
Academic Editors: Ewa Korzeniewska

and Rosario Schiano Lo Moriello

Received: 12 March 2025

Revised: 7 May 2025

Accepted: 12 May 2025

Published: 15 May 2025

Citation: Caramia, F.;

D’Angelantonio, E.; Lucangeli, L.;

Camomilla, V. Validation of Low-Cost

IMUs for Telerehabilitation

Exercises. Sensors 2025, 25, 3129.

https://doi.org/10.3390/s25103129

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Validation of Low-Cost IMUs for Telerehabilitation Exercises
Federico Caramia 1,2, Emanuele D’Angelantonio 1,2,3, Leandro Lucangeli 1,2,3 and Valentina Camomilla 1,2,*

1 Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”,
Piazza Lauro de Bosis 6, 00135 Rome, Italy; federico.caramia@uniroma4.it (F.C.);
emanuele.dangelantonio@technoscience.it (E.D.); leandro.lucangeli@technoscience.it (L.L.)

2 Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome
“Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy

3 Technoscience PST, Via Enrico Toti, 04100 Latina, Italy
* Correspondence: valentina.camomilla@uniroma4.it

Abstract: Telerehabilitation, a specialized domain within telemedicine, supports remote
physical rehabilitation and progress monitoring. Wearable sensors can improve this service
by providing reliable monitoring of movement parameters, offering objective information
into patients’ rehabilitation sessions. This study presents the development and validation
of a telerehabilitation system including a rehabilitation protocol, low-cost wearable inertial
measurement units (IMUs) and a set of metrics descriptive of movement capacity to
analyze rehabilitation exercises. Eleven medically stable elders (9 females, 2 males; age:
72.6 ± 5.0 years; height: 1.66 ± 0.09 m; mass: 67.8 ± 9.8 kg) performed 12 rehabilitation
upper/lower limb and trunk exercises. Movement analysis was conducted using a
prototypical IMU sensor and commercially available IMU as a reference. Each exercise
was automatically segmented into single repetitions, from which selected metrics were
computed. Bland–Altman analysis was performed to evaluate measurement agreement
and consistency between the systems across all parameters. Results indicate acceptable
measurement agreement for key rehabilitation metrics, including movement quantity,
accelerations intensity, and movement smoothness. However, angular velocity and
movement stability reveal technical limitations requiring refinement prior to clinical
implementation. Balancing measurement reliability and affordability of telerehabilitation
system remains a crucial factor to offer an effective service to individuals with diverse
health conditions.

Keywords: telemedicine; movement quality; movement intensity; physical exercises;
inertial sensors; IoT

1. Introduction
A valuable resource for contemporary healthcare systems is telemedicine and its

various subsections. Grown during the COVID-19 pandemic, telemedicine is a health ser-
vice that has evolved through telecommunication and electronic information technologies,
enabling remote communication between patients and health professionals. It includes
a range of services, such as teleconsultation, which provides online consultations with
patients; telemonitoring, which offers remote monitoring; and telerehabilitation, which
facilitates remote physical and psychiatric rehabilitation [1,2]. Telerehabilitation services
can achieve outcomes comparable to conventional rehabilitation methods, reducing muscle
weakness, maintaining high levels of physical activity, and enhancing both functional
capacity and the physical aspects of quality of life [2–5]. Another advantage of telerehabili-
tation is its ability to eliminate various barriers that can hinder patient compliance, such as
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the need to travel to a medical center or the effort associated with scheduling in-person
appointments [5]. By allowing patients to engage their therapy from the comfort of their
homes, these services not only promote more convenient and comfortable rehabilitation
treatment but also significantly decrease hospitalization costs [6].

Previously, many telerehabilitation services relied on monitoring exercise programs
through video calls, often lacking the ability to monitor movement and vital parameters [7].
To address this limitation, there is a growing trend towards the adoption of wearable
sensors that can provide various biofeedback, thereby enhancing safety and effectiveness
of telerehabilitation experiences. The use of wearable sensors has been becoming more and
more popular among people with various health conditions, such as neurological, cardiac,
and orthopedic diseases [8,9]. Feedback provided by wearables can provide real-time
indicators of physiological stress thresholds, or of correct execution of movements through
biomechanical parameters, preventing overexertion and allowing personalization of reha-
bilitation, thereby enhancing its effectiveness [10]. Physiological biofeedback is provided
for example to monitor cardiac activity in patients with cardiovascular diseases, using
electrocardiograms (ECGs) or sensors to measure oxygen saturation levels (SpO2) [10].
Biomechanical biofeedback, employed for patients with orthopedic and neurological re-
habilitation needs, allows analyzing aspects such as posture control, muscle activation,
and movement [10]. A comprehensive evaluation of the patient’s movements is crucial for
effective telerehabilitation systems.

Within this category, inertial measurement unit (IMU) sensors are currently
widespread [10–14] and gained positive feedback by clinicians regarding their applica-
tion for monitoring rehabilitation movements [15]. In particular, clinicians appreciated
the easy-to-use nature of this technology, and their ability to analyze and provide a report
in a short period of time [15]. Due to their low cost, IMU sensors represent a promising
solution for motion monitoring in telerehabilitation programs, making their adoption more
accessible and feasible on a large scale.

Besides the basic repetition count, this technology can integrate video observation
with information on the quality of the gestures performed, which cannot be fully captured
through video alone during rehabilitation exercises. IMUs enable the measurement of
key biomechanical parameters, such as range of motion and movement smoothness [11],
providing therapists with detailed data on functional and movement limitations that may
affect movement quality.

To increase the effectiveness and diffusion of telerehabilitation, it is crucial to develop
comprehensive platforms that can support every stage of the process, from initial assess-
ments to treatment and follow-up [16]. In this perspective, telerehabilitation infrastructures
that integrate IMUs as a monitoring instrument for motor rehabilitation exercises are under
development [17,18]. The main challenge remains the development of affordable and
scalable technologies that can be tailored to the specific needs of individual users, without
compromising utility or data quality. While various telerehabilitation systems exist [1,2],
few effectively integrate evidence-based exercise protocols with strategic parameter selec-
tion and low-cost implementation, high usability, and relevant biomechanical feedback.
This gap can limit the widespread adoption of sensor-based telerehabilitation, particularly
among patients facing functional barriers to care.

The REHACT project (teleREHabilitation for respiratory and motor reACTivation
exercises) addresses these limitations with a novel, integrative framework that combines
low-cost IMUs, patient-centered rehabilitation protocols, and relevant metrics into a tel-
erehabilitation infrastructure [19]. This framework can provide healthcare professionals
with remote monitoring of patient movements during motor and respiratory rehabilitation
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exercises [19], balancing cost and technical efficiency while allowing patients’ engagement,
a crucial factor for long-term adherence to rehabilitation programs.

Our scientific contribution focuses on structuring evidence-based protocols and care-
fully selecting biomechanical parameters that effectively represent movement capacities
correlated with functional rehabilitation outcomes. The entire system is designed to be
used with consumer-grade sensors, aligning with the principles of the “Internet of Things”
(IoT), “I”nterconnecting among devices using “T”hings/tools in the service [20], making it
accessible and practical in telerehabilitation context. The full implementation of the project
requires the fulfillment of the following key objectives:

1. Development of an effective rehabilitation protocol, based on scientific literature and
kinesiological expertise, which can be performed remotely through wearable sensors
and provide biofeedback;

2. Selection of a set of parameters capable of describing different motor capacities;
3. Assessment of the validity of prototypical sensors;
4. Evaluation of the effectiveness of the IoT-based system in individuals with chronic

conditions, identifying potential limitations;
5. Assessment of the system’s usability in a home environment.

Within this framework, the present study addresses the initial three objectives, focusing
on the development of the rehabilitation protocol, the definition of relevant movement
parameters, and the laboratory-based validation of the IMU prototypes under Technology
Readiness Level 4 (TRL4) [21].

2. Materials and Methods
2.1. REHACT Motor Rehabilitation Protocol

The “REHACT” motor rehabilitation protocol was developed based on a literature
review and following clinical guidelines [22,23]. It includes twelve exercises selected
according to a principle we named as “EASE”: Easy to perform for patients, Adaptable
for different functional capacities, Safe and Effective to improve strength and mobility
of the lower limbs, upper limbs, and trunk muscles. The main innovation consists of
their integration with wearable inertial sensors that enable quantitative monitoring and
remote feedback in real time. For example, the so-called “open chain” exercises [22,23]
feature easy execution and low impact, while still providing a valuable rehabilitative effect
and can be monitored with a small number of sensors, unlike more complex movements
that would require a more elaborate setup. To adapt the protocol to individual functional
capacity, the exercises can be performed in various positions: lying down, seated with back
support, seated without back support, and standing with support. As shown in Figure 1,
the resulting protocol includes:

• For the lower limbs: knee extension lying down (KE1), knee extension sitting with a
back support (KE2), knee extension without back support (KE3), half squat supported
on a table (SQ);

• For the upper limbs: shoulder flexion lying down (SF1), shoulder flexion sitting with a
back support (SF2), shoulder flexion without back support (SF3), wall push-up (PS);

• For the trunk: bird dog exercise [24] using only the legs (BD1), bird dog using only the
arms (BD2), lateral flexion of the column (LF), rotation of the column (RO).
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Figure 1. REHACT motor rehabilitation protocol. Lower limb exercises: KE1—knee extension lying 
down; KE2—knee extension sitting with a back support; KE3—knee extension without back sup-
port; SQ—half squat supported on a table. Upper limb exercises: SF1—shoulder flexion lying down; 
SF2—shoulder flexion sitting with back support; SF3—shoulder flexion without back support; PS—
wall push-up. Trunk exercises: BD1—bird dog using only the legs; BD2—bird dog using only the 
arms; LF—lateral flexion of the column; RO—rotation of the column. 

To monitor the REHACT protocol, three sensors (Figure 2a) are required [19]: one 
placed on the lumbar region, and two positioned on the legs or arms depending on the 
specific exercise. The lumbar prototypical IMU is positioned at the lower back, secured 
with an elastic belt, except during exercises performed while lying down (Figure 2c). For 
exercises targeting lower limbs, the prototypes are attached to the participant’s tibias lat-
erally above the malleolus and tightly secured with elastic straps within participants’ com-
fort tolerances (Figure 2b). For the upper limb exercises, the prototypes are attached just 
above the wrists (Figure 2d). 

 

Figure 2. (a) Prototypical IMU, (b) positioning for the lower limb exercises, (c) positioning for trunk 
exercises, and (d) positioning for upper limb exercises. 

2.2. REHACT Sensors and Infrastructure 

The REHACT infrastructure includes IMUs, which serve as data acquisition and 
transmission units, a mobile application, responsible for synchronizing and aligning the 
signals from the different IMUs ensuring accurate processing for motor gesture 

Figure 1. REHACT motor rehabilitation protocol. Lower limb exercises: KE1—knee extension
lying down; KE2—knee extension sitting with a back support; KE3—knee extension without back
support; SQ—half squat supported on a table. Upper limb exercises: SF1—shoulder flexion lying
down; SF2—shoulder flexion sitting with back support; SF3—shoulder flexion without back support;
PS—wall push-up. Trunk exercises: BD1—bird dog using only the legs; BD2—bird dog using only
the arms; LF—lateral flexion of the column; RO—rotation of the column.

To monitor the REHACT protocol, three sensors (Figure 2a) are required [19]: one
placed on the lumbar region, and two positioned on the legs or arms depending on the
specific exercise. The lumbar prototypical IMU is positioned at the lower back, secured
with an elastic belt, except during exercises performed while lying down (Figure 2c). For
exercises targeting lower limbs, the prototypes are attached to the participant’s tibias
laterally above the malleolus and tightly secured with elastic straps within participants’
comfort tolerances (Figure 2b). For the upper limb exercises, the prototypes are attached
just above the wrists (Figure 2d).
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Figure 2. (a) Prototypical IMU, (b) positioning for the lower limb exercises, (c) positioning for trunk
exercises, and (d) positioning for upper limb exercises.

2.2. REHACT Sensors and Infrastructure

The REHACT infrastructure includes IMUs, which serve as data acquisition and trans-
mission units, a mobile application, responsible for synchronizing and aligning the signals
from the different IMUs ensuring accurate processing for motor gesture characterization,
and an online database to store data collected via prototypes through the application.
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Each prototypical sensor is equipped with a 9-axis IMU (LSM9DS1, STMicroelec-
tronics, Plan-les-Ouates, Switzerland), which provides a full-scale range of ±4 g for the
accelerometer, ±2000 deg/s for the gyroscope, and ±6 Gauss for the magnetometer, with
a sampling frequency between 30–35 sample/s. The core of the system is the Arduino
Nano BLE (Arduino S.r.l, Monza, Italy, dimensions: 45 × 18 mm, 64 MHz), which handles
data acquisition and transmission via its integrated NINA B306 Bluetooth Low Energy
module (u-blox AG, Thalwil, Switzerland). Power is supplied by three 3.7V LiPo batteries
(620 math each), ensuring about 10 h of continuous use. Each battery weighs 12 g and
measures 50 × 22.5 × 6.3 mm. All components, including a Step-Up module (XF0378X5)
to boost voltage to 5V and a TP4056 charging board for USB recharging, are enclosed in a
compact 3D-printed case (7 × 4.5 × 1.5 cm), ensuring stability, portability, and minimal
user discomfort for a final mass of 35 g (Figure 2a).

The Arduino Nano BLE facilitates the connection to a mobile application, developed
using MIT App Inventor, version nb189 (© 2012–2024 Massachusetts Institute of Technol-
ogy), that represents the transmission unit for the data collected during the exercises. The
mobile application (Figure 3) securely stores data collected in a database (Firebase, Google,
Mountain View, CA, USA).
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Figure 3. Screenshot of the smartphone app to manage the IMUs.

Each user accesses the database through a unique identifier consisting of a username
and password, which allows the data to be written and accessed. In addition, the database
is accessible only to those with that identifier. Currently, for data analysis, the data are
extracted from the database and analyzed using MATLAB R2021b (MathWorks Inc., Natik,
MA, USA) and Google Colaboratory 3.11.12 (Google, Mountain View, CA, USA).

To ensure effective synchronization of the transmitted data, a software-based timing
system was developed, designing a virtual clock to synchronize and coordinate the clocks of
all IMUs before data transmission to the app and subsequently to the database. Through an
iterative optimization process, different synchronization and coordination configurations
were tested, achieving a data rate range of 30–35 samples per second for each sensor. This
value was deemed adequate to monitor the REHACT rehabilitation protocol.
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The same calibration procedure is applied at each session. For the gyroscope offset, the
drift is automatically removed at each power-up by recording the signal while the device is
held in a static position. For the accelerometer and magnetometer, calibration tests were
conducted with the aim of identifying the specific biases and offsets. The values obtained
from these calibrations were then used to correct the raw data before the analysis. This
strategy was designed to facilitate the future use of the device in telerehabilitation settings,
where the end user may not be able, or lacks the technical expertise, to perform calibration
procedures themselves.

A key target in the development of the infrastructure is ensuring an optimal cost–
benefit ratio. The developed sensor has an extremely low production cost (about thirty
euros per unit). Even including the overall development costs, the technology is expected
to be deployed at an affordable price for the individual user. This aspect would benefit
the infrastructure, promoting its large-scale distribution to a large number of people
performing telerehabilitation.

2.3. Movement Characterization

Movement rehabilitation exercises were characterized in terms of their quantity, inten-
sity, and quality using the sensors.

Data pre-processing was conducted to, first, low-pass filtering the signal, with an
optimal cutoff frequency identified for each signal as in [25]. Data sets were then segmented
into cycles, identifying start and end points of each repetition (Figure 4). A threshold of 30%
of maximum peak acceleration values was selected following an iterative testing process
with various cutoff values applied across all exercises in the protocol. This value proved
to be the most effective in ensuring stable and reliable segmentation of movement cycles.
Peaks related to the different exercises were detected along the axis where the movement of
the analyzed exercise was most evident (e.g., antero-posterior direction, y-axis, for upper
and lower limb exercises) using the “find peaks” function, whose settings were selected
through an iterative testing process to identify the parameter combination that enabled
the detection of the highest number of correct repetitions across the various exercises:
“minimum peak width” = 0.2, “minimum peak prominence” = 0.1–0.2, and “minimum
distance between peaks” = 30–50 samples (MATLAB, R2021, MathWorks Inc., Natik, MA,
USA). For each detected peak, local minima below a predefined threshold were identified
before and after the peak. The closest minimum before the peak was defined as the starting
point, while the closest minimum after the peak marked the ending point. In the case of
successive repetitions, the ending point of one movement coincided with the starting point
of the next. These time points enabled the automatic segmentation of the repetition of
different exercises.

The following features were selected as metrics to assess quantity, intensity, and quality
of movements for individual repetitions or for each set of repetitions:

Quantity (QT), commonly utilized in traditional rehabilitation, includes fundamental
aspects such as the number and duration of the repetitions, which were computed based
on the identified cycle start and stop events:

• REP—number of repetitions made by the participant for each set;
• TIME—duration, for each repetition;

Intensity (I) of the movements, is associated to overall physical activity levels and
described by parameters derived from the acceleration of body segments [11,12], which
were complemented by peak values of measured signals:

• Acceleration Peak (apeak
X , apeak

Y , apeak
Z )—the acceleration peaks on the different axes (X,

Y, Z) were determined by extracting the maximum values within each identified
repetition of the filtered data sets;
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• Angular velocity Peak (ωpeak
X , ω

peak
Y , ω

peak
Z )—angular velocity peaks about the different

axes (X, Y, Z) were calculated as maximum value within each identified repetition of
the filtered data sets;

• Range of angular velocity (RAV)—difference between maximum and minimum values of
the Euclidean norm of the raw angular velocity [11,12] within each identified repetition.

• Movement Intensity (MI)—the mean value of the Euclidean norm of the linear triaxial
filtered acceleration (ax(t), ay(t), az(t)) of the wearable sensor, as measured in g, was
calculated over the exercise sets in healthy participant [11,12]. This metric was used in
previous studies to quantify exercise intensity in clinical applications [12,26,27].

MI(t) =

√
ax(t)

2 + ay(t)
2 + az(t)

2

g
(1)

• Movement intensity variation (MIV)—difference in the MI values calculated for the two sets.
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Quality of movements (QL), refers to the ability to perform actions in a controlled and
optimal manner [28]. Joint range of motion, as suggested by [28], along with the smoothness
and stability of gestures, as indicated by [12], were assess using the following parameters:

• Log dimensionless jerk (LDLJ)—measures gesture smoothness based on filtered accel-
eration data in each repetition [29,30], where smaller negative values correspond to
smoother movements [12];

LDLJ = −ln

(
t2 − t1
a2

peak

∫ t2

t1

...
x (t)2+

...
y (t)2 +

...
z (t)2dt

)
(2)

where
...
x (t)2,

...
y (t)2,

...
z (t)2 are the derivatives of the sensor’s triaxial acceleration with

respect to time; apeak is equal to the magnitude of the peak total acceleration minus the
mean total acceleration of the movement, and t1 and t2 represent the time at beginning
and end of the repetition;

• Dynamic Time Warping (DTW)—assesses movement stability [11,27]. DTW was used to
compare filtered acceleration signals from successive repetitions of the same set, with
the DTW distance for each consecutive pair serving as an indicator of stability. This
analysis was performed using the default “dtw” function provided in MATLAB. A
lower DTW distance value can be interpreted as a better ability to maintain control of
the joint movement while performing the exercise [12];
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• Peak range of Motion (PKROM)—This index was used to assess the maximum range of
motion [28]. First, the orientation of each sensor was computed for every repetition
using the Madgwick orientation algorithm [31], whose beta coefficients were defined
for each set of sensors as those minimizing orientation differences between devices,
based on magnetometer calibration data (β prototype = 0.6, β reference = 0.1). Then,
the joint angle (in degrees) was calculated along the specific axis of movement for each
exercise (ROM), and finally, the peak values were computed within each identified
repetition (PKROM).

2.4. Validation Study

The validity of the set of prototypical IMUs in monitoring quantitatively the quantity,
intensity, and quality of the REHACT rehabilitation protocol exercises was assessed. Vali-
dation was performed, in terms of agreement and consistency, in comparison to a standard
reference commercially available IMUs (Table 1), previously validated against a motion
capture system [32] (OPAL, APDM, Portland, OR, USA). These transmit raw data wirelessly
to a docking station, which synchronizes the signals and forwards them to a dedicated
software for PC. The reference IMUs were placed over the prototypes, already secured
on the participants’ body segments, fixing them with an additional elastic band similarly
tightened to comfort tolerances. To minimize positioning-related errors, all sensors were
placed by the same experimenter (F.C.). Table 1 summarizes the characteristics of the two
different IMUs.

Table 1. Characteristics of prototypical inertial sensor and reference sensor. * Average estimate.

Characteristics Prototypical IMU Reference IMU

Unit cost ≈30 euros (production cost) Up to 2000 euros * (commercial cost)

Dimension 7 × 4.5 × 1.5 cm 5 × 4 × 1.4 cm

Mass 35 g 26 g

Battery 10 h Up to 12 h

Connection Bluetooth Wireless

Sample frequency 32 Hz 128 Hz

Accelerometer range ±4 g ±6 g

Gyroscope range ±2000 deg/s ±2000 deg/s

Magnetometer range ±6 Gauss ±6 Gauss

The study, approved by the University Research Committee (CAR code 158/2023),
was conducted in accordance with the Helsinki Declaration as revised in 2024. Written
informed consent was obtained from the participants of the study. Since this is a laboratory
validation of the prototype, a convenience sample of 11 medically stable elderly participants
(9 females and 2 males; age = 72.6 ± 5.0 years; height = 1.66 ± 0.09 m; mass = 68 ± 10 kg)
were recruited. “Medically stable” means that the person’s health condition is managed,
with normal vital parameters and no need for specific rehabilitation interventions. In fact,
all participants performed the exercises without difficulty, or any musculoskeletal issue.
Each participant had a Barthel Functional Index [33] score of 5, indicating their ability
to function independently, and they had not experienced any falls in the past year [33].
Each participant performed the selected trunk, lower, and upper limb exercises for 2 sets
of 8 repetitions each, with a recovery interval of 1 min between each set to avoid fatigue.
The participants were asked to rate their perception of exertion (RPE) during the exercises
using the Borg CR-10 Scale [34]. They were also asked to evaluate their comfort level while
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wearing the sensors using a Visual Analog Scale (VAS). This comprehensive approach
allowed thorough assessment of both functional capabilities and subjective experiences of
the participants during the validation process.

2.5. Statistical Analysis

Bland and Altman’s analysis [35] was applied to compare devices in terms of agreement
by calculating for each parameter the BIAS (i.e., the mean difference between the values
measured by the reference device and those of the prototype, useful for highlighting any
systematic overestimates or underestimates) and the limits of agreement (LoA), defined as
BIAS ± one standard deviation of the differences, which indicate the range within which most
discrepancies between the two instruments are expected to fall, thus allowing an assessment of
the degree of interchangeability or the presence of significant differences in their measurements.
Outliers (>2 SD from the mean) were inspected for data set and excluded, to ensure reliable
agreement assessment (see Appendix A). Subsequently, a possible heteroscedasticity of the
data was verified via Kendall’s Tau test [36], by comparing the distribution of the averages
with the absolute differences of the reference against prototype values [37]. If τ < 0.1, data
are considered homoscedastic, i.e., having constant variance. Conversely, if τ≥ 0.1, data are
considered heteroscedastic, i.e., having variable variance. The 95% confidence intervals (CI)
of BIAS and LoA, reported in Appendix A, were calculated as reported by [38]: t-value and
standard error for the BIAS (seBIAS) used of CI calculations.

3. Results
The proposed exercises required minimal exertion from the participants, as indicated by

the low RPE values (Table 2). The subjects experienced a high level of comfort when wearing
the IMUs during the execution of rehabilitative exercises, as described by VAS values (Table 2).

Table 2. VAS and RPE results reported for all exercises grouped in categories. Lower limb exercises:
KE1—knee extension lying down; KE2—knee extension sitting with a back support; KE3—knee exten-
sion without back support; SQ—half squat supported on a table. Upper limb exercises: SF1—shoulder
flexion lying down; SF2—shoulder flexion sitting with back support; SF3—shoulder flexion without
back support. Trunk exercises: PS—wall push-up; BD1—bird dog using only the legs; BD2—bird dog
using only the arms; LF—lateral flexion of the column; RO—rotation of the column. RPE values are
expressed in arbitrary units, VAS ones on a scale 0–10.

Category Exercises RPE [a.u.] VAS [0–10]

Lower limb

KE1 1.4 ± 1.5 9.1 ± 1.2
KE2 1.3 ± 1.1 9.1 ± 1.2
KE3 0.8 ± 1.0 9.1 ± 1.2
SQ 0.9 ± 1.0 9.1 ± 1.2

Upper limb

SF1 1.2 ± 1.6 8.7 ± 1.5
SF2 1.5 ± 1.6 8.7 ± 1.5
SF3 1.8 ± 1.8 8.7 ± 1.5
PS 1.4 ± 1.1 8.7 ± 1.5

Trunk

BD1 1.4 ± 1.5 9.1 ± 1.2
BD2 2.1 ± 1.8 7.9 ± 3.1
LF 1.1 ± 1.2 8.8 ± 1.4
RO 1.8 ± 1.8 8.7 ± 1.6

A total of 176 repetitions were performed for each exercise. The automated algorithm, ap-
plied to both the prototype and the reference sensor, identified the same number of repetitions.

Table 3 presents the parameters values obtained from the IMUs.
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Table 3. Parameter values (mean and standard deviation) as assessed using the reference IMUs and the
prototype IMU are reported for all exercises grouped in categories. Lower limb exercises: KE1—knee
extension lying down; KE2—knee extension sitting with a back support; KE3—knee extension
without back support; SQ—half squat supported on a table. Upper limb exercises: SF1—shoulder
flexion lying down; SF2—shoulder flexion sitting with back support; SF3—shoulder flexion without
back support. Trunk exercises: PS—wall push-up; BD1—bird dog using only the legs; BD2—bird dog
using only the arms; LF—lateral flexion of the column; RO—rotation of the column.

Reference IMUs

Category Exercises Quantity Intensity Quality

REP TIME
[s]

apeak
X
[g]

apeak
Y
[g]

apeak
Z
[g]

ω
peak
X

[deg/s]
ω

peak
Y

[deg/s]
ω

peak
Z

[deg/s]
MI
[g]

MIV
[g]

RAV
[rad/s]

LDLJ
[a.u.]

PKROM
[deg]

DTW
[m/s2]

Lo
w

er
lim

b

KE1
Mean 8 2.3 1.6 0.5 0.3 26.0 43.4 197.7 0.3 0.2 0.5 −1.6 117.4 4.6

Std 0 0.5 0.2 0.1 0.2 13.1 27.6 27.9 0 0 0.1 0.2 14.4 2.2

KE2
Mean 8 1.8 0.9 0.8 0.2 32.2 48.9 205.2 0.3 0.1 0.6 −1.5 75.2 7.5

Std 0 0.5 0.2 0.1 0.1 18.4 37.8 41.5 0 0 0.1 0.6 13.5 3.4

KE3
Mean 8 1.6 0.8 0.7 0.2 32.5 42.1 197.3 0.2 0.1 0.4 −1.5 73.2 6.6

Std 0 0.4 0.2 0.1 0 10.2 30.1 44.8 0 0 0.1 0.7 10.3 3.6

SQ Mean 8 2.3 0.1 0.4 0.1 6.6 11.9 45.3 0.2 0 0.1 −1.9 9.2 3.2

Std 0 0.6 0.1 0.1 0.1 3.9 7.7 12.3 0 0 0 0.2 3.5 2.8

U
pp

er
lim

b

SF1
Mean 8 3.2 0.7 0.8 2.0 52.6 181.0 69.4 0.8 0.6 0.5 −1.8 153.9 8.2

Std 0 1.1 0.2 0.4 0.4 26.8 39.9 41.7 0.1 0.1 0.1 0.2 28.1 5.5

SF2
Mean 8 2.5 1.4 0.7 1.1 72.3 188.0 54.9 0.7 0.4 0.5 −1.9 69.1 6.8

Std 0 0.6 0.3 0.2 0.4 27.3 36.6 28.3 0.1 0.1 0.1 0.3 11.1 4.8

SF3
Mean 8 2.2 1.5 0.7 0.9 82.7 195.9 68.4 0.6 0.3 0.5 −1.9 66.9 7.2

Std 0 0.6 0.2 0.3 0.4 36.8 45.2 40.0 0.1 0 0.1 0.4 13.3 6.0

PS
Mean 8 2.6 0.4 0.2 0.2 12.4 35.7 44.4 0.2 0 0.1 −1.4 22.3 4.8

Std 0 0.5 0.2 0.1 0.1 9.3 18.5 10.6 0.1 0 0 0.6 12.3 4.6

Tr
un

k

BD1
Mean 8 2.0 0.1 0.2 0 21.8 5.7 8.7 0.1 0 0.1 −1.3 29.4 4.9

Std 0 0.5 0.1 0.1 0 10.8 3.5 3.7 0.1 0 0 1.0 17.2 5.4

BD2
Mean 8 1.9 0.1 0.1 0.1 6.4 10.9 6.5 0.1 0 0 −0.9 65.7 2.1

Std 0 0.5 0.1 0.1 0.1 4.5 6.6 4.1 0 0 0 0.9 17.5 2.2

LF
Mean 8 2.8 0 0.2 0.1 10.9 5.7 15.4 0.1 0 0 −1.6 63.5 10.0

Std 0 0.8 0 0.1 0 5.9 3.8 8.5 0 0 0 0.5 26.4 6.7

RO
Mean 8 2.6 0 0.1 0.1 80.5 7.0 20.7 0.1 0 0.2 −2.0 52.9 3.5

Std 0 0.7 0 0 0 19.3 3.3 11.3 0 0 0 0.7 22.1 2.3

Prototype IMUs

Category Exercises Quantity Intensity Quality

REP TIME
[s]

apeak
X
[g]

apeak
Y
[g]

apeak
Z
[g]

ω
peak
X

[deg/s]
ω

peak
Y

[deg/s]
ω

peak
Z

[deg/s]
MI
[g]

MIV
[g]

RAV
[rad/s]

LDLJ
[a.u.]

PKROM
[deg]

DTW
[m/s2]

Lo
w

er
lim

b

KE1
Mean 8 2.3 1.5 0.5 0.2 21.1 35.2 179.7 0.3 0.2 0.4 −1.6 117.2 2.1

Std 0 0.5 0.1 0 0.1 13.1 22.2 27 0 0 0 0.2 19.9 1.4

KE2
Mean 8 1.7 0.8 0.8 0.2 25.4 38.2 186.5 0.2 0.1 0.4 −1.5 66.5 2.7

Std 0 0.4 0.1 0.1 0.1 16.3 29.4 42.4 0 0 0.1 0.6 10.7 2.6

KE3
Mean 8 1.6 0.8 0.7 0.2 22.5 32.1 177.3 0.2 0.1 0.4 −1.5 63.2 2.6

Std 0 0.4 0.2 0.1 0 10.2 20.1 34.8 0 0 0.1 0.7 9.3 1.6

SQ Mean 8 2.3 0.1 0.1 0.5 6.5 35.5 3.5 0.2 0 0.1 −1.9 21.0 1.3

Std 0 0.5 0 0 0.1 3.2 165 1.8 0 0 0 0.2 8.4 1.1

U
pp

er
lim

b

SF1
Mean 8 3.1 0.6 0.7 1.9 42.2 155.6 60.2 0.8 0.6 0.3 −1.8 160.6 3.3

Std 0 1.5 0.2 0.3 0.4 20.2 35.6 33 0.1 0.1 0 0.2 24.1 1.7

SF2
Mean 8 2.4 1.3 0.7 1.1 63.5 157.2 47.3 0.7 0.4 0.4 −1.9 66.8 2.5

Std 0 0.5 0.2 0.2 0.3 24.3 29.5 23.6 0 0.1 0 0.3 15.2 1.1

SF3
Mean 8 2.1 1.4 0.7 0.8 71.8 165.4 61.7 0.6 0.3 0.4 −1.9 63.2 3.3

Std 0 0.5 0.2 0.2 0.3 32.1 38.9 34.3 0.1 0 0.1 0.4 15.3 3.9

PS
Mean 8 2.5 0.1 0.1 0.3 4.6 18.4 1.4 0.1 0 0.1 −1.4 34.9 0.6

Std 0 0.4 0 0 0.1 2.2 7.8 0.8 0 0 0 0.6 17.3 0.5
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Prototype IMUs

Category Exercises Quantity Intensity Quality

REP TIME
[s]

apeak
X
[g]

apeak
Y
[g]

apeak
Z
[g]

ω
peak
X

[deg/s]
ω

peak
Y

[deg/s]
ω

peak
Z

[deg/s]
MI
[g]

MIV
[g]

RAV
[rad/s]

LDLJ
[a.u.]

PKROM
[deg]

DTW
[m/s2]

Tr
un

k

BD1
Mean 8 2.0 0.1 0.2 0.1 17.8 5.8 7.9 0.1 0 0 −1.3 23.5 1.4

Std 0 0.5 0 0 0 8.4 3.5 4.6 0 0 0 1.0 13.3 1.5

BD2
Mean 8 1.8 0.1 0.1 0.1 6 8.8 5.6 0.1 0 0 −0.9 69.1 0.5

Std 0 0.4 0 0 0 3.7 5.4 4 0 0 0 0.9 15.5 0.4

LF
Mean 8 2.6 0 0.2 0.1 8.2 4.5 13.8 0.1 0 0 −1.6 53.6 1.3

Std 0 0.8 0 0 0 4.4 2.5 7.5 0 0 0 0.5 26.2 2.0

RO
Mean 8 2.5 0 0.1 0.1 66.9 7.4 12 0.1 0 0.1 −2.0 56.3 0.7

Std 0 0.7 0 0 0 17.3 4 5.5 0 0 0 0.7 27.8 0.5

The difference between reference and prototypical IMUs sensors is demonstrated
through radar plots (Figures 5–7), based on the Bland and Altman analysis. In these radar
plots, percentage values of prototype parameters are reported relative to the reference value,
along with the bias and LoA between the two instruments. Quality parameter DTW was
consistently heteroscedastic (Table A5) and was consequently excluded from Figures 5–7.
More details on the other BA parameters are reported in the Appendix A (Tables A1–A5).
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two devices (Bias), in percentage of the reference value. The dashed line highlights the amplitude of
the limits of agreement (LoA), in percentage the reference value. Values on each radar are relative to
Intensity and Quality parameters: peak acceleration measurements (apeak

X , apeak
Y , apeak

Z ), peak angular

velocity (ωpeak
X , ω

peak
Y , ω

peak
Z ), movement intensity and movement intensity variability (MI, MIV),

range of angular velocity (RAV), log dimensionless jerk (LDLJ), and maximum value of range of
motion (PKROM). Radars are provided for the following exercises: KE1—knee extension lying down;
KE2—knee extension sitting with back support; KE3—knee extension without back support; SQ—half
squat in support.
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Figure 6. Percentage values of prototype parameters (red line) are reported compared to the reference
values (100% line reported in blue). The black dot represents the mean of the differences between the
two devices (Bias), in percentage of the reference value. The dashed line highlights the amplitude of
the limits of agreement (LoA), in percentage the reference value. Values on each radar are relative to
Intensity and Quality parameters: peak acceleration measurements (apeak

X , apeak
Y , apeak

Z ), peak angular

velocity (ωpeak
X , ω

peak
Y , ω

peak
Z ), movement intensity and movement intensity variability (MI, MIV),

range of angular velocity (RAV), log dimensionless jerk (LDLJ), and maximum value of range of
motion (PKROM). Radars are provided for the following exercises: SF1—shoulder flexion lying
down; SF2—shoulder flexion sitting with back support; SF3—shoulder flexion without back support;
PS—wall push-up.
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Figure 7. Percentage values of prototype parameters (red line) are reported compared to the reference
values (100% line reported in blue). The black dot represents the mean of the differences between the
two devices (Bias), in percentage of the reference value. The dashed line highlights the amplitude of
the limits of agreement (LoA), in percentage the reference value. Values on each radar are relative to
Intensity and Quality parameters: peak acceleration measurements (apeak

X , apeak
Y , apeak

Z ), peak angular

velocity (ωpeak
X , ω

peak
Y , ω

peak
Z ), movement intensity and movement intensity variability (MI, MIV),

range of angular velocity (RAV), log dimensionless jerk (LDLJ), and maximum value of range of
motion (PKROM). Radars are provided for the following exercises: BD1—bird dog using only
the legs; BD2—bird dog using only the arms; LF—lateral flexion of the column; RO—rotation of
the column.

4. Discussion
The REHACT project’s development of an accessible and user-friendly telerehabili-

tation system based on the use of wearable sensors for movement characterization was
structured around three objectives:

1. design a rehabilitation protocol, based on scientific evidence and kinesiological exper-
tise, which could be performed remotely using wearable sensors;

2. select a set of parameters for motor capacity assessment;
3. validate prototype sensors against reference systems.

The REHACT rehabilitation protocol, developed through literature analysis and clini-
cal expertise, demonstrated strong usability metrics when tested on medical stable elderly,
supporting its potential implementation in real-world settings. Participants reported
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very low perceived exertion scores while performing the exercises (RPE 0.8–2.1), despite
some individual variability possible due to different fitness level, and perceived the proto-
type sensors as comfortable (VAS 7.85–9.09), despite the simple attachment system using
elastic bands.

An algorithm for automatic repetition identification, tailored through threshold se-
lection to each exercise in the protocol, was successfully implemented across both sensor
types, enabling consistent biomechanical metrics extraction and direct comparison between
prototype and reference systems. This approach facilitates movement characterization and
establishes a parameter set applicable in remote monitoring contexts.

The implementation of low-cost IMUs for motor exercise monitoring represents a use-
ful step towards accessible telerehabilitation solutions, within the REHACT project and in
general. The systematic evaluation of the prototype sensors against established commercial
systems, across multiple parameters, highlights both the limitations and potential of these
cost-effective monitoring solutions in the perspective of their clinical viability.

Consistency of the prototype and its agreement with reference sensors are com-
mented on in the perspective of highlighting which parameter types can be used in an
applicative setting:

• Quantity parameters exhibited robust validity for conventional rehabilitation parame-
ters (repetition count and execution time) (Figures 5–7), demonstrating homoscedastic
behavior across all evaluated exercises (τ < 0.1) (Table A1). The system validity is
further substantiated by the use of the same algorithm for repetition identification
in both reference and prototype sensors. This consistency is a basic prerequisite for
reliable monitoring physical therapy exercises.

• Movement Intensity parameters showed varying degrees of consistency and of agree-
ment (Figures 5–7). Open chain exercises (KE1, KE2, KE3, SF1, SF2, SF3) had a better
performance in terms of both BIAS and LoA with respect to closed chain ones (SQ,
PS, BD1, BD2, LF, RO). While peak acceleration measurements (apeak

X , apeak
Y , apeak

Z ) and
derived parameters (MI, MIV) demonstrated good consistency and agreement, an-
gular velocity measurements (ωpeak

X , ω
peak
Y , ω

peak
Z )showed substantial variability and

disagreement. For example, in the lower limb exercises (Table A2), biases range from
−0.48 to −16.9, while the limits of agreement (LoA) vary between 4.7 and 26.0 across
the different exercises. Similar patterns can be observed for both upper limb (Table A3)
and trunk exercises (Table A4). Although these differences appear to be reduced in the
RAV parameter, they highlight the need for hardware improvement.

• Quality parameters had different behaviors: LDLJ showed acceptable consistency;
conversely, DTW had a heteroscedastic behavior, which led to its exclusion and calls for
a refinement in the stability assessment; PKROM had high LoA in most of the exercises,
presenting a limited applicability for rehabilitation environment. For example, in the
SQ exercise, the prototype estimated a PKROM of 29 degrees, while in the PS exercise,
it measured 65 degrees, which is significantly higher compared to the reference sensor
values (Table 3). Acceptable levels of consistency and variability can be observed in
the KE2, KE3, and SF1 exercises, together with reasonably narrow limits of agreement
and the favorable cost-benefit ratio of the prototype, suggesting the use of PKROM as
suitable for monitoring in practical applications. The error in orientation estimation
certainly suffers from the abovementioned differences amongst angular velocities,
not excluding other sources of error and calling for implementing ad hoc sensor
fusion algorithms.

This laboratory assessment confirms the prototype’s potential for evaluating certain
movement parameters during a rehabilitation protocol. Besides repetition count and
execution time, Intensity parameters related to acceleration proved to be the most



Sensors 2025, 25, 3129 15 of 25

consistent, and plausibly acceptable for use in rehabilitation environments (LoA in
general below 10%). High values of MI indicate phases of rapid accelerations and
decelerations, previously resulting in values close to 1 for lower limb exercises performed
by a young population [12]. Our sample presented lower values, particularly for lower
limb and trunk exercises (Table 3). MI values can be used as a monitoring tool, since
values close to zero, i.e., a very low intensity, are desirable for rehabilitation exercises
that require great control of the joint and attention on the part of the subject. Among
Quality parameters, the obtained LDLJ values, despite a higher variability, constitute
reference values for movement quality during rehabilitation exercises. Specifically,
medically stable elderly participants showed values between −1.4 and −1.9 (Table 3).
In comparison, LDLJ values between −3 and −10 are reported in the literature for
upper limb exercises performed by patients post-stroke [30]. This is coherent with the
interpretation of the metric: high LDLJ denotes reduced smoothness, while those closer
to zero reflect smoother movements.

The prototypes’ capability to measure certain movement parameters offers useful
support to rehabilitation protocols. With an estimated production cost of approximately
30 euros per sensor (Table 1), the system could represent an affordable solution for remote
monitoring, particularly beneficial for individual users.

Limits and Future Development

Several limitations may have affected the consistency between the two systems. Firstly,
hardware and firmware differences (Table 1) potentially influenced the computation of
certain parameters, such as PKROM, angular velocities or DTW. Additionally, software-
related aspects, for example the prototypical sensors calibration, likely contributed to
discrepancies in the results. Dedicated metrological tests are still essential to improve
the results obtained and to evaluate hardware/firmware and software improvements.
Specific tests on angular velocity measurements may more clearly show the gyroscope drift
trend over time, with possible improved correction at firmware level or development and
implementation of prototype-specific calibration algorithms. In addition, the introduction
of firmware/software solutions that increase the sampling rate could lead to better results,
constituting important future development.

Secondly, overlapping and fixing reference and prototype sensors in the same position
could also have influenced the consistency between the two systems, despite being neces-
sary to compare location-dependent parameters. Besides the contingent overlap, consistent
and reliable measurements of the prototype require robust sensor attachment methods and
clear user guides, particularly for when patients will apply the sensors independently.

Thirdly, the inclusion of exclusively medically stable participants limits external va-
lidity restricting generalizability of the findings to clinical populations. The sample size
potentially limited statistical power of the validation process. Moreover, controlled labora-
tory settings (TRL4), may inadequately reflect real-world conditions or clinical scenarios.
Future research should include a broader range of medically stable elderly subjects as
well as conduct real-word validation (TRL5) with people with chronic disease to confirm
generalizability of the findings and evaluate parameters’ sensitivity to detect clinically
meaningful changes in motor performance, thereby enabling more precise assessment of
improvement or potential deterioration in motor skills execution.

Lastly, implementation of an algorithm for automatic exercise recognition, potentially
integrating data from all three sensors currently included, would substantially enhance
the safety features of the system by detecting both non-adherence to the rehabilitative
indication and incorrect movements performed by the patient. This advancement could



Sensors 2025, 25, 3129 16 of 25

further improve autonomy of use and adaptability of the system, particularly within
telerehabilitation frameworks.

5. Conclusions
This research presents an affordable telerehabilitation framework through the RE-

HACT system, advancing the field through a novel combination of evidence-based exercise
protocols, strategic parameter selection, and low-cost IMU technology, bringing closer the
potentially conflicting requirements of cost-effectiveness, ease of use, and clinical relevance.
Effective biomechanical monitoring does not necessitate high-cost equipment when paired
with cautious selection of established analysis methods.

Despite some technical limitations, the prototype IMUs demonstrated consistent re-
sults across several rehabilitation parameters, including gesture smoothness, movement
intensity, and movement quantity. Incorporating these parameters into remote rehabilita-
tion platforms could significantly enhance patient monitoring, enable personalized and
adaptive rehabilitation plans, and support clinical decision-making.

This study lays the technological groundwork for a telerehabilitation system designed
to be both affordable and usable to real-world healthcare needs. In particular, its low
cost compared to commercial alternatives makes it a promising candidate for large-scale
adoption in home-based rehabilitation.

Future phases of the REHACT project will expand to evaluating system usability in
real-life contexts and assessing long-term clinical outcomes, with the overarching goal
of increasing treatment adherence and enhancing the quality of life for patients through
affordable, effective, and evidence-based remote healthcare solutions.
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Abbreviations
The following abbreviations are used in this manuscript:

ECG Electrocardiogram
SpO2 Oxygen saturation levels
IMU Inertial measurement unit
IoT Internet of Things
TRL Technology Readiness Level
KE1 Knee extension lying down
KE2 Knee extension sitting with back support
KE3 Knee extension sitting without back support
SQ Half squat in support
SF1 Shoulder flexion lying down
SF2 Shoulder flexion sitting with back support
SF3 Shoulder flexion sitting without back support
PS Wall push up
BD1 Bird dog using legs
BD2 Bird dog using arms
LF Trunk lateral flexion
RO Trunk Rotation
QT “Quantity” movement parameter
REP Number of repetitions
TIME Time to perform repetition
I “Intensity” movement parameter

apeak
X Peak of acceleration x-axis

apeak
Y Peak of acceleration y-axis

apeak
Z Peak of acceleration z-axis

ω
peak
X Peak of angular velocity x-axis

ω
peak
Y Peak of angular velocity y-axis

ω
peak
Z Peak of angular velocity z-axis

MI Movement intensity
MIV Movement intensity variability
RAV Range of angular velocity
QL “Quality” movement parameter
LDLJ Log dimensionless jerk
DTW Dynamic time warping
ROM Range of motion
PKROM Maximum value of range of motion
RPE Rate of perception exertion
VAS Visual analog scale
BIAS Difference between the mean reference and the
LoA Limit of agreement
BA Bland and Altman analysis
CI Confidence intervals
seBIAS Standard error for the BIAS

Appendix A
Bland and Altman Parameters

For Bland and Altman’s analysis conducted on the two sensors, Tables A1–A3 show
the parameter values of Bias, LoA, %CI Bias, %Ci LoA, Kendall’s τ, Samples, t-value,
and seBIAS.
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Table A1. Bland and Altman analysis for quantity parameters in terms of: Bias, LoA (all expressed
in the measurement units indicated for each parameter), %CI Bias, %CI LoA and τ, number of
outliers removed from the 176 repetitions identified, t-value, and seBIAS. Data are reported for all
exercises. Lower limb exercises: KE1—knee extension lying down; KE2—knee extension sitting with
a back support; KE3—knee extension without back support; SQ—half squat supported on a table.
Upper limb exercises: SF1—shoulder flexion lying down; SF2—shoulder flexion sitting with back
support; SF3—shoulder flexion without back support; PS—wall push-up. Trunk exercises: BD1—bird
dog using only the legs; BD2—bird dog using only the arms; LF—lateral flexion of the column;
RO—rotation of the column.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

KE1
REP 0 0 0% 0% \ 0 0 0

TIME [s] 0.02 0.32 1% 3% 0.01 6 1.96 0

KE2
REP 0 0 0% 0% \ 0 0 0

TIME [s] 0.02 0.17 0% 1% 0.01 0 1.96 0

KE3
REP 0 0 0% 0% \ 0 0 0

TIME [s] 0.02 0.10 0% 1% 0.01 0 1.96 0

SQ
REP 0 0 0% 0% \ 0 0 0

TIME [s] 0.02 0.25 10% 2% 0.06 4 1.96 0

SF1
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.05 0.26 1% 2% 0.01 8 1.96 0

SF2
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.04 0.17 0% 1% 0.05 5 1.96 0

SF3
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.05 0.41 2% 3% 0.01 2 1.96 0.01

PS
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.02 0.27 1% 2% 0.01 8 1.96 0

BD1
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.01 0.63 4% 7% 0.09 0 1.96 0.02

BD2
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.01 0.35 2% 4% 0.07 5 1.97 0.01

LF
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.03 0.61 11% 20% 0.07 10 1.97 0.05

RO
REP 0 0 0% 0% \ 0 0 0

TIME [s] −0.03 1.40 11% 2% 0.07 10 1.97 0.05
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Table A2. Statistical analysis for the intensity parameters in terms of: Bias, LoA (all expressed in
the measurement units indicated for each parameter), %CI Bias, %CI LoA and τ, number of outliers
removed from the 176 repetitions identified, t-value, and seBias. Data are reported for the lower
limb exercises: KE1—knee extension lying down; KE2—knee extension sitting with a back support;
KE3—knee extension without back support; SQ—half squat supported on a table.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

KE1

apeak
X [g] 0.01 0.16 0% 1% 0.01 3 1.96 0

apeak
Y [g] 0.02 0.12 0% 1% 0.05 4 1.96 0

apeak
Z [g] 0.01 0.11 0% 1% 0.01 7 1.96 0

ω
peak
X [deg/s] −5.4 14.7 0.8 13% 0.06 7 1.96 0.4

ω
peak
Y [deg/s] −5.9 21.0 1.19 20% 0.03 19 1.96 0.6

ω
peak
Z [deg/s] −16.9 24.7 1.32 22% 0.04 0 1.96 0.6

MI [g] 0 0.04 0% 1% 0.05 0 2.01 0

MIV [g] 0 0.06 1% 1% 0.06 0 2.01 0

RAV [rad/s] 0.06 0.03 0% 0% 0.05 1 1.96 0

KE2

apeak
X [g] 0.02 0.15 0% 1% 0.08 0 1.96 0

apeak
Y [g] 0.01 0.12 0% 1% 0.01 2 1.96 0

apeak
Z [g] 0.01 0.09 0% 0% 0.02 9 1.96 0

ω
peak
X [deg/s] −6.9 14.6 79% 13% 0.08 5 1.96 0.4

ω
peak
Y [deg/s] −7.7 20.1 11% 19% 0.07 15 1.96 0.5

ω
peak
Z [deg/s] −18.6 26.3 14% 23% 0.01 0 1.96 0.7

MI [g] 0 0.02 0% 0% 0.03 0 2.01 0

MIV [g] 0 0.01 0% 0% 0.03 0 2.01 0

RAV [rad/s] 0.07 0.05 0% 0% 0.05 0 1.96 0

KE3

apeak
X [g] 0.04 0.11 0% 0% 0.02 0 1.96 0

apeak
Y [g] 0.01 0.12 0% 0% 0.02 0 1.96 0

apeak
Z [g] 0.01 0.10 0% 0% 0.02 0 1.96 0

ω
peak
X [deg/s] −7.0 13.6 59% 11% 0.08 5 1.96 0.5

ω
peak
Y [deg/s] −7.1 18.1 10% 16% 0.05 4 1.96 0.3

ω
peak
Z [deg/s] −13.6 24.5 14% 23% 0.01 0 1.96 0.2

MI [g] 0 0.02 0% 0% 0.03 0 2.01 0

MIV [g] 0 0.01 0% 0% 0.03 0 2.01 0

RAV [rad/s] 0.06 0.04 0% 0% 0.01 0 1.96 0
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Table A2. Cont.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

SQ

apeak
X [g] 0.01 0.06 0% 0% 0.03 19 1.96 0

apeak
Y [g] 0.01 0.07 0% 0% 0.02 15 1.96 0

apeak
Z [g] 0 0.05 0% 0% 0.08 20 1.96 0

ω
peak
X [deg/s] 0.18 4.7 26% 46% 0.02 15 1.96 0.13

ω
peak
Y [deg/s] −2.2 6.0 34% 59% 0.02 22 1.96 0.17

ω
peak
Z [deg/s] −5.8 15.2 9% 14% 0.02 15 1.96 0.43

MI [g] 0 0.01 0% 0% 0.01 2 2.02 0

MIV [g] 0 0 0% 0% 0.01 3 2.02 0

RAV [rad/s] 0.02 0.03 0% 0% 0.01 14 1.96 0

Table A3. Statistical analysis for the intensity parameters in terms of: Bias, LoA (all expressed in
the measurement units indicated for each parameter), %CI Bias, %CI LoA and τ, number of outliers
removed from the 176 repetitions identified, t-value, and seBias. Data are reported for the upper
limb exercises: SF1—shoulder flexion lying down; SF2—shoulder flexion sitting with back support;
SF3—shoulder flexion sitting without back support; PS—wall push up * Heteroscedastic parameters.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

SF1

apeak
X [g] −0.02 0.09 0% 0% 0.01 7 1.96 0

apeak
Y [g] −0.01 0.28 1% 2% 0.01 2 1.96 0

apeak
Z [g] −0.02 0.18 1% 1% 0.04 3 1.96 0

ω
peak
X [deg/s] −9.0 25.5 14% 24% 0.02 10 1.96 0.7

ω
peak
Y [deg/s] −25.2 17.5 9% 16% 0.02 1 1.96 0.47

ω
peak
Z [deg/s] −6.2 23.0 13% 22% 0.02 13 1.96 0.67

MI [g] 0.02 0.06 1% 1% 0.01 2 2.02 0

MIV [g] −0.02 0.05 0% 1% 0.08 0 2.01 0

RAV [rad/s] −0.07 0.05 0% 0% 0.01 0 1.96 0

SF2

apeak
X [g] −0.03 0.10 0% 1% 0.01 6 1.96 0

apeak
Y [g] 0.03 0.17 0% 1% 0.01 3 1.96 0

apeak
Z [g] −0.01 0.14 0% 1% 0.06 6 1.96 0

ω
peak
X [deg/s] −8.8 23.2 12% 21% 0.02 0 1.96 0.63

ω
peak
Y [deg/s] −30.7 24.6 13% 22% 0.04 0 1.96 0.66

ω
peak
Z [deg/s] −6.6 22.0 12% 20% 0.02 0 1.96 0.61

MI [g] 0.01 0.04 0% 1% 0.05 1 2.01 0

MIV [g] 0 0.02 0% 0% 0.02 2 2.02 0

RAV [rad/s] −0.07 0.04 0% 0% 0.05 0 1.96 0
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Table A3. Cont.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

SF3

apeak
X [g] −0.03 0.16 0% 1% 0.01 6 1.96 0

apeak
Y [g] 0.01 0.17 0% 1% 0.08 3 1.96 0

apeak
Z [g] −0.02 0.15 0% 1% 0.01 6 1.96 0

ω
peak
X [deg/s] −10.2 25.2 13% 24% 0.02 0 1.96 0.63

ω
peak
Y [deg/s] −30.4 20.4 10% 18% 0.04 0 1.96 0.66

ω
peak
Z [deg/s] −5.26 23.1 12% 22% 0.02 8 1.96 0.61

MI [g] 0.02 0.05 0% 1% 0.04 1 2.01 0

MIV [g] −0.01 0.03 0% 0% 0.01 2 2.02 0

RAV [rad/s] −0.09 0.08 0% 0% 0.6 * 0 1.96 0

PS

apeak
X [g] −0.01 0.08 0% 0% 0.04 23 1.96 0

apeak
Y [g] 0 0.05 0% 0% 0.01 25 1.96 0

apeak
Z [g] 0 0.04 0% 0% 0.03 30 1.96 0

ω
peak
X [deg/s] −1.3 6.6 39% 68% 0.01 36 1.96 0.2

ω
peak
Y [deg/s] −4.4 10.7 62% 107% 0.04 48 1.96 0.3

ω
peak
Z [deg/s] −5.1 8.7 50% 87% 0.01 24 1.96 0.25

MI [g] 0 0.02 0% 0% 0.08 3 2.02 0

MIV [g] 0 0.01 0% 0% 0.01 3 2.02 0

RAV [rad/s] −0.02 0.04 0% 0% 0.01 25 1.96 0

Table A4. Statistical analysis for the intensity parameters in terms of: Bias, LoA (all expressed in
the measurement units indicated for each parameter), %CI Bias, %CI LoA and τ, number of outliers
removed from the 176 repetitions identified, t-value, and seBias. Data are reported for the upper limb
exercises: BD1—bird dog exercise using only the legs; BD2—bird dog exercise using only the arm;
LF—lateral flexion; RO—trunk rotation. * Heteroscedastic parameters.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

BD1

apeak
X [g] 0 0.04 0% 0% 0.01 8 1.97 0

apeak
Y [g] 0 0.1 0% 1% 0.08 0 1.96 0

apeak
Z [g] 0 0.04 0% 0% 0.01 6 1.97 0

ω
peak
X [deg/s] −3.9 12.4 78% 135% 0.03 0 1.96 0.39

ω
peak
Y [deg/s] 0 3.4 21% 37% 0.02 7 1.97 0.11

ω
peak
Z [deg/s] −1 6.3 40% 69% 0.01 2 1.96 0.2

MI [g] 0 0.03 0% 1% 0.01 0 2.1 0

MIV [g] 0 0 0% 0% 0.02 1 2.1 0

RAV [rad/s] −0.01 0.02 0% 0% 0.02 4 1.96 0
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Table A4. Cont.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

BD2

apeak
X [g] 0 0.03 0% 0% 0.01 6 240 0

apeak
Y [g] 0 0.03 0% 0% 0.01 1 179 0

apeak
Z [g] 0 0.05 0% 0% 0.02 2 208 0.01

ω
peak
X [deg/s] −0.3 3.7 24% 43% 0.02 2 224 0.39

ω
peak
Y [deg/s] −1.9 3.4 22% 38% 0.04 2 231 0.37

ω
peak
Z [deg/s] −0.9 2.8 19% 33% 0.03 3 209 0.06

MI [g] 0 0.01 0% 0% 0.03 0 18 0.15

MIV [g] 0 0 0% 0% 0.03 0 16 0.07

RAV [rad/s] 0 0 0% 0% 0.04 0 221 0.3

LF

apeak
X [g] 0 0.01 0% 0% 0.03 12 1.97 0

apeak
Y [g] 0 0.03 0% 0% 0.09 12 1.97 0

apeak
Z [g] 0 0.03 0% 0% 0.02 13 1.97 0

ω
peak
X [deg/s] −13.5 19.4 15% 27% 0.06 11 1.97 0.8

ω
peak
Y [deg/s] −0.0 5.2 43% 75% 0.01 16 1.97 0.22

ω
peak
Z [deg/s] −8.6 14.6 11% 20% 0.5 * 12 1.97 0.6

MI [g] 0 0 0% 0% 0.03 1 2.1 0

MIV [g] 0 0 0% 0% 0.01 0 2.1 0

RAV [rad/s] −0.09 0.08 0% 0% 0.6 * 0 1.96 0

RO

apeak
X [g] −0.03 1.40 0% 0% 0.03 12 1.97 0

apeak
Y [g] 0 0.01 0% 0% 0.09 12 1.97 0

apeak
Z [g] 0 0.03 0% 0% 0.02 13 1.97 0

ω
peak
X [deg/s] 0 0.0 115% 274% 0.06 11 1.97 0.8

ω
peak
Y [deg/s] −13.5 19.4 43% 75% 0.01 16 1.97 0.22

ω
peak
Z [deg/s] −0.0 5.2 119% 206% 0.5 * 12 1.97 0.6

MI [g] −8.61 14.56 0% 0% 0.03 1 2.1 0

MIV [g] 0 0 0% 0% 0.01 0 2.1 0

RAV [rad/s] −0.03 0.03 0% 0% 0.02 12 1.97 0
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Table A5. Statistical analysis for the quality parameters in terms of: Bias, LoA (all expressed in the
measurement units indicated for each parameter), %CI Bias, %CI LoA and τ, number of outliers
removed from the 176 repetitions identified, t-value, and seBias. Data are reported for the lower
limb exercises: KE1—knee extension lying down; KE2—knee extension sitting with a back support;
KE3—knee extension without back support; SQ—half squat supported on a table. Data are also
reported for the upper limb exercises: SF1—shoulder flexion lying down; SF2—shoulder flexion
sitting with back support; SF3—shoulder flexion without back support; PS—wall push-up. Data are
also reported for the trunk exercises: BD1—bird dog using only the legs; BD2—bird dog using only the
arms; LF—lateral flexion of the column; RO—rotation of the column. * Heteroscedastic parameters.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

KE1

LDLJ [a.u.] 0.06 0.32 1% 3% 0.01 0 1.96 0

PKROM [deg] 0.7 41.9 23% 40% 0.05 40 1.96 0.09

DTW [m/s2] −1.9 3.1 2% 3% 0.06 4 1.96 1.15

KE2

LDLJ [a.u.] 0.00 0.48 2% 4% 0.03 7 1.96 0.01

PKROM [deg] −8.9 15.9 9% 15% 0.01 4 1.96 0.43

DTW [m/s2] −2.5 5.0 30% 53% 0.06 41 1.96 0.15

KE3

LDLJ [a.u.] 0.00 0.42 1% 2% 0.01 2 1.96 0.01

PKROM [deg] −8.9 11.9 6% 13% 0.01 4 1.96 0.43

DTW [m/s2] −2.0 4.8 30% 50% 0.03 40 1.96 0.15

SQ

LDLJ [a.u.] 0 0.27 1% 2% 0.01 30 1.96 0

PKROM [deg] 20.9 21.8 12% 21% 0.7 * 14 1.96 0.62

DTW [m/s2] −1.7 2.6 20% 30% 0.6 * 44 1.96 0.08

SF1

LDLJ [a.u.] 0.03 0.15 0% 1% 0.08 1 1.96 0

PKROM [deg] 4.7 20.4 13% 23% 0.0 54 1.96 0.67

DTW [m/s2] −4.3 6.5 40% 70% 0.7 * 34 1.96 0.19

SF2

LDLJ [a.u.] 0.08 0.21 1% 1% 0.01 4 1.96 0

PKROM [deg] −4.0 34.9 19% 33% 0.0 4 1.96 0.96

DTW [m/s2] −3.5 4.8 30% 50% 0.7 * 33 1.96 0.14

SF3

LDLJ [a.u.] 0.08 0.41 2% 3% 0.08 1 1.96 0.01

PKROM [deg] −5.4 30.1 160% 290% 0.0 7 1.96 0.83

DTW [m/s2] −3.1 5.6 30% 60% 0.6 * 47 1.96 0.17

PS

LDLJ [a.u.] 0.03 0.31 1% 3% 0.07 272 1.96 0

PKROM [deg] 43.6 79.6 470% 82% 0.6 * 39 1.96 2.4

DTW [m/s2] −2.6 3.8 20% 40% 0.8 * 55 1.97 0.15

BD1

LDLJ [a.u.] 0.12 1.29 8% 14% 0.01 61 1.97 0.04

PKROM [deg] −5.8 33.4 216% 374% 0.03 54 1.96 1.09

DTW [m/s2] −2.3 4.2 29% 50% 0.7 * 73 1.97 0.14

BD2

LDLJ [a.u.] 0.11 0.92 6% 10% 0.03 58 1.97 0.03

PKROM [deg] 2.3 25.0 166% 288% 0.03 61 1.97 0.84

DTW [m/s2] −1.0 1.5 11% 19% 0.7 * 78 1.97 0.05
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Table A5. Cont.

Exercises Parameter Bias LoA CI% Bias CI% LoA Kendal’s τ Outliers t-Value se Bias

LF

LDLJ [a.u.] 0.08 0.5 4% 7% 0.06 13 1.97 0.02

PKROM [deg] −9.8 60.7 506% 877% 0.02 18 1.97 2.56

DTW [m/s2] −2.3 4.2 41% 72% 0.8 * 36 1.98 0.21

RO

LDLJ [a.u.] 0.29 1.15 9% 16% 0.07 16 1.97 0.04

PKROM [deg] 0.1 70.0 58% 1014% 0.02 17 1.97 2.96

DTW [m/s2] −2.3 3.13 28% 49% 0.7 * 27 1.97 0.14
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