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Abstract

In recent years, the development of diagnostics using artificial intelligence (AI) has been

remarkable. AI algorithms can go beyond human reasoning and build diagnostic models

from a number of complex combinations. Using next-generation sequencing technology, we

identified hepatitis C virus (HCV) variants resistant to directing-acting antivirals (DAA) by

whole genome sequencing of full-length HCV genomes, and applied these variants to vari-

ous machine-learning algorithms to evaluate a preliminary predictive model. HCV genomic

RNA was extracted from serum from 173 patients (109 with subsequent sustained virologi-

cal response [SVR] and 64 without) before DAA treatment. HCV genomes from the 109

SVR and 64 non-SVR patients were randomly divided into a training data set (57 SVR and

29 non-SVR) and a validation-data set (52 SVR and 35 non-SVR). The training data set was

subject to nine machine-learning algorithms selected to identify the optimized combination

of functional variants in relation to SVR status following DAA therapy. Subsequently, the

prediction model was tested by the validation-data set. The most accurate learning method

was the support vector machine (SVM) algorithm (validation accuracy, 0.95; kappa statistic,

0.90; F-value, 0.94). The second-most accurate learning algorithm was Multi-layer percep-

tron. Unfortunately, Decision Tree, and Naive Bayes algorithms could not be fitted with our

data set due to low accuracy (< 0.8). Conclusively, with an accuracy rate of 95.4% in the

generalization performance evaluation, SVM was identified as the best algorithm. Analytical

methods based on genomic analysis and the construction of a predictive model by machine-

learning may be applicable to the selection of the optimal treatment for other viral infections

and cancer.

Introduction

In recent years, machine-learning has expanded to include about 200 learning algorithms

developed to enable relevant responses to the “big data” of the rapidly evolving scientific
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community of today [1]. In general, machine-learning is a method for deriving the optimal

combination in a mathematical model from a vast number of explanatory variables (feature

quantity) based on information on outcomes such as treatment results. While machine-learn-

ing is difficult to grasp compared with conventional statistical methods, it is very useful for

analyzing big data because the combination of optimal explanatory variables is automatically

obtained [2]. In addition, deep learning [3], which is known as the next generation of

machine-learning, has been developed, and a learning method that identifies new outcomes

using learning models has been developed, which is expected to be used for machine-learning-

based medical treatment.

In recent years, the development and implementation of next-generation sequencing

(NGS) technology has made genomic sequencing cost-effective. For instance, we can now eas-

ily sequence and analyze the RNA sequence of the entire genome of hepatitis C virus (HCV).

With regard to HCV treatment, the advent of direct-acting antiviral drugs (DAA) has led to

dramatically improved treatment outcomes, and more patients can now obtain a sustained

virological response (SVR) [4]. However, as treatment-resistant variants emerge, some cases

remain in which the virus is not eliminated. Although DAA treatment has a high therapeutic

effect because of its direct action on the HCV, the likelihood of obtaining SVR depends on the

location of the variation in the HCV genome [5]. It is well documented that a variety of viral

quasispecies are found in patients with chronic HCV infection [6], but there are also non-SVR

cases that cannot be explained only by the known resistance mutations.

In this study, we analyzed full-length HCV genomes obtained using NGS technology, devel-

oped a preliminary prediction system using several machine-learning models based on vari-

ants of the HCV genome, and evaluated the generalization performance.

Genomics materials and methods

Sampling and method overview

Between October 2014 and September 2018, informed consent was obtained in writing from

all patients with hepatitis C, prior to enrollment in this study. Blood samples were collected

from each patient who had given consent to enable the extraction of HCV RNA. The workflow

of the study is displayed in Fig 1. Blood samples were collected at Yamagata University Hospi-

tal and clinics located in Yamagata Prefecture in North-West Japan from HCV patients before

DAA treatment. The study was approved by the Ethical Review Committee of Yamagata Uni-

versity Faculty of Medicine (IRB 2019–254) and was conducted according to the principles of

the Declaration of Helsinki.

The study group comprised 109 patients successfully obtaining SVR at 24 weeks (SVR) and

64 with SVR24 failure (non-SVR) (Table 1). HCV genomic RNA was extracted from the 173

patient sera before DAA treatment, full-length HCV genome sequences were obtained using

NGS technology, and sequence data were mapped to the HCV 1b reference sequence (NCBI

accession ID AJ238799, D90208, M58335). Next, we performed variant calling and filtering

and developed a Variant Call Format. The variants were digitized and used as the master data

set for down-stream analyses. The 109 SVR HCV genomes and 64 non-SVR genomes were

randomly divided into a train-data set and a validation-data set. A total of 57 SVR and 29 non-

SVR genomes (training data set) were subject to nine machine-learning algorithms and used

to develop the prediction model. Using the prediction model, the accuracy of identification

was evaluated using 52 SVR and 35 non-SVR genomes (evaluation data set) (Fig 1 and

Table 1).

Extraction of HCV rRNA and cDNA synthesis. For the extraction of RNA from the

HCV viral genome, 500 μL of the serum supernatant including HCV viral particles was
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concentrated in a collection tube by centrifugation at 120,000 rpm at 4˚C for 1.5 h. HCV viral

genomic RNA was extracted using the QIAmp Viral RNA kit (Qiagen) following the recom-

mendations of the manufacturer [7]. After extraction, the viral RNA was stored at –80˚C until

use.

Full-length HCV genome cDNA was synthesized by Reverse-Transcription PCR with

polyA primers and Superscript™ III reverse transcriptase (Thermo Fisher Scientific), and then

subsequently amplified by multiplex polymerase chain reaction using two primer pairs,

namely F1 (5'-GCCAGCCCCCTGATGGGGGCGACACTCCAC-3') and R1 (5'-GCCTA
TTGGCCTGGAGTGTTTAGCTC-3'), and F2 (5'-GCAGAAAGCGTCTAGCCATGGCGT-3')

and R2 (5'-CCAGCGGGGYCGGGCVYGAGACA-3') with the Platinum™ SuperFi DNA poly-

merase (Thermo Fisher Scientific). Amplified HCV genome cDNA was measured using a

Qubit 3.0 fluorometer, to check the quality of the amplified fragments.

Next-generation sequencing (NGS)

Amplified cDNAs were subject to full-length HCV genome sequencing by H+ proton captured

direct-sequencing using an Ion Proton instrument (Thermo fisher scientific). Full-length

cDNA was digested with restriction enzymes for 15 min, and fragments were purified with

Fig 1. Study workflow.

https://doi.org/10.1371/journal.pone.0242028.g001
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AMPure XP beads. Purified sequencing libraries were ligated to sequence adaptor oligonucleo-

tides and molecular barcodes using the IonXpress Plus gDNA fragment kit (Thermo Fisher

Scientific). After library construction, 100 picomoles of the library reads were subject to ampli-

fication by emulsion PCR with Hi-Q chemistry using the Ion One Touch 2 instrument and

NGS by Ion Torrent semiconductor sequencing with the Ion PI™ chip.

Identification of genome variants

Mapping the sequence reads to the HCV genome and identification of variants were per-

formed using an in-house computational pipeline based on the Nextflow scripting, which

included nucleotide base correction by the k-mer method using the Pollux program, HCV-1b

mapping (Con1 [7], HCV-J [8], HCV-BK [9]) by the Burrows-Wheeler Transform algorithm

using the BWA and Bowtie2 programs, genome variant detection by the haplotype-based

method using FreeBayes program, variant normalization using BCFtools, and variant filtering

using VCFtools. FreeBayes detection parameters were set as follows: “-F 0.02 -q 15 -m 20 -U

10 -z 1.0–4 -C 5—min-coverage 6—report-genotype-likelihood-max—dont-left-align-indels,”

and VCFtools filtering parameters were set as follows: “QUAL > 0 & DP> 50 & SAF> 50 &

SAR> 50.” Moreover, strand bias exclusion parameters were as follows: “SAR/SAF > 0.025 &

SAR/SAF < 44.” After variant calling, all the variants detected were incorporated into one

VCF file, and functional variants were annotated using the ANNOVAR program. For the

machine-learning approach, functional variants with amino acid substitutions and frameshift

insertions/deletions were used in basic statistic and machine-learning analysis.

Machine-learning analysis and statistics

To evaluate the machine-learning approach to finding the optimized combination of func-

tional variants in relation to SVR status following DAA therapy, nine machine-learning meth-

ods, including support vector machine (SVM), Random forest (RF), Gradient boost machine

(GBM), naive Bayesian (NB), k-nearest neighbor (KNN), Logistic regression (LR), Multi-layer

perceptron (Neural network, NN), Flexible discriminant analysis (FDA), and Decision tree

Table 1. Patient characteristics.

Training-Data Set Validation-Data Set

SVR Mean (SD)

n = 57

non-SVR Mean (SD)

n = 29

p value SVR Mean (SD)

n = 52

non-SVR Mean (SD)

n = 35

p value

Age (years) 65.75 (11.09) 67.58 (7.88) 0.78� 69.04 7.93) 67.46 (10.05) 0.55�

Sex (male/female) 9/20 25/32 0.25�� 12/23 20/32 0.69��

Platelet count (×104/μL) 14.15 (7.38) 30.74 (54.13) 0.38� 16.44 (6.73) 27.7 (40.82) 0.45�

Aspartate aminotransferase (U/L) 60.09 (30.99) 56.42 (30.53) 0.44� 57.65 (36.89) 59.7 (35.25) 0.83�

Alanine aminotransferase (U/L) 55.93 (42.56) 50.46 (57.35) 0.27� 56.37 (40.79) 62.17 (53.41) 0.88�

Albumin (g/dL) 3.98 (0.44) 4.08 (0.28) 0.53� 4.06 (0.40) 4.04 (0.34) 0.87�

Total bilirubin (mg/dL) 0.83 (0.28) 0.77 (0.23) 0.42� 0.82 (0.33) 1.03 (0.82) 0.42�

HCV RNA (log IU/mL) 6.23 (0.49) 6.45 (0.62) 0.09��� 6.41 (0.52) 6.56 (0.46) 0.17���

DCV+ASV/SOF+LDV/SOF+LDV

+RBV

29/28/0 22/5/2 30/22/0 28/6/1 0.95

DCV: Daclatasvir, ASV: Asunaprevir, SOF: Sofosbuvir, LDV: Ledipasvir, RBV: Ribavirin,

� Wilcoxon test (Mann–Whitney U-test),

�� Chi-square test,

��� One-way analysis of variance (ANOVA).

https://doi.org/10.1371/journal.pone.0242028.t001
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(DT) were selected using caret and caret Ensemble packages and R Statistics. All learning algo-

rithms used the binary classification of SVR vs. non-SVR, and genotype calling of HCV vari-

ants identified 0, 1, and 2 as a no-variant calls, while heterozygous variant calls were based on a

>5% fraction of mutant alleles, and homozygous variant calls were based on a>90% fraction

of mutant alleles. The Student’s T-test, implemented in R, was applied to analyze differences in

the number of variants in the SVR and non-SVR groups.

Machine-learning was performed based on a training data set (reflecting 57 SVR and 27

non-SVR HCV genomes) and a validation-data set (52 SVR and 35 non-SVR genomes) using

a random sampling technique. Machine-learning was analyzed by inputting only sequence

data. The generalization performance of the machine-learning algorithms was evaluated using

accuracy, kappa, positive predictive value (PPV), and negative predictive value (NPV) mea-

sures. Additionally, the similarity of selected important variables was evaluated by correlation

matrix using the corrplot package of R.

Results

Whole HCV genome sequencing and basic statistics

Sequencing read depth was > 10,000 for all specimens, and 3,461 variants (mean, 188.2 vari-

ants/subject; range, 50–341) were detected by our in-house pipeline. Finally, 1,867 variants

(mean, 96.15 variants/subject; range, 19–193) that resulted in amino acid changes, and/or had

frameshift, stop-gained, or loss-of-function mutations were subject to further analysis. Several

mutations were found in NS3, NS5A, and NS5B (Fig 2). Functional variants were equally dis-

tributed across each of the HCV genes with an approximately 0.6 times decrement compared

with non-functional variants (Fig 2). The distribution ratio of variants for each HCV gene was

Fig 2. HCV genomic variants (Gene region).

https://doi.org/10.1371/journal.pone.0242028.g002
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0.65% (range, 0.57%–0.73%). No significant difference was observed in the number of func-

tional variants between specimens from SVR patients (mean 94.06; range, 19–163) and non-

SVR patients (mean 99.7; range, 24–193) (Student’s T-test, p = 0.35, Fig 3). In the association

analysis, 21 variants came out as significant in the LR analysis (FDR< 0.05), including amino

acid-changing functional variants of L28 located in NS5A gene.

Machine learning-based approaches to finding an optimized combination

of variants

In this study, the most accurate learning method was the SVM algorithm (Table 2 and Fig 4).

The second-most accurate learning algorithm was NN. Unfortunately, the DT and NB algo-

rithms could not be fitted with our data because of low accuracy (< 0.8). Notably, only SVM

had a generalization performance > 0.9 as measured by PPV and NPV. Some learning algo-

rithms scored > 0.9 in PPV but< 0.8 in NPV (Table 2 and Fig 4). The SVM algorithm also

had a kappa score> 0.9, indicating the optimum reproducibility of generalized discriminant

performance, while the kappa score for NN was 0.82 (Fig 5). The balanced accuracy scores for

the SVR and non-SVR groups were also statistically higher for SVM and NN compared with

the other algorithms (Fig 4). Importantly, the variables for the SVM were weakly similar to

those of the GBM, LR and NN algorithms, in contrast to the RF, KNN and DT algorithms (Fig

6).

With regard to identifying important predictor variables of functional variants with amino

acid changes, L28, Q80, and D168, which are known as resistance-associated substitutions

(RAS) variants and located in the NS5A and NS3 genes were identified as components of

important predictor variables in SVM. The L28 amino acid-changing variant was also identi-

fied as significant in the LR single-point variant analysis (S1 Table).

Fig 3. HCV genomic variants (SVR vs. non-SVR).

https://doi.org/10.1371/journal.pone.0242028.g003
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Discussion

In this study, it was possible to evaluate all variants by whole genome sequencing of HCV

using NGS technology. In the prediction model using the training data set, the correct answer

Table 2. Performance evaluation of machine learning algorithms.

Machine learning algorithms Number of Features Training accuracy Validation accuracy Kappa F Score Sensitivity Specificity Significance

Support Vector Machine SVM 81 0.937 0.954 0.903 0.941 0.914 0.980 ��

Multi-layer Perceptron NN 3 layers 0.932 0.919 0.828 0.892 0.828 0.980 �

K-Nearest Neighbor KNN 7 0.797 0.873 0.722 0.813 0.685 1

Logistic Regression LR 25 0.848 0.873 0.722 0.813 0.685 1

Random Forest RF 1107 0.847 0.85 0.669 0.771 0.628 1

Flexible Discriminant Analysis FDA 8 0.744 0.839 0.645 0.758 0.628 0.980

Gradient Boosting Machine GBM 47 0.853 0.827 0.614 0.727 0.571 1

Decision Tree DT 4 0.74 0.747 0.453 0.645 0.571 0.865

Naive Bayesian NB 2161 0.5 0.597 0 - 0 1

�� Sensitivity > 0.90 and specificity > 0.90.

� Sensitivity > 0.80 and specificity > 0.80.

https://doi.org/10.1371/journal.pone.0242028.t002

Fig 4. Generalization performance of machine-learning algorithms. SVM: Support vector machine, NN: Neural

network, RF: Random forest, LR: Logistic regression, GBM: Gradient boost machine, KNN: K-nearest neighbor, FDA:

Flexible discriminant analysis, DT: Decision tree, NB: naive Bayesian.

https://doi.org/10.1371/journal.pone.0242028.g004
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rate was 90% or higher by both SVM and NN. Also in the prediction model with the valida-

tion-data set, the correct answer rate was 90% or higher by both SVM and NN; however, the

accuracy rate of SVM was the best at 95.4% (kappa statistic 0.90, F-Values 0.94). This is the

first report to construct a machine learning-based prediction model of DAA therapeutic effect

using whole genome HCV variant data.

We were able to sequence the entire HCV genome using two primer pairs [10,11] when

synthesizing cDNA by RT-PCR. Furthermore, in order not to introduce bias into the HCV 1b

reference, the original HCV 1b reference was constructed from the common genomic nucleo-

tide sequences of Con1; AJ238799, HCV-J; D90208, HCV-BK; and M95335 [12,13]. The num-

ber of HCV genomic variants did not differ significantly between the SVR and non-SVR

groups (Fig 3). Several mutations were found in NS3, NS5A, and NS5B (Fig 2).

In this study, nine machine-learning algorithms (SVM, RF, GBM, NB, KNN, LR, NN, FDA,

and DT) were applied to the training data set (SVR, n = 57; non-SVR, n = 29) and validation-

data set (SVR, n = 52; non-SVR, n = 35) by random sampling. In the prediction model using

the training data set, a good prediction model with a accuracy rate of 90% or more was

obtained by both SVM and NN (Table 2). The HCV genomic variants identified by the predic-

tion model tended to be those that have been previously reported to be associated with success-

ful DAA, such as the NS5A p.L28M mutation [14] and the p.R566H mutation [15]. The

number of predictors provided by SVM, NN, KNN, LR, RF, FDA, GBM, DT, and NB were 81,

Fig 5. Training profile of machine-learning algorithms. PPV: Positive predictive value, NPV: Negative predictive value, SVM: Support vector machine, NN:

Neural network, KNN: K-nearest neighbor, LR: Logistic regression, RF: Random forest, FDA: Flexible discriminant analysis, GBM: Gradient boost machine,

DT: Decision tree, NB: Naive Bayesian.

https://doi.org/10.1371/journal.pone.0242028.g005
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3, 7, 25, 1107, 8, 47, 4, and 2161, respectively. NB, KNN, and NN were prediction models using

all variants as predictors. All of the learning algorithms provided prediction models that iden-

tified known variants typically associated with successful DAA treatment [16]. In the generali-

zation performance evaluation of the prediction model using the validation-data set, the

accuracy rate of SVM was 95.4% (kappa coefficient 0.90, F-value 0.94), indicating a very high

discriminative ability and high reproducibility. Also for NN, KNN, LR, and RF the accuracy

rate was 85% or more, indicating a high generalization performance. SVMs with particularly

high generalization ability have been developed as learning algorithms that combine kernel

methods with neural network algorithms. Furthermore, it has the advantage that it can be used

regardless of (non)linear regression model, and there is little influence of over-learning. Cur-

rently, NN is often used instead of SVM, but our study showed that SVM had a higher accu-

racy rate than NN. RF and GBM, which are examples of ensemble learning, generally also have

a high accuracy rate and a high degree of coincidence and are suitable for machine-learning

algorithms combining genome analysis and clinical data. However, it is necessary to pay atten-

tion to over-training in ensemble learning, and it is necessary to carefully evaluate the parame-

ter values individually for each learning algorithm when making prediction model

determinations. It has been reported that the difficulty of achieving successful DAA treatment

is proportionate to the amount of RAS mutations in NS5A genes (p.L31M and p.Y93H) [17].

In the present study, machine learning-based algorithms were trained on a combination of

known variants of RAS and other variants.

DAA treatment has improved dramatically, and, currently, Ledipasvir/Sofosbuvir [18],

Elbasvir/Grazoprevir [19], or Glecaprevir/Pibrentasvir [20] can be used in Japan to enable

Fig 6. Correlation matrices of important variables. SVM: Support vector machine, RF: Random forest, GBM:

Gradient boost machine, NB: Naive Bayesian, KNN: K-nearest neighbor, LR: Logistic regression, NN: Neural network,

FDA: Flexible discriminant analysis, DT: Decision tree.

https://doi.org/10.1371/journal.pone.0242028.g006
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most patients to eliminate the virus. In addition, Sofosbuvir/Velpatasvir can be used for

patients with decompensated cirrhosis [21]. The DAAs used in this study were Daclatasvir/

Asunaprevir, Ledipasvir/Sofosbuvir, and Ledipasvir/Sofosbuvir + Ribavirin. The initial DAA

treatment with Daclatasvir/Asunaprevir produced lower SVR rates in this study than those

found in the most recent reports [22]. This pre-prediction model seems to depend on the

DAA used and should be considered for each new DAA going forward. Currently, Daclatas-

vir/Asunaprevir is excluded from Japanese treatment guidelines, which may reduce the need

for this predictive model. However, this preliminary prediction model can inform on similar

applications within the medical field, and we believe that the method of identifying variants of

a virus based on whole genome data, as well as using machine-learning to create a predictive

system for therapeutic effects, can be applied to identify optimal treatments for other viral

infections and cancer.

Conclusively, all variants of HCV whole-genome sequences could be evaluated, and the

accuracy rate of SVM was 95.4% (kappa statistic, 0.90; F-Values, 0.94), which was the best

model among the nine models tested in this study. Prior to treatment, predicting the SVR to

identify difficult-to-treat patients, who cannot eliminate the HCV using DAAs alone, may be

effective in avoiding the emergence of a resistant virus and reducing medical costs. Our

approach to genomic analysis and the construction of a predictive model by machine-learning

may inform similar approaches aiming to identify the optimal treatment for other viral infec-

tions and cancers as well.
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