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Abstract: Nickel–titanium (Ni-Ti) alloy has been selected as stent material given its good
biocompatibility. In this study, experimental research on this material was conducted using magnetic
field-assisted electrical discharge machining (EDM). The surface topography of the machined
workpiece was analyzed with a scanning electron microscope (SEM). Hydrophobicity was measured
by using an optical contact angle measuring instrument. The roughness values of different positions
on the surface were measured using a TR200 roughness instrument. Results showed that the
composite structure of solidification bulge–crater–pore–particle can be prepared on the surface
of the Ni-Ti alloy through magnetic mixed EDM using suitable processing parameters. Moreover, the
contact angle of the surface reaches 138.2◦.

Keywords: Ni-Ti alloy; surface characteristics; hydrophobic; magnetic mixed EDM

1. Introduction

The element composition of medical Ni-Ti alloys generally suggests a minimal difference between
nickel and titanium contents and the presence of only trace impurities. Ni-Ti alloy has been used
in biomedicine given its good shape-memory property, superelasticity, and excellent corrosion
resistance [1–3]. It is also an ideal material for vascular stents considering its excellent in-body
deformation and high strength. Among vascular stents, porous drug-eluting stents use surface
micropores, which have the efficacy of drug-eluting stents and the long-term safety of bare metal
stents for drug storage and release, thereby showing attractive prospects [4]. As a biological implant,
stents must demonstrate good blood compatibility, which is closely related to the hydrophobicity of
the material surface. The improvement of materials’ hydrophobicity can reduce the adhesion and
activation of platelets on the material surface [5,6]. Simultaneously, the good hydrophobicity of the
surface can also achieve a slow release of the drug and prolong its action time.

Ni-Ti alloy has the characteristics of low thermal conductivity, high ductility, and high viscosity.
The use of traditional machining methods causes high tool wear and work hardening, resulting
in the workpiece’s poor surface quality [7,8]. Electrical discharge machining (EDM) is based on
electrical corrosion to corrode a material [9,10]. EDM’s optimal advantage is that it can efficiently
process any conductive materials, regardless of their mechanical properties. It is only related to
the electrical conductivity and thermal properties of materials [11,12]. At present, few studies are
available on preparing multi-scale microporous and hydrophobic surfaces on a metal substrate through
EDM. Researchers have found that a surface has good hydrophobic properties when its structural
characteristics are composed of craters, bulges, micropores, and particles [13,14]. A new process of
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preparing hydrophobic surfaces with micropores through EDM is proposed in the present study on
the basis of previous studies that have shown that the surface of Ni-Ti alloy machined through EDM is
mostly composed of craters and bulges [15].

When a gas-rich working medium flows through the processing area, part of the gas dissolves
into the molten metal to form pores because additional magnetic mixing allows additional air to mix
into the working medium. Many pores are found on the surface of scaffolds, thereby enabling these
scaffolds to have a high drug loading and improved hydrophobicity. A magnetic stirring device was
added to the EDM machine to improve the microporous characteristics of the processed Ni-Ti alloy
surface. The effects of different parameters on the surface characteristics were investigated, and the
effect of surface morphology on the surface hydrophobicity of Ni-Ti alloy was analyzed.

2. Experimental Procedure

2.1. Equipment and Materials

The experimental device was modified on a DM71 (DM71, Changde Ltd., Taizhou, China)
precision EDM machine. The magnetic mixed device was installed on the machine table. The fluid
container was placed on the magnetic mixed device, thus quickly stirring the working fluid.
The workpiece was fixed onto the workpiece fixture, whereas the tool electrode was fixed onto
the tool fixture and then connected with the spindle. Figure 1 illustrates the structural principle.
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Figure 1. Schematic of the machine tool.

A special spark oil was selected as the working medium, and its index is listed in Table 1. The
workpiece material was Ni-Ti alloy, and its chemical composition is presented in Table 2. The tool
electrode material was red copper with the dimensions of Φ 16 mm × 150 mm. Table 3 displays the
thermal and physical properties of copper and Ni-Ti alloy. In Table 3, both materials exhibit a minimal
difference in density and melting point, but the thermal conductivity and specific heat capacity are
much higher in copper than in Ni-Ti alloy. This observation indicates that Ni-Ti alloy has poor heat
dissipation, and the same heat can persist on its surface for an extended period.

Table 1. Index of special electrical discharge machining (EDM) oil.

Index Viscosity
(40 ◦C)/(mm2·s−1)

Density (20
◦C)/(kg·m−3)

Aromatic
Content Pour Point/◦C

Typical data 2.20 0.79 ≤0.08 −10

Table 2. Chemical composition of Ni-Ti alloy.

Chemical Composition Ni Ti C O H

Content/% ≤50.9 >48 ≤0.05 ≤0.05 ≤0.003
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Table 3. Physical properties of materials.

Materials Density/(g·cm−3) Melting Point/◦C Thermal
Conductivity/(W·m−1·k−1)

Specific
Heat/(J·kg−1·◦C)

Copper 8.96 1083 383.3 410
Ni-Ti 6.45 1310 10 0.32

2.2. Experimental Parameters

The magnetic stirring device had a power of 30 W and a rotating speed of 2600 r/min. The effects
of peak current and pulse duration on surface microstructure, surface roughness, and static contact
angle were investigated. The EDM parameters were as follows: the peak currents were 1.5, 4.5, and
9 A; the pulse duration was 15, 30, 60, and 90 µs; the voltage was 50 V; and the pulse interval was 5 µs.

2.3. Sample Testing and Characterization

The samples were ultrasonically cleaned for 8 min, followed by air drying, and were examined
using a scanning electron microscope (SEM; Apreo, FEI Ltd., Hillsboro, OR, USA) and energy dispersive
spectroscopy (EDS; Apreo, FEI Ltd., Hillsboro, OR, USA) to analyze the surface topography and
elemental composition, respectively. The parameters of EDS were kv: 20, mag: 2000, takeoff: 36.1,
live time(s): 26.7, and amp time (µs): 7.68. The EDS adopts area analysis for the machined surface.
X-ray diffraction (XRD; D8 Venture, Bruker Ltd., Madison, WI, USA) analysis was used to analyze the
surface compounds. The static contact angle of the surface was measured using a video optical contact
angle measuring instrument (OCA15EC, Dataphysics Ltd., Stuttgart, Germany), and the volume
of the water droplet was 5 µL. Five positions on the surface were selected to measure the contact
angle, and the average value of the measurement results was obtained. A roughness meter (TR200,
Times Group Ltd., Shandong, China) was used to measure roughness. Five workpiece positions were
selected for measurement, and then the average value was determined. The samples were mounted,
polished, ultrasonically cleaned, and etched for a subsurface microstructure observation using the
SEM. The etchant consisted of 10 ml HF, 40 ml HNO3, and 50 ml deionized water.

3. Results and Analysis

3.1. Effect of Parameters on Surface Morphology

Two sets of data were selected for the EDM of Ni-Ti alloy without being magnetically mixed to
highlight clearly the role of magnetic mixing. The results are presented in Figure 2. Figure 2a shows
very few holes on the surface when the current is 1.5 A and the pulse duration is 60 µs. No stomatal
feature on the surface of Figure 2b is observed when the current is 9 A and the pulse duration is 30 µs.
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The surface micrographs of Ni-Ti alloy after magnetic mixed EDM under different processing
parameters are different. The surface contains a different number of pores under most processing
parameters. The formation of pores is due to a large amount of heat generated during the EDM of Ni-Ti
alloy, which causes the material to enter a molten state. At that time, gas dissolves into the molten
metal. The molten metal quickly cools and solidifies with the cooling flow of the working fluid, and
then some of the gas bubbles are expelled with the splash of the molten material. The unexpelled gas
is trapped in the re-solidified material, resulting in micropores [16]. The gas is mainly produced in two
steps. The first step occurs when the working fluid is quickly stirred using the magnetic stirring device,
which enables air to enter the liquid and the working fluid becomes rich in gas. When the gas-carrying
working fluid flows through the molten metal surface, the gas enters the molten metal. The other
step is when the insulating medium is ionized to produce hydrions during the EDM’s discharge
process. The hydrions in the discharge channel are reduced on the negative polarity surface to produce
hydrogen gas. Furthermore, a certain amount of working fluids evaporates at a high temperature to
form water vapor, while the liquid produces oxygen due to pyrolysis at a high temperature. These gases
also dissolve into the molten metal. Moreover, the velocity of the liquid passing through the processing
area is 1.8 m/s. Rapid cooling prevents the gas from overflowing in large quantities from molten
metals. Thus, the stomatal characteristics on the surface increase. However, the formation of pore
morphology is due to a large amount of gas mixed by magnetic stirring because, in the absence of
magnetic stirring, and even with the same process parameters, only an individual pore was found on
the surface [17]. Figure 2 shows that, when magnetic mixing is not used, only an individual pore is
obtained, or no pore exists on the surface.

Figure 3a–c indicates that the surface of Figure 3a contains many shallow pores. The result is
that the parameter of the peak current is 1.5 A and the pulse on time is 15 µs. A short discharge time
indicates a short time of gas entering the molten metal, resulting in a minimal gas entry. In addition,
the discharge pulse energy is small, and the pressure is inadequate to remove numerous materials.
Thus, additional molten materials are re-solidified on the surface. The surface forms numerous
shallow pores, and several solidification bulges are connected by craters. When the pulse duration
increases to 30 µs, the number of pores does not increase significantly, whereas the craters between the
solidification bulges are clearly enlarged to form gaps, and several spherical fragments are found in
the gap. This phenomenon occurs because, when the peak current is 1.5 A, the pulse energy increases
with the pulse duration. The gap between the solidification bulges expands and occupies the position
of the pores, and the pores do not increase considerably. Spherical debris is formed by re-solidifying
the material on the surface of the workpiece when it meets the flowing working fluid after gasification.
When the pulse duration is further extended to 60 µs, the number of pores does not increase, but the
gap between the solidification bulges is further enlarged. Moreover, the spherical debris in the gap
develops into a “coral reef” structure. This phenomenon occurs due to the continuous increase in pulse
duration, which expands the discharge channel and leads to low discharge energy, and most of the
molten materials remain on the surface, rather than being splashed. The continuously expanding gap
and “coral reef” morphology further occupy the position of the pores. Therefore, although the pulse
duration increases, the number of pores does not increase considerably. The “coral reef” is formed
by the re-solidified materials with random irregular debris, and the debris is re-solidified from the
splashed molten material or the vaporized material through rapid dielectric quenching [18].

Figure 3d–f illustrates that, when the pulse duration was 15 µs, the SEM found 14 holes on its
surface. These holes are due to the short discharge time and the minimal amount of gas to enter the
molten metal. In comparison with Figure 3a, the discharge pulse energy is larger, and the molten
material is removed. Thus, the number of shallow pores on its surface reduces. When the pulse
duration increases to 30 µs, the material removal rate increases with the continuous increment in pulse
discharge energy, and the shallow pores on the surface are invisible. Furthermore, given the increase
in pulse duration, the gas has additional time to enter the molten metal, and the depth of the pore
increases slightly. When the pulse duration further increases to 60 µs, the increase in pulse duration
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leads to additional gas that enters the molten metal, thereby forming deep pore characteristics on
the surface.

Figure 3g–i demonstrates that craters and pores are nonexistent on the surface when the peak
current is 9 A and the pulse duration is 15 µs. This result is due to the small pulse duration that leads to
minimal gas entering the molten metal. Simultaneously, considering the high discharge pulse energy,
the molten metal has been considerably removed before forming pores. Thus, no pore characteristic
is observed on the surface. This trend can be observed from the changes in Figure 3a,d. When pulse
duration increases to 30 µs, many deep pores are found on the surface, thereby increasing time and the
quantity of gas that enters the molten metal due to the increase in pulse duration. In comparison with
Figure 3e, the discharge pulse energy increases, resulting in the removal of the shallow surface pore
characteristics. Thus, the surface pore presents a deep state. When the pulse width increases to 60 µs,
additional gas enters the molten metal. The shallow pores on the surface are removed considerably, and
the depth of the pores on the surface is deeper than that of Figure 3h considering the large discharge
pulse energy.
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(f) I = 4.5 A, Ton = 60 µs; (g) I = 9 A, Ton = 15 µs; (h) I = 9 A, Ton = 30 µs; (i) I = 9 A, Ton = 60 µs.

3.2. Effect of Surface Topography on Contact Angle

Wettability is an important property of a solid surface. The wettability of a material surface is
typically measured by the static contact angle θ. That is, θ > 90◦ are hydrophobic surfaces, whereas
θ < 90◦ are hydrophilic surfaces. The intrinsic contact angle of Ni-Ti alloy is 70◦, and the surface
exhibits a hydrophilic characteristic. An appropriate surface morphology must be constructed to
improve the contact angle of Ni-Ti alloy and obtain improved hydrophobicity.

Figure 4 shows a remarkable difference in the contact angles of different surface morphologies.
When the pulse duration is 60 µs and the peak current is 1.5 and 4.5 A, the surface contact angles of
the two parameters are greater than 130◦, and the size of the solidification bulges on their surfaces is
large. The solidification bulges exhibited in Figure 4c are more regular and denser than those of Figure
f. Therefore, when the droplets come into contact with the surface, the bulges form support points to
lift the droplets, and the gap between the bulges closes considerable air. The difference in pressure
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prevents the droplet from fully entering the gap between the solidification bulges, thereby resulting
in the formation of an “air cushion” effect, which reduces the contact between the droplet and the
solid [19–21]. Furthermore, Figure 4c displays that the “coral reef” structure between the solidification
bulges is not in a single dimension. In addition, the droplets that enter the gap form the secondary
“air cushion” effect on the “coral reef” structure, and the surface of the material has changed from
hydrophilicity to hydrophobicity. The contact angle presented in Figure 4f is slightly smaller because
no clear demarcation line is found between the solidification bulges on the surface, and no special
morphology between the bulges is observed. However, a certain number of pores are found on the
surface. In addition, Figure 3f illustrates that the pore size of the surface is small and has a certain
depth. Thus, when the droplet is on its surface, the bulges form support points to lift the droplets,
and the droplet cannot enter into the micropore completely given the difference in pressure. The “air
cushion” effect is formed and transformed into a hydrophobic surface.

The surface morphology depicted in Figure 4a,b is similar to that of Figure 4c, but the size of the
solidification bulges increases with the pulse duration. The solidification bulges in Figure 4a,b are
smaller. When a droplet is acted upon by gravity, the contact area is small and the pressure is high.
Thus, small solidification bulges can pierce the droplet and lead to a large area in contact with the
droplet and therefore a small contact angle.

Figure 4d,e shows that the contact angle of the surface with several shallow pores is below 90◦;
this surface is not hydrophobic. This condition is due to several shallow pores on their surfaces,
thereby enabling droplets to easily enter the shallow pores on this type of surface given gravity and
capillary forces [22]. Therefore, the contact area between the droplet and the solid increases, and
catching sufficient air to form the pressure difference is not feasible; thus, no “air cushion” effect is
observed [19–21]. The contact angle is small considering the large contact surface between the droplet
and the solid. However, given the change in the surface microstructure, the contact angle remains
slightly improved in comparison with the intrinsic contact angle. In addition, the surface morphology
depicted in Figure 4d changes minimally, that is, neither the large size of the solidification bulges nor
the formation of a large number of shallow pores; therefore, the contact angle increases slightly. When
the peak current is 4.5 A, the pulse duration is 15 and 30 µs, and the surface morphology contains
numerous shallow pores. Thus, their contact angles are nearly the same, and the surface remains
hydrophilic. However, when the pulse width is 60 µs, many deep pores are formed, and the contact
angle is considerably increased by the “air cushion” effect.

When the peak current and pulse duration are 9 A and 15 µs, respectively, Figure 4g shows
the formation of large solidification bulges, but these bulges are only disorderly overlapping.
No boundaries are found between these bulges, and no pores are formed on the surface. When the
droplet is on its surface, the height of the convex overlap is different, thus leading to the different
heights of the bulges that support the droplets, and the surface is only slightly hydrophobic. With the
increase in the pulse duration, the surface morphology also changes considerably. Figure 4h,i indicates
similar surface morphologies, but their contact angles differ remarkably because, when the pulse
duration is 30 µs, the surface morphology contains additional shallow pores. Moreover, the droplets
will be in contact with additional solids, and the contact angle will be smaller than the one displayed
in Figure 4g. When the pulse duration increases to 60 µs, the depth of the pores deepens, and the local
“air cushion” effect occurs. The contact angle is larger than the one presented in Figure 4g.
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Figure 3 shows that the number of pores on the surface increases when the peak currents are 4.5
and 9 A given the increase in pulse duration. Figure 4 illustrates that, when the peak currents are
1.5 and 4.5 A, the hydrophobicity of the surface increases with the pulse duration. Considering that
the peak current is less than 1.5 A, the discharge becomes atypical, and the processing efficiency is
extremely low. Only the pulse duration is considered to continuously increase to observe the change in
surface characteristics. When the pulse duration is increased to 90 µs, the results obtained are depicted
in Figure 5. Figure 5b demonstrates a high multiple surface topography under the peak current of
1.5 A.

Figure 5 shows that, when the pulse duration increases to 90 µs, the contact angles of the three
currents are reduced. When the peak current and pulse duration are 1.5 A and 90 µs, respectively,
the size is slightly larger in the solidification bulges than with the pulse duration of 60 µs. However,
Figure 5b displays no “coral reef” structure on the surface. Therefore, a large solidification bulge
indicates a large contact area. Furthermore, considering that no “coral reef” structure is found on
the surface, the secondary “air cushion” effect cannot be formed, thereby reducing the contact angle.
When the peak current is 4.5 A, additional craters are found on the surface. The surface morphology
is poor, and the air cushion effect cannot be formed. Thus, the contact angle decreases considerably.
When the peak current is 9 A, irregular discharge traces are found on the surface and the number of
pores decreases. Thus, the “air cushion” effect is reduced, and the contact angle is also reduced.
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3.3. Element Analysis and XRD Analysis of Workpiece Surface

The analysis presented in Section 3.2 suggests that the contact angles of different surface
morphologies are considerably different. Thus, the two samples with the largest difference in contact
angles were selected for surface element analysis. The analysis area is illustrated in the white box in
Figure 3c,h, and the results are presented in Figure 6.

The very high temperature of plasma instantly melted and vaporized the material during the
discharge process. The copper electrode and Ni-Ti workpiece were eroded, and complex chemical
reactions between the vaporized gas and the molten pool were observed. Therefore, the existence of
Cu was found on the surface of the workpiece. As a result of magnetic mixing, the high cooling rate of
liquid dielectric resulted in Cu diffusion on the surface, rather than it being flushed away. The presence
of O can be attributed to decomposing water in the discharge gap. Figure 6 shows that different surface
topographies have various C contents, and the surface morphology exhibited in Figure 6b contains
“coral reef” with the highest C contents on the surface. This result is due to its processing parameters,
I = 1.5 A and Ton = 60 µs, and to the large pulse duration, thereby leading to expanding discharge
channels. The corrosion products are not thrown out in time but are rather re-solidified on the surface.
Simultaneously, given the poor thermal conductivity and extensive pulse width of Ni-Ti alloy, the
working fluid decomposes considerable C for the highly active Ti to absorb the considerable C in
the process of re-solidification. Thus, the C content on the surface is high. Figure 6a,b indicates that
the Ni content is different under various processing parameters because Ni has a lower evaporation
temperature than Ti. Moreover, with the increase in the pulse duration, additional Ni is removed from
the surface by the liquid dielectric. In addition, TiC substances are found on the surface of Figure 6c,d,
which will further decrease the content of Ni. Thus, the Ni content decreases.

Ni-Ti alloy has good biocompatibility and corrosion resistance considering the natural titanium
film found on its surface. However, the natural titanium film cannot withstand the long-term erosion
of human physiological body fluid and blood. Once the natural titanium film breaks down, nickel
ions will precipitate, and excessive nickel ions will cause anaphylaxis and tissue necrosis [23]. The
TiC prepared on the surface of Ni-Ti alloy can effectively improve its biocompatibility and mechanical
strength, and inhibit nickel ion precipitation [24]. Figure 6c,d presents the XRD of two characteristic
surfaces. TiC strengthening phases are found on the machined surface, thereby confirming that C on
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the workpiece surface exists in the form of a compound. The positions of TiC diffraction peaks in the
two graphs are the same but the intensity is different, indicating that the content of TiC varies.
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3.4. Subsurface Microstructure

Two specimens with the largest difference in contact angle were selected for the cross-section
analysis. The results are shown in Figure 7.
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The recast layer depicted in Figure 7b is non-uniform, but this layer is thicker than the one
shown in Figure 7a because Figure 7b exhibits a large pulse duration. Moreover, when the duration
of discharge is extended, melting isothermals penetrate further into the material interior, thereby
resulting in the molten zone’s further extension into the material and a large recast layer thickness.
The surface topography is displayed in Figure 3c. This layer is composed of solidification bulges, “coral
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reef,” micropores, and craters. Thus, the thick part of the recast layer is the solidification bulge, and the
thinner part is the “coral reef.” The contact angle can be considerably increased because this unique
structure can seal considerable air and form an “air cushion” effect. Figure 7a indicates that numerous
materials are removed given the high pulse discharge energy, and the cross-section morphology is
uniform and cannot form the “air cushion” effect.

3.5. Relationship of Surface Roughness and Contact Angle

Figure 8a illustrates the influence of processing parameters on the contact angle. When the peak
currents are 1.5 and 4.5 A, the contact angle increases first and then decreases with the increase in
pulse duration. According to the analysis in Section 3.2, this phenomenon occurs because the surface
morphology has dramatically changed with the increase in pulse duration. When the pulse duration
is below 60 µs, the size of the solidification bulges increases with the pulse duration, but the surface
that forms the “air cushion” effect has not formed or is insufficiently large. This phenomenon leads to
a large contact area between liquids and solids so that the contact angle increases are insufficiently
large. Although the size of the solidification bulges is large when the pulse duration increases to
90 µs, the contact angle decreases differently with the decrease or absence of the “air cushion” effect.
When the peak current is 9 A, the contact angle varies irregularly with the increase in pulse duration.
However, when the pulse durations are 60 and 90 µs, the law is consistent with the law of other
parameters because the suitable surface can form an “air cushion” effect, which helps enhance the
contact angle. Within the range of parameters used in this study, the optimum parameters for preparing
a hydrophobic surface are I = 1.5 A, Ton = 60 µs, and V = 50 V. However, considering the number of
pores on the surface to facilitate drug loading, the parameters are I = 4.5 A, Ton = 60 µs, and V = 50 V.
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Figure 8b depicts the effect of processing parameters on surface roughness. The pulse energy
enlarges with the increase in the pulse duration and peak current. Thus, surface roughness increases
accordingly. Several researchers have suggested that a contact angle increases with roughness [25].
However, Figure 8a,b shows that, when the pulse duration is between 60 and 90 µs, the surface
roughness increases with the pulse duration, but the contact angle decreases with the increase in the
pulse duration. Under the same pulse duration, the peak current and the roughness of the surface are
large, but the contact angle is not necessarily large. The experimental results show that surface contact
angles are not entirely increasing with surface roughness. Therefore, only suitable surface roughness
and surface topography can achieve improved hydrophobicity.
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4. Conclusions

This study investigated the processing of Ni-Ti alloy through magnetic mixed EDM with different
parameters and carried out an analysis of its surface properties. The key results are summarized
as follows.

(1) When the peak currents are 4.5 and 9 A and the pulse durations are 30 and 60 µs, the porous
surface can be prepared on the surface of Ni-Ti alloy through magnetic mixed EDM. The composite
structure of solidification bulge–crater–pore–particle can be prepared on the surface of Ni-Ti alloy
through magnetic mixed EDM with suitable processing parameters.

(2) The processing parameters considerably affect the surface morphology. Different processing
parameters can obtain various surface microstructures, and the surface microstructures directly
affect the hydrophobicity of the surface. When the peak current and pulse duration are 1.5 A and
60 µs, respectively, the surface is composed of many large-sized solidification bulges and “coral reef”
structures, and the contact angle of the surface can reach 138.2◦. However, considering the number
of pores on the surface to facilitate drug loading, the optimal parameters of this study are I = 4.5 A,
Ton = 60 µs, and V = 50 V.

(3) The C content on the surface of the workpiece increases rapidly with the increase in the pulse
width and the decrease in the peak current.
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