of the rewarded objects has hysteresis. With the growing amount of new users, objects

and the corresponding ratings, the rewarded objects of the current rating systems are uncer-

tain. Thus, the user perceptibility and high perceptibility users cannot be identified in real

time. In terms of the fact that high perceptibility users have specific collective behavior pat-

terns, we develop a general framework for identifying high perceptibility users based on users’

behavior patterns.

All users are divided into two groups: High perceptibility users and the others. Given that

identifying high perceptibility users belongs to a classification problem, random forests [45],

one of the most widely used machine learning [46, 47] methods, is introduced in our frame-

work. The Data Flow Diagram (short for DFD) of the framework is shown in Fig 3. Firstly, the

available ratings and the rewarded objects are calculated to identify the user perceptibility using

the presented method (Process P1). Meanwhile, the available ratings are used to analyze the

user collective behavior patterns from three aspects: Degree, DFA of rating series and reputa-

tion (Process P2). The process P1 and P2 could be performed simultaneously. Then, we use the

Fig 3. The Data Flow Diagram (DFD) of the framework for high perceptibility user identification. The available ratings in the rating systems, on the

one hand, are applied with the rewarded objects to identify the user perceptibility by the presented method (Process P1). On the other hand, they are used

to analyze the user collective behavior patterns described by three aspects: Activity, DFA of rating series and reputation (Process P2). Then, we use the

random forests to train the obtained results containing the user perceptibility and behavior patterns (Activity, DFA of rating series and reputation) (Process

P3). Afterwards, the high perceptibility users will be identified based on the user collective behavior patterns analysed from the new ratings in the rating

systems (Process P4) by the generalization of random forests (Process P5).

https://doi.org/10.1371/journal.pone.0178118.g003
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random forests to train the obtained results, which contain the user perceptibility and behavior

patterns (Process P3). When the rating systems generate new ratings, the user collective behav-

ior patterns analysed based on the new ratings (Process P4) are used to identify high perceptibil-

ity users in the current rating systems by the generalization of random forests (Process P5).

Moreover, we investigate the performance of high perceptibility user identification using

the presented framework. After identifying the user perceptibility based on the rewarded

objects and ratings, high perceptibility users are classified as top q(0< q< 1) high perceptibil-

ity users. We select 70% of user data (user perceptibility and behavior patterns) as the training

set Str and the remaining 30% as the test set Ste for the MovieLens and Netflix data sets, respec-

tively. High perceptibility users in the test set Ste are denoted as set Hte. Meanwhile, the identi-

fied high perceptibility user set H0te in the test set Ste will be predicted by the generalization of

random forests after training the data of the training set Str. Then, the performance of high

perceptibility user identification is measured by the precision P, recall R and F-measure F,

P ¼
jHte \ H0tej
jH0tej

; ð4Þ

R ¼
jHte \ H0tej
jHtej

; ð5Þ

F ¼
2 � P � R

P þ R
; ð6Þ

where jHte \ H0tej is the number of high perceptibility users in the identified high perceptibility

user set H 0te. jH
0
tej is the number of users in the identified high perceptibility user set H0te. And

|Hte| is the number of users in the high perceptibility user set Hte. Precision P, recall R and

F-measure F all lie in [0, 1] and larger P, R or F represents better performance of high percepti-

bility user identification. The precision P, recall R and F-measure F with different parameter q
for two empirical data sets are shown in Fig 4, in which the parameter q(0< q< 1) represents

the ratio of the high perceptibility users in all users. One can find that the framework can per-

form well in identifying the high perceptibility users. The precision P, recall R and F-measure

F could reach P = 0.68, R = 0.66 and F = 0.67 with q = 50% for the MovieLens data set, and for

Fig 4. The precision P, recall R and F-measure F of identifying the high perceptibility users in the

framework with different parameter q for (a) MovieLens and (b) Netflix data sets, respectively. One can find

that the precision P, recall R and F-measure F all increase with the parameter q in general, and the presented

framework can perform well in identifying the high perceptibility users.

https://doi.org/10.1371/journal.pone.0178118.g004
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the Netflix data set, the performance achieves P = 0.59, R = 0.55 and F = 0.57. Meanwhile, the

precision P, recall R and F-measure F all increase with the parameter q in general. The perfor-

mances of high perceptibility user identification with different parameter θ indicate that larger

precision P, recall R and F-measure F are obtained in the case of larger parameter θ with differ-

ent parameter q.

We can obtain both the performance of high perceptibility user identification and impor-

tance of behavior patterns using random forests. Besides the random forests, we also use other

machine learning methods including gradient boosting machine [48, 49] (short for GBM) and

support vector machine [50, 51] (short for SVM) to identify the high perceptibility users. The

Fig 5. The precision P, recall R and F-measure F of identifying the high perceptibility users in the framework with different machine learning

methods (GBM and SVM) and different parameter q for (a-b) MovieLens and (c-d) Netflix data sets, respectively. One can find that the recall R of

high perceptibility user identification using GBM and SVM have little difference with the results using random forests. The precision P is better using GBM

and SVM than using random forests.

https://doi.org/10.1371/journal.pone.0178118.g005
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precision P, recall R and F-measure F of high perceptibility user identification are shown in

Fig 5, from which one can find that the performance could reach P = 0.72, R = 0.77 and

F = 0.74 using GBM and P = 0.74, R = 0.71 and F = 0.72 using SVM with q = 50% for the

MovieLens data set. The recall of high perceptibility user identification using GBM and SVM

have little difference with the results using random forests. While the precision of high percep-

tibility user identification using GBM and SVM are different, the precision P is large when the

parameter q is small. The precision is better using GBM and SVM than using random forests.

Conclusion and discussions

In this paper, taking into account collective behavior patterns and the heterogeneity of online

users, we present the definition of perceptive user, which is defined as the user who can make

high evaluations of the rewarded objects at their early lifespan. In addition, user perceptibility

is defined as the degree to which the user can identify the rewarded objects in their initial life-

span. Then, we present a method for identifying the user perceptibility by tracking the ratings

given to rewarded objects and the timestamps. Meanwhile, to track out the relations between

user perceptibility and user collective behavior patterns, we investigate the user behavior pat-

terns from three aspects: User activity, correlation characteristics of user rating series and user

reputation. The experimental results for the MovieLens and Netflix data sets indicate that high

perceptibility users have larger activity, stronger correlation of rating series and higher reputa-

tion than the other users. For the MovieLens data set, the average hkUi, hηi and hμi of user set

F (high perceptibility users) are larger than those of user set Δ by 180.1%, 11.8% and 17.3%,

respectively, with the parameter q = 5%, for example. Finally, given that there exists hysteresis

in finding the rewarded objects, we present a general framework to identify the high percepti-

bility users in real time based on users’ behavior patterns. The experimental results show that

the framework can perform well in identifying the high perceptibility users. The precision P,

recall R and F-measure F could reach P = 0.72, R = 0.77 and F = 0.74 with q = 50% for the

MovieLens data set, for example.

The computational complexity of the method presented to identify the user perceptibility is

O(n1 � hρOi + n1 � |U|), where the first term accounts for the calculation of Diα, the results

whether the user can make a high evaluation for each rewarded object in its initial lifespan.

And the second term accounts for the calculation of Di, the number of identifying the

rewarded objects at their early lifespan for each user. Substituting the inequality hρOi � |U|, we

are left with O(n1 � |U|). Due to n1 is a constant value in a certain rating system, one has the

fact that the computational complexity of the user perceptibility identification is O(|U|), a lin-

ear function of the user size.

For a long time, popular objects are more concerned targets, while few users recognize and

appreciate the rewarded objects when they are rarely concerned. The discovery of perceptive

users and the identification of user perceptibility provides us a new perspective of understand-

ing these special users. The results that user perceptibility can be helpful to find the potential

rewarded objects indicate the identification of user perceptibility is of practical significance in

e-commerce and marketing. Meanwhile, the presented framework for high perceptibility user

identification, from investigating behavior patterns of two divided user groups to conversely

identifying high perceptibility users based on the behavior patterns, gives us a systematic study

of the perceptive users and it is also suitable for big data processing. In addition, the following

points should be addressed in the future work. Firstly, the high-quality objects here are gener-

ated based on the rewarded ones, how to construct the high-quality object set is an open prob-

lem. Secondly, the user collective behavior patterns are investigated from three aspects in this

paper, which may be found incompletely. As further improvement, we could consider more
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dimensions to deeper explore the user behavior patterns. Thirdly, random forests is applied in

the framework for high perceptibility user identification, in which econometrics and time

series analysis could be emphasized as well in our future research.
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