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Abstract Detecting danger is key to the survival and success of all species. Animal nervous and

immune systems cooperate to optimize danger detection. Preceding studies have highlighted the

benefits of bringing neurons into the defense game, including regulation of immune responses,

wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in

neuroimmune communication and assert that neuronal participation in the immune response is

deeply beneficial in each step of combating infection, from inception to resolution. Despite the

documented tight association between the immune and nervous systems in mammals or

invertebrate model organisms, interdependence of these two systems is largely unexplored across

metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in

the context of danger detection and advocates for the use of non-model organisms to diversify the

field of neuroimmunology. We identify key taxa that are ripe for investigation due to the

emergence of key evolutionary innovations in their immune and nervous systems. This novel

perspective will help define the primordial principles that govern neuroimmune communication

across taxa.

1.Introduction: animal nervous and immune systems
communicate to sense danger
As multicellular organisms evolved increasing complexity, molecular mechanisms for sensing the

environment arose in both the immune and nervous systems. Although the immune and nervous sys-

tems are traditionally studied independently, growing evidence suggests shared evolutionary

requirements drove integration of both systems at the genomic, molecular, cellular, and tissue levels.

In mammals, the immune and nervous systems deploy coordinated mechanisms for pathogen recog-

nition and control. Notably, reciprocal regulation occurs at several layers: neuronal signals fine-tune

the strength of immune responses, whereas mechanisms traditionally associated with immunity

mediate neural growth, development, and function (Aurora and Olson, 2014; Cardoso et al., 2017;

Chu et al., 2020; Foster et al., 2017; Gonzalez-Figueroa et al., 2021; Pinho-Ribeiro et al., 2017;

Ramirez et al., 2020; Zigmond and Echevarria, 2019). These bidirectional, complex interactions

are the product of millennia of coevolution and lie at the heart of many physiological processes

(Chesné et al., 2019; Huh and Veiga-Fernandes, 2020; Jain et al., 2020). Throughout metazoan

evolution, the immune and nervous systems have developed into complementary processes to

achieve an imperative function: sense the environment and detect danger. As a result, neuroscient-

ists and immunologists continue to uncover molecules with dual functions in both physiological sys-

tems (Table 1 and reviewed by Kolosowska et al., 2019; Minnone et al., 2017; Ni and Gilbert,

2017; Stevens et al., 2007; Yang et al., 2016).

Neuroimmune cell units (NICUs) have been described in mammals as discrete anatomical loca-

tions where immune and neuronal cells physically interact and regulate tissue physiology and
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defense (Godinho-Silva et al., 2019). Mammalian neuroimmune interactions are mediated by solu-

ble factors such as neurotransmitters, neuropeptides, and cytokines (Table 1 and reviewed in

Trakhtenberg and Goldberg, 2011). Neurons innervate lymphoid organs, thereby influencing

immune cell migration and development in mammals (Huang et al., 2021). In turn, specialized

immune cells are present throughout nervous tissues where they influence regenerative capabilities

as well as regulate pain in response to noxious stimuli (Bloom, 2014; Jung et al., 2017; Pinho-

Ribeiro et al., 2017; Huang et al., 2021). Specifically, in mammals, nociceptive neurons in the lung,

gut, and skin detect bacteria and release neural mediators that bias the type and magnitude of the

immune response toward neuroprotection from infection (Baral et al., 2018; Chiu et al., 2013;

Gabanyi et al., 2016; Matheis et al., 2020). Despite the growing appreciation for NICUs in mam-

mals, NICUs are largely unexplored across metazoans, although the soluble molecules and their

homologs that mediate communication within NICUs are conserved across animals (Jékely, 2013;

Liongue et al., 2016; Mittal et al., 2017; Roch and Sherwood, 2014).

Preliminary work in invertebrate model organisms suggests that cooperation between the ner-

vous and immune systems is a central aspect of animal life that extends beyond mammals. For exam-

ple, C. elegans employ sensory neurons to mediate avoidance behavior in response to pathogenic

bacteria and to suppress deleterious innate immune responses (Cao and Aballay, 2016;

Hoffman and Aballay, 2019). Several branches of the innate immune system are missing in C. ele-

gans and identification of pattern recognition receptors (PRRs) in nematodes is still elusive. Neurons

and neurotypical receptors such as G-protein-coupled receptors (GPCRs) appear to compensate for

this absence and govern innate immunity in C. elegans (Irazoqui et al., 2010; Pujol et al., 2001;

Wani et al., 2020; Venkatesh and Singh, 2021). Another example may be Hydra, another basal

metazoan with a simple body plan where the TLR signaling pathway appears to have degenerated

and neuronally secreted antimicrobial neuropeptides sense and control microorganisms

(Augustin et al., 2017; Table 1). Thus, while morphologically simple animals like C. elegans and

Hydra may not have discrete anatomical associations of immune effector cells and neurons such as

mammalian NICUs, their neurons directly regulate tissue physiology and immunity. Of note, both C.

elegans and Hydra neurons have been mapped in great anatomical detail, and therefore, neuroim-

mune interactions at these sites may be straight forward to identify. In Drosophila, sensory neurons

contact hemocytes (a diverse population of macrophage-like cells) in hematopoietic pockets and

regulate proliferation, survival, and localization (Cattenoz et al., 2020; Makhijani et al., 2017) per-

haps representing small, simple NICUs. Thus, although this field remains largely unexplored, we pro-

pose that NICUs are a fundamental aspect of animal physiology and are present in specialized

configurations with several degrees of complexity across all metazoans. Given that adaptive immune

responses emerged relatively recently (~500 million years ago [mya]), ancient NICUs must have

evolved exclusively from the interactions between innate immune cells and neurons or neuroimmune

cells (Cooper and Alder, 2006). Despite these hints from non-mammalian model species, the neuro-

immunology field still lacks a broader phylogenetic perspective.

Given the functional similarities, frequent crosstalk, and evolutionary overlap between the nervous

and immune systems, this review highlights how the tight evolution of immune cells and neurons in a

pathogen-laden environment led to neuroimmune cooperation early in metazoan evolution.

2.Sensing danger: what came first, immune cells or neurons?
Immune and neural responses are evident even in single-celled organisms, which must constantly

sense and respond to the environment. The single-celled protozoan Stentor coeruleus exhibits

behaviors to environmental cues that are both predictable and can be learned by habituation

(Dexter et al., 2019; Tang and Marshall, 2018; Wood, 1970). Furthermore, S. coeruleus demon-

strates immune capabilities such as wound healing and curation of a microbiome that is separate

from the environment (Blauch et al., 2017; Lanzoni et al., 2019). The importance of bacterial sym-

bionts is highlighted by choanoflagellates, which require bacterially derived lipids to create multicel-

lular colonies (Woznica et al., 2016). The origin of multicellularity allowed for the evolution of

specialized cell types. As multicellular animals became more complex, the need arose to transmit

information among cell types and tissues, ultimately driving evolution of the complex immune and
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Table 1. Molecules with dual roles in the immune and nervous systems.

Factors classically associated with immune functions

Protein Immune system properties Nervous system properties References

Antimicrobial peptides (AMPs) . Secreted by epithelial and

phagocytic cells
. Disrupt microbial mem-

branes leading to destruc-

tion of pathogen

. Antimicrobial in nervous

system niches
. Control chemotaxis of

immune cells and astroglia
. Mediate iron homeostasis
. Modulate nerve impulses
. Implicated in aging and

neurodegeneration

Hanson et al., 2019; Lezi et al., 2018;
Su et al., 2010; Zasloff, 2002

Cytokines TGF-b . Produced by all leukocytes
. Regulates hemocyte

proliferation
. Generally anti-inflammatory
. Inhibits B cell proliferation
. Influences development of

Tregs and TH17 cells

. Produced by neurons

. Controls feeding behavior

. Angio-suppressive roles in

the brain
. Regulates neuronal devel-

opment and axon

outgrowth

Arnold et al., 2014; Arrieta-
Bolaños et al., 2012; Eisenstein and
Williams, 2009; Hirota et al., 2015;
Makhijani et al., 2017;Morishima et al.,
2009; Singh and Aballay, 2019;
Yi et al., 2010; You et al., 2008;
Zheng et al., 2006

IL-4, IL-13 . Induce TH2 antiparasitic

immunity, tissue repair,

allergic responses

. Regulate spatial learning

and neurogenesis
. Bias astrocytes and micro-

glia toward M2/neuropro-

tective states
. Mediate oligodendrocyte

growth and re-myelination

Fallon et al., 2002; Gadani et al., 2012;
Kolosowska et al., 2019;
McKenzie et al., 1998; Yang et al.,
2016; Zhang et al., 2019a

TNF-a . Pro-inflammatory functions . Expressed in neurons after

damage for acute

protection
. Long-term presence in the

CNS is associated with

decreased proliferation

and neurogenesis
. Alters permeability of the

blood-brain barrier
. Induces changes in sleep

behavior

Borsini et al., 2015; Lambertsen et al.,
2009; Liu et al., 1994; Takei and
Laskey, 2008; Vanderheyden et al.,
2018

Complement
System
Proteins

Complement
factors

. Opsonize pathogens for

activation of innate and

adaptive immune cells

. Anti-inflammatory roles

during CNS infection
. Regulate synaptic pruning

of microglia expressing C3

receptor
. Regulate adult neurogene-

sis by causing increased

maturation and migration

of progenitors in SVZ and

dentate gyrus

Hammad et al., 2018; Nonaka, 2001;
Rupprecht et al., 2007; Shinjyo et al.,
2009; Stevens et al., 2007

Perforin-like
factors

. Pore-forming proteins

released by cytotoxic

leukocytes
. Form the membrane attack

complex

. ASTNs and BRINPs are

expressed in CNS and

associated with

neurodevelopment

Ni and Gilbert, 2017

Table 1 continued on next page
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Table 1 continued

Factors classically associated with immune functions

Protein Immune system properties Nervous system properties References

Pattern
Recognition
Receptors

Toll-like
receptors
(TLRs)

. Detect extra- and intracel-

lular pathogen and danger

associated molecular

patterns.

. Regulate neuronal devel-

opment, dendrite/axon

growth and synapse

formation
. Recognize neurotrophins
. Sensitize nociceptive

neurons

Chen et al., 2019c; Donnelly et al.,
2020; Foldi et al., 2017;
Franzenburg et al., 2012;
Lemaitre et al., 1996

Nod-like
receptors
(NLRs)

. Detect intra-cellular patho-

gen and danger associated

molecular patterns.

. Immunomodulate glial

cells
. Prevents necrosis of

neurons

Gharagozloo et al., 2017

Peptidoglycan
recognition
protein LC
(PGRP-LC)

. Detects peptidoglycan . Controls presynaptic

homeostasis

Harris et al., 2015

Formyl peptide
receptors
(FPRs)

. Expressed on macrophages

. Detect pathogens and

induce inflammation

. Vomeronasal sensory neu-

rons receptors

Dietschi et al., 2017

Histamine . Released by mast cells
. Mediates vasodilation and

itch

. Modulates neurogenic

inflammation and nocicep-

tive inflammation and has

been implicated in

migraines
. Induces NGF expression

by peripheral nociceptors

Yuan and Silberstein, 2018

Factors classically associated with neuronal functions

Transient receptor potential
(TRPs)

. Expressed by lymphocytes,

dendritic cells, neutrophils,

monocytes, macrophages,

and mast cells.
. Cause changes in intracel-

lular Ca2+, which influences

cell migration, cytokine

production, phagocytosis

and proliferation

. Expressed by distinct sub-

sets of sensory cells
. Mediate neuronal depolar-

ization and release of

CGRP

Alpizar et al., 2017; López-
Requena et al., 2017; Parenti et al.,
2016

Nerve growth factor (NGF) . Released by mast cells, B

lymphocytes.
. Increases during

inflammation
. Receptor (TrkA) is

expressed throughout

immune system
. Transduced NGF signal is

anti-inflammatory

. Stimulates growth, survival,

and differentiation of

neurons

Minnone et al., 2017; Pinho-
Ribeiro et al., 2017; Takei and Laskey,
2008

Brain-derived neurotrophic
factor (BDNF)

. Implicated in lymphocyte

development and survival

. Regulates neuron growth,

survival and synapse

modulation

Fauchais et al., 2008; Lee et al., 2012;
Linker et al., 2015; Schuhmann et al.,
2005

Table 1 continued on next page
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nervous systems present in modern-day mammals. But which appeared first in eukaryotes: immune

cells or neurons? Here we propose that a cell with antimicrobial or phagocytic capabilities, whether

it was an immune cell or a sensory neuron, predates the emergence of the first in sensu stricto neu-

ronal cell type.

We propose two hypothetical scenarios in which evolutionary pressure from microbes coerced

ancient, conserved molecules like PRRs, soluble factors (i.e., cytokines, chemokines, and neuropepti-

des), and ion channels, to coordinate communication between neurons and immune cells forming

NICUs over 700 mya (Figure 1). This is, in part, based on observations in MyD88-deficient Hydra,

demonstraiting that TLR signaling is required for pathogen defense and microbiota colonization and

Table 1 continued

Factors classically associated with immune functions

Protein Immune system properties Nervous system properties References

Olfactory receptors . Activate pulmonary macro-

phage motility and CCL2

expression
. Highly expressed in sec-

ondary lymphoid organs

. Detect chemical odorants Heimroth et al., 2020; Li et al., 2013

Calcitonin gene related
peptide (CGRP)

. An anti-inflammatory cyto-

kine that promotes type 2

immunity
. Decreases antigen presen-

tation by MHC II, and

inflammatory cytokine

expression
. Increases expression of the

anti-inflammatory cytokine

IL-10
. Potent vasodilator
. Released by T and B

lymphocytes

. Mediates pain transduc-

tion by nociceptors
. Regulates regeneration of

peripheral neurons

Chung, 2017; Kerage et al., 2019;
Pinho-Ribeiro et al., 2017; Xu et al.,
2019

Substance P . Secreted by microglia, T

cells, macrophages, den-

dritic cells and eosinophils
. Affects cytokine expression

by binding to neurokinin

receptor

. Neuropeptide involved in

nociception and neuroin-

flammation as well as

hypotension and muscle

contraction

Mashaghi et al., 2016

Dopamine . Lymphocytes and myeloid

cells express the dopamine

receptor
. Enhances lymphocyte che-

motaxis and maturation
. Produced by dendritic cells

. Neurotransmitter Kerage et al., 2019; Matt and Gaskill,
2020

DSCAMs . Acts as a pattern recogni-

tion receptor that mediates

phagocytosis in arthropods

. Regulates axon/dendrite

segregation during neuro-

nal development

Goyal et al., 2019; Hattori et al., 2009;
Ng and Kurtz, 2020

NCAM/CD56 . Present on NK cells, acti-

vated T cells and other

cytotoxic cell subsets

. Neuronal cell migration

and synaptic plasticity

Van Acker et al., 2017; Vukojevic et al.,
2020

SNARE . Exocytosis of perforins,

granzymes, and cytokines

. Exocytosis of

neurotransmitters

Ramakrishnan et al., 2012; Tang, 2015
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Figure 1. Hypothetical pathways that lead to the emergence of NICUs in early metazoans. (A) An ancient metazoan cell under microbial pressure

acquires ion channels gaining the ability to detect danger (Elkhatib et al., 2019; Senatore et al., 2016). Eventually neuropeptides that have

antimicrobial functions are released in response to microbes (Augustin et al., 2017). Innate immune cells gain neuropeptide receptors that trigger

cytokine release (Pinho-Ribeiro et al., 2017). Finally, neuronal cells gain the ability to detect and respond to immune signaling cytokines

Figure 1 continued on next page
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by the discovery of voltage-gated calcium channels in early metazoans known to regulate immune

responses to pathogens (Franzenburg et al., 2012; Gupta et al., 2009; Rosenstiel et al., 2009;

Senatore et al., 2016). In the first scenario (Figure 1A), an ion channel gains the ability to sense

microorganisms, ultimately changing the membrane potential and signaling the cell to release neuro-

peptides. This phenomenon is highlighted in placozoa where Na+ channels sense changes to the

microenvironment related to microbes, such as pH (Brunet and Arendt, 2016; Elkhatib et al.,

2019; Moran et al., 2015). Over evolutionary time, neuropeptides acquire antimicrobial functions

that affect pathogens usually encountered by the cell as revealed in Hydra studies (Augustin et al.,

2017). Surrounding cells with immune functions gained expression of neuropeptide receptors, tun-

ing into danger signals from ion channel expressing proto-sensory neuronal cells and releasing cyto-

kines (Satake et al., 2019). In turn, the proto-sensory neuron eventually may gain expression of

cytokine receptors to monitor signals from immune cells linking immune ligand receptor binding on

neuronal cells’ surface to neuropeptide secretion as reported in studies into pain and itch

(Chatterjea and Martinov, 2015; Cunha et al., 2008; Oetjen et al., 2017; Pinho-Ribeiro et al.,

2017; Salvador et al., 2021). Together, neuropeptides and cytokines synchronize antimicrobial

responses of neuronal and immune cells, forming a simple NICU.

In an alternate, inverse scenario (Figure 1B), an ancestral metazoan cell expresses PRRs and links

pathogen associated molecular patterns (PAMPs) to secretion of soluble immune factors such as

cytokines and antimicrobial peptides (AMPs). This chain of events is well-studied in PRRs, which are

present in plants as well as animals (Boller and Felix, 2009; Rosenstiel et al., 2009). We propose

that in a microbe-rich environment, the proto-immune cell releases soluble mediators to defend the

host against pathogens and/or sense microbiota. Interestingly, AMPs, which potently destroy bacte-

ria, are lost in the genomes of some fly lineages that live in sterile environments accentuating the

importance of microbial pressure in immune repertoire evolution (Choi et al., 2015; Hanson et al.,

2019). Notably, AMPs have been shown to regulate sleep and memory (Barajas-Azpeleta et al.,

2018; Sinner et al., 2021; Table 1). As explained above, neuronal cells may simultaneously detect

danger using prototypical immune receptors to signal the secretion of neurotransmitters which sub-

sequently evolve to reciprocally modulate immune cell function (Cunha et al., 2008; Oetjen et al.,

2017; Pinho-Ribeiro et al., 2017).

These two scenarios are likely not mutually exclusive and may have occurred concurrently in early

metazoans (Figure 1C). Both PRRs and ion channels are evolutionarily ancient (Rosenstiel et al.,

2009; Senatore et al., 2016). Even studies into plants show cooperation of calcium channels and

PRRs to regulate innate immunity (Jogawat et al., 2020; Tian et al., 2019). Furthermore, soluble

mediators that have been traditionally classified as either neuronal or immune factors are being

found to serve both systems (Table 1). We may never glean conclusive evidence as to whether PRRs

or ion channels evolved and impelled mutually beneficial communication between early neuronal

and immune cells. We postulate on the sequence of events using known interactions from lower

metazoans and resulting NICUs from mammals to identify gaps in our current understanding of neu-

roimmune communication. This novel phylogenetic perspective will help define the elemental princi-

ples that govern neuroimmune communication across taxa.

The dual roles of ion channels in the nervous and immune systems may also reflect ancient evolu-

tionary pressures (Table 1 and Figure 2). In the calcium-rich ‘primordial soup’, injury to a single-

celled eukaryote’s plasma membrane would result in rapid depolarization via environmental calcium

influx. Signaling via this swift change in ion concentration links cellular repair as well as endo- and

exocytosis to action potentials (Brunet and Arendt, 2016). In multicellular organisms, calcium influ-

xes and depolarization also occur, but result in signals that affect both local and distant cells. Thus,

Figure 1 continued

(Chatterjea and Martinov, 2015; Chu et al., 2020). (B) An ancient metazoan cell acquires pattern recognition receptors and gains the ability to detect

microbes (Boller and Felix, 2009; Rosenstiel et al., 2009). Eventually soluble immune mediators are released in response that trigger antimicrobial

functions (Hanson et al., 2019). Neurons gain immune ligand receptors that trigger neuropeptide release (Lezi et al., 2018). Finally, immune cells gain

the ability to detect and respond to neuronally derived neuropeptides (Chu et al., 2020; Foster et al., 2017). (C) An ancient metazoan cell under

microbial pressure acquires pathogen pattern recognition receptor pathways concurrently with acquisition of ion channels that, under selective pressure

gain the ability to detect danger (Tian et al., 2019). Eventually soluble neuroimmune mediators are secreted in response to pathogens modulate

functions of neuronal and immune systems.
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the role of membrane depolarization in cell defense may have predated the need to communicate

across an organism.

During infection, not only are microbes present, but the extracellular microenvironment is also

chemically altered (e.g., oxygen levels, pH, osmotic pressure) (Alam et al., 2016). Given the concur-

rence between microbes and chemical factors, it is not surprising that proteins involved in sensing

danger evolved to regulate both neural and immune processes (Elkhatib et al., 2019). One example

is the transient receptor potential (TRP) channels, which are conserved across Metazoa (Table 1 and

Figure 2). TRPs respond to a myriad of environmental cues including chemical, mechanical, and ther-

mal stimuli and are expressed in both neurons and immunocytes (López-Requena et al., 2017;

Lynagh et al., 2018; Nilius and Owsianik, 2011; Parenti et al., 2016). TRPs have been linked to

Figure 2. Emergence of the immune and nervous systems predates the emergence of Metazoa. Analysis of

genome sequences indicates that much of the cellular machinery involved in extant nervous and immune systems

was present in basal metazoan lineages. This includes ion channels, pattern recognition receptors, and

antimicrobial peptides (Franzenburg et al., 2012; Rosenstiel et al., 2009; Senatore et al., 2016). The

evolutionary origin of significant innovations is indicated by dots (immune system in orange; nervous system in

purple). Centralization of nervous systems within bilaterian phyla is indicated by small brain icons. Note CNS

structures may be very diverse among invertebrate groups. Asterisk indicates possible independent, convergent

evolution of Ctenophore neurons, a current point of debate (Moroz et al., 2014).
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avoidance behavior in C. elegans, in which TRPV proteins monitor oxygen levels to avoid hyperoxia

and specific pathogens (Chang et al., 2006; Singh and Aballay, 2019). Similarly, in planaria, TRPA1

directly mediates extraocular light avoidance behavior (Birkholz and Beane, 2017). Finally, TRPs

mediate inflammatory responses by controlling neuronal release of neuropeptides, such as calcitonin

gene-related peptide (CGRP), which subsequently regulates immune response and cytokine secre-

tion (Khalil et al., 2018; Marics et al., 2017; Nagashima et al., 2019; Yaraee et al., 2003;

Zhang et al., 2018; Table 1). The reciprocal relationship between neuronal and immune proteins

will be explored here in greater depth in Section 8. Furthermore, the use of immune and neuronal

building blocks by basal metazoans prompted us to question the origins and evolutionary history of

NICUs, as discussed in the next section.

3.Basal metazoans and the origins of NICUs
The field of neuroimmunology has largely been dominated by a biomedical perspective fueled by

the powerful therapeutic interventions that can stem from understanding neuroimmune communica-

tion in health and disease. However, the intricacies of neuroimmune communication can be best dis-

entangled when we investigate organisms with reduced body plan complexities and limited

numbers of cell types. NICUs have been described in detail in mammals (see review by Godinho-

Silva et al., 2019) but remain uncharacterized in most Metazoans.

The ability to respond to bacterial cues and maintain a stable microbiome is ancient within holo-

zoans, including the single-celled choanoflagellate (Salpingoeca rosetta) and porifera (Aplysina aero-

phoba) (Pita et al., 2018b; Pita et al., 2018a). Genome surveys have uncovered molecular

signatures of both vertebrate immune and nervous systems in the earliest single-celled eukaryotes,

including ion channels and post-synaptic scaffolding proteins (Csaba, 2016; Hoffmeyer and Bur-

khardt, 2016; Vig and Kinet, 2009). The presence and absence of genes encoding these proteins

can inform our evolutionary understanding of cells exhibiting immune and neural functions

(Fernández and Gabaldón, 2020). Although the relationships between the four major Metazoan lin-

eages that predate Bilateria – Porifera (sponges), Ctenophora (comb jellies), Placozoa and Cnidaria

(corals and sea anemones) – remain under debate, identifying cells with immune and nervous func-

tions in these lineages should reveal fundamental aspects of neuroimmune communication

(Nielsen, 2019).

Both poriferans and placozoans lack discrete neural structures, whereas cnidarians rely on nerve

nets consisting of neurons that resemble those found in bilaterians (Figure 2). In ctenophores, cells

with neural morphology form diffuse networks, although the absence of typical metazoan neuro-

transmitters and synaptic proteins suggests that this nervous system arose via convergent evolution

(Moroz, 2015; Moroz et al., 2014). Interestingly, ctenophores possess specialized prey capture cells

known as colloblasts, which appear to share an evolutionary progenitor with metazoan neurons

(Babonis et al., 2018).

Organisms within Porifera, the basal metazoan phylum, lack true neuronal cell types. As larvae,

these animals express photoreactive cryptochromes proposed to mediate phototactic motile behav-

ior and produce post-synaptic machinery (Rivera et al., 2012; Sakarya et al., 2007). Despite their

morphological simplicity, the poriferan immune system relies on much of the molecular machinery

that is present in the vertebrate innate immunity, including Toll-like receptors (TLRs) and nod-like

receptors (NLRs) (Rosenstiel et al., 2009). Notably, a recent transcriptomic study in the Mediterra-

nean sponge (Aplysina aerophoba) identified GPCRs among the most differentially regulated tran-

scripts in response to challenge with PAMPs (Pita et al., 2018a) opening up questions as to how

neuroimmune responses occur in the absence of bona fide neurons in this taxon.

Placozoans, primitive metazoans that emerged in the Precambrian period, consist of only six

somatic cell types and lack organs, neurons, muscle cells, immune cells, or extracellular matrix

(Laumer et al., 2018; Smith et al., 2014; Srivastava et al., 2008). Although canonical TLRs and

NLRs are absent from placozoan genomes, much of the downstream signaling pathways are present

(Kamm et al., 2019). Additionally, the Trichoplax sp. genome encodes a diverse array of scavenger

receptors (Kamm et al., 2019). Intracellular defenses in this lineage include an expansion in the

genes encoding apoptosis inducing factor (Apaf-1), suggesting that apoptotic cell death may be an

important component of immune response (Kamm et al., 2019). Despite the absence of neurons,

the placozoan genome contains many neuronal genes including SNAP25, SNARE, and 85 GPCRs
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(Srivastava et al., 2008). Interestingly, GPCRs are evolutionarily ancient, transmembrane proteins

that transduce neuropeptide signaling (Jékely, 2013; Schöneberg et al., 2007; Strotmann et al.,

2011). Placozoa have been shown to modulate ciliary movement and folding behaviors in response

to neuropeptides in their gland cells (Alzugaray et al., 2019; Varoqueaux et al., 2018). Whether

placozoans release neuropeptides in response to pathogens is unknown but this kind of experiment

may reveal unique neuroimmune pathways and perhaps unveil the most ancient NICUs in the animal

kingdom. The diversity of nervous systems in basal metazoans reflects 600 million years of ongoing

evolution, and also highlights the evolutionary flexibility of these systems (Yin et al., 2015).

Although cnidarians lack mesoderm, and therefore motile immune cells, searches for innate

immune genes reveal that while both most cnidarians have canonical a TLR signaling pathway and

complement-effector pathway, these pathways are degenerated in the model cnidarian Hydra

(Miller et al., 2007; Brennan et al., 2017). Neuroimmune cooperation has nevertheless mostly been

described in Hydra. The Hydra nerve net differentially secretes neuropeptides across the animal’s

body that exhibit specific antimicrobial properties to regulate the resident community of symbiotic

microbes (Augustin et al., 2017; Klimovich and Bosch, 2018). Using single-cell RNA-

Sequencing (sc-RNA-Seq), pacemaker neurons were recently discovered in the head region of the

hydra with conserved function and protein machinery to mammalian intestinal cells of Cajal

(Klimovich et al., 2020). Interestingly, these neurons express the PRR pathway and many AMPs

whose expression, along with pacemaker marker proteins, and contractile function are abrogated

when raised under germ-free conditions (Klimovich et al., 2020; Murillo-Rincon et al., 2017). While

the precise role of these neuropeptides in regulating the Hydra microbiome and immune system

remains unknown, it is clear that, as in mammals, the microbiome is imperative for proper neuronal

and immune function in Hydra. Neuroimmune cooperation in corals and anemones, however,

remains underexplored.

Taken together, the current body of work highlights our view that understanding neuroimmune

communication in basal metazoans is limited to a handful of studies in a small number of taxa and,

therefore, gathering new experimental evidence in basal metazoans is key to unveiling new primor-

dial mechanisms by which neurons and immune cells detect and fight danger. Genome editing, sin-

gle cell, and spatial transcriptomics can now illuminate responses to danger in non-model organisms

at unprecedented high-resolution levels. Next, we will take a deep look into the tunicates, a re-

emerging group of model organisms, and indicate exciting avenues in NICU research.

4.Unique NICUs in tunicates may govern regeneration and
colonialism
Tunicates, also known as sea squirts, are benthic marine invertebrates that emerged 550 mya (Lem-

aire, 2011). Tunicates are the closest relatives to vertebrates (Delsuc et al., 2006). There are

approximately 3000 species of tunicates including several model organisms such as Ciona intestina-

lis, Halocynthia roretzi, and Botryllus schlosseri (Holland, 2016).

Ascidians, which comprise the largest class of tunicates, have complex developmental life cycles

in which embryogenesis results in a chordate tadpole that, after hatching, metamorphoses into a

sessile form known as an oozooid that asexually buds to create a colony of adult zooids (Hol-

land, 2016; Kowarsky et al., 2021; Manni et al., 2007). The zooid has a complex body plan with

central and peripheral nervous systems, and a complex hematopoietic system with multiple immune

cell types (Braun and Stach, 2019; Burighel et al., 2005; Franchi and Ballarin, 2017; Mackie and

Burighel, 2005; Rosental et al., 2018). Detailed descriptions of the peripheral nervous system of

Botryllus reveal that each zooid of the colony possesses an individual nerve plexus that is discontinu-

ous with that of adjacent zooids (Burighel et al., 2005). Furthermore, the dense innervation of the

Botryllus gut may represent an important site for NICUs; as filter feeders, tunicate guts are regularly

exposed to the microbe-rich seawater environment (Utermann et al., 2020). Availability of sterile,

or germ-free, tunicate models offers exciting opportunities to interrogate neuroimmune interactions

in the context of microbiota recognition and regulation (Leigh et al., 2016).

Colonial tunicates have been long-studied as a model for allorecognition (De Tomaso, 2009;

Oka and Watanabe, 1967; Oka and Watanabe, 1960; Oka and Watanabe, 1957; Sabbadin, 1962;

Scofield et al., 1982). Colony fusion follows similar principles to vertebrate histocompatibility and
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only occurs when both colonies share one or more alleles of the polymorphic Botryllus Histocompati-

bility Factor (BHF) gene (De Tomaso, 2009; De Tomaso et al., 2005; Rinkevich et al., 2012;

Taketa and De Tomaso, 2015; Voskoboynik et al., 2013). When tunicate colonies with different

BHF alleles come into contact, a blood-based inflammatory reaction occurs (Taketa and De Tomaso,

2015). At the point of rejection, cytotoxic blood cells known as morula cells secrete factors that lead

to reactive oxidative damage causing cell apoptosis and cytotoxic lesions (Ballarin et al., 2002;

Ballarin et al., 1995; Menin et al., 2005; Taketa and De Tomaso, 2015). Cytotoxic natural killer

(NK) cells are important innate immune cells involved in allorecognition. A subpopulation of Botryllus

blood cells express CD94-related transmembrane receptor protein, which is a specific cell surface

marker of vertebrate NK cells (Khalturin et al., 2003). Furthermore, cytotoxicity of morula cells is

mediated by BHF self-recognition (Rosental et al., 2018). Even after fusion, chimeric colonies can

undergo rejection in a process known as allogenic resorption which involves both phagocytic and

cytotoxic pathways (Corey et al., 2016). Notably, to facilitate allorecognition reactions, cytotoxic

morula cells congregate at the tips of ampullae and exist in the tunic matrix where cilia of primary

sensory neurons also project (Mackie and Burighel, 2005; Menin et al., 2005). Although presence

of neurons or neuronal derived molecules in the point of allogenic rejection or resorption in tunicates

has not been directly observed, it is plausible that they play a role in regulation of cytotoxic events

against infection or in homeostasis (Burighel et al., 2001; De Santo and Dudley, 1969; Mackie and

Burighel, 2005; Torrence and Cloney, 1981; Zaniolo et al., 2002). Many avenues of study into

NICUs in tunicates are open for investigation.

Perhaps the best-characterized tunicate model organism is the solidary ascidian, Ciona intestina-

lis, which is able to regenerate its neural complex (NC) and syphon (Jeffery, 2015; Mingaz-

zini, 1891). Following ablation of the NC, the first step in regeneration is wound healing

(Jeffery, 2015). In the course of this process, pluripotent cells that circulate in the vasculature rap-

idly invade the wound site and, along with other progenitor cells, give rise to the regenerating brain

(Bollner, 1989; Bollner et al., 1992; Da Silva et al., 2015; Lender and Bouchard-Madrelle, 1964).

Interestingly, in crayfish, adult-born neurons are derived from hemocytes (Benton et al., 2014).

Thus, a clear connection exists between immune cells and neurons in the context of invertebrate

regeneration that deserves further investigation.

An in-depth, high-resolution developmental and cellular atlas of the immune and nervous system

of model tunicates has recently become available (Kowarsky et al., 2021), which should further facil-

itate investigation of neuroimmune interactions in tunicates. In summary, tunicates harness tremen-

dous biodiversity, unique lifestyles, and regenerative capacities that make them an ideal candidate

taxon for the discovery of novel NICUs especially as the closest extant relative to vertebrates with

central nervous systems (Holland, 2016).

5.Centralization of the nervous system in invertebrates:
crosstalk with the immune system
The evolutionary transition from diffuse to centralized nervous systems in Bilateralia is still an open

question in neuroscience. The function of the central nervous system (CNS) is to integrate peripheral

environmental inputs and orchestrate whole-body downstream behaviors. Although centralization of

the nervous system is often considered to be a vertebrate innovation, invertebrates such as echino-

derms, arthropods, nematodes, molluscs, and annelids have a CNS with various shapes and degrees

of complexity in different animal phyla (Arendt et al., 2008; Figure 2). Whether the vertebrate and

invertebrate CNS trace back to a common ancestor or evolved independently is still unknown. Con-

servation of brain patterning mechanisms suggests the mechanisms for centralization of nervous sys-

tems may be as ancient as the last common bilaterian ancestor (Denes et al., 2007;

Hartenstein and Stollewerk, 2015; Telford, 2007). Interestingly, current evidence suggests that

glial cells, also present in invertebrates, have arisen multiple times independently (Hartenstein and

Giangrande, 2018). Despite the morphological disparities between the cnidarian nerve nets, the

ventral central ganglia in arthropods and the vertebrate brain, the underlying function of nervous

systems mirrors that of immune systems: sensing the environment and responding appropriately to

maximize survival.
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Findings from protostomes suggest that connections between CNS and immune functions are

widespread among Metazoa. Drosophila neurogenesis has been studied in great detail and exhibits

many similarities to mammalian models (Buescher et al., 2002; Grens et al., 1995; Hartenstein and

Stollewerk, 2015; Heitzler et al., 1996). For example, the cell adhesion molecule dscam is involved

in axonal segregation in both Drosophila and mammals. However, this molecule has been co-opted

into a unique immune function in insect hemocytes (see Table 1 and section 8.1) (Goyal et al.,

2019; Hattori et al., 2009; Ng and Kurtz, 2020). Additionally, a Drosophila cytokine and its recep-

tor signaling through the JAK/STAT pathway are necessary for long-term odor memory (Copf et al.,

2011). To date, few studies have investigated changes in Drosophila CNS gene expression after

exposure to pathogens or PAMPs, however, the identity and homeostatic function of glial cells are

becoming elucidated (Yildirim et al., 2019). Non-model insect species have also revealed interesting

neuroimmune connections. For instance, the kissing bug produces a suite of CNS neuropeptides

that, in addition to their roles in brain development and function, may have antimicrobial activity

(Ons et al., 2009).

Annelids also have a CNS in the form of a ventral nerve cord and a prostomial brain. Evolutionary

conserved mechanisms of neuroimmune communication have been unraveled in earthworms (Oligo-

chaeta). For instance, the coelomic cytolytic factor, a PRR in annelids which is similar to mammalian

TNF, appears to interact with ion channels present on the macrophage cellular membrane, depola-

rizing the cell and triggering release of pro-inflammatory cytokines (Bilej et al., 2006). Whether this

PRR is expressed on annelid neurons in the CNS regulating immunity remains to be elucidated. The

annelid Hirudo verbena (Hirudea), or medicinal leech, has also emerged as a model for neuroim-

mune studies in invertebrates (Tasiemski and Salzet, 2010). H. verbena has a segmented, ventral

CNS that regenerates upon injury. Microbial exposure increases AMP synthesis by neurons and

microglia and results in accelerated repair of the leech CNS upon injury (Schikorski et al., 2008).

Neuronal expression of PRRs and AMPs after exposure to bacteria and the viral mimic poly(I:C) was

also shown in the leech CNS (Tasiemski and Salzet, 2017). Combined, these works underscore the

need for effective innate immune response to ensure CNS function in health and disease in inverte-

brates. Finally, neurobiology studies on the marine annelid Platynereis dumerelii (Polychaeta) have

revealed fascinating aspects of CNS evolution and neuropeptide function. For instance, the myoinhi-

bitory neuropeptide (MIP) produced by neurosecretory cells in the animal’s brain controls larval set-

tlement (Conzelmann et al., 2013). Unfortunately, the immune system of P. dumerelii has not been

studied in detail and therefore CNS immune responses remain essentially unknown. Collectively, the

current body of work offers speckled, intriguing insights as to how invertebrate CNS structures and

hemocytes cooperate to optimize danger detection and behavioral avoidance to pathogens; the

breadth of invertebrate species leaves much to be explored in the neuroimmunology field. Mapping

where NICUs are located in these taxa should reveal evolutionary conserved connections between

the CNS and the innate immune system.

Cephalochordates, commonly known as amphioxus, are basal chordates that possess a primitive

brain that is homologous to the vertebrate hindbrain but lack a telencephalon (Feinberg and Mal-

latt, 2013). Amphioxus lacks an adaptive immune system but does possess genes that support the

adaptive immune system (Feinberg and Mallatt, 2013; Holland, 2009; Sugahara et al., 2017;

Yu et al., 2005). Like invertebrates, amphioxus PRRs are expanded (Huang et al., 2008). Bulk RNA-

seq analysis of amphioxus after intraperitoneal injection with lipopolysaccharide (LPS) identified sev-

eral neuronal related genes. For instance, spondin, a gene involved in axonal guidance, was one of

the most down regulated genes, whereas nerve growth factor receptor was one of the most upregu-

lated genes 24 hr after LPS injection (Zhang et al., 2017). Furthermore, the neurogenesis-related

notch KEGG pathway was enriched 6 hr after injection and the olfactory transduction KEGG pathway

was enriched 48 hr after injection (Zhang et al., 2017). Combined, this study suggests neuronal par-

ticipation in the amphioxus innate immune response and motivates the search for NICUs in cephalo-

chordates. Such studies could elucidate unique NICUs that predate the emergence of the adaptive

immune system and vertebrate CNS structures such as the telencephalon.
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6.Centralization of the nervous system in vertebrates and the
immunological big bang: a case for investigating agnathan
neuroimmune interactions
Although centralization of the nervous system is found in protochordates, two major evolutionary

innovations occurred in the nervous and immune systems coincident with the emergence of agna-

than vertebrates (~500 mya): the emergence of a telencephalon as part of the CNS and the appear-

ance of an adaptive immune system (Guérin et al., 2009; Holland, 2015; Figure 2). While

agnathans possess a nervous system analogous to jawed vertebrates, this lineage evolved an adap-

tive immune system based on variable lymphocyte receptors (VLRs) that is functionally analogous to

the Rag1/2-mediated, immunoglobulin-based adaptive immune system (Flajnik, 2014;

Sugahara et al., 2016).

Within both vertebrate lineages, adaptive immune systems are based on lymphocyte receptors

that somatically recombine to generate nearly infinite epitope recognition. Prior to the divergence

of echinoderms and chordates, a transib-like transposon inserted into the genome of a common

ancestor to form the Rag1/2 complex (Fugmann et al., 2006; Huang et al., 2016; Zhang et al.,

2019b). Within jawed vertebrates, two lineages of mesodermally derived lymphocytes (B and T cells)

co-opted the RAG1/2 transposases to rearrange V(D)J gene segments and create complementarity

determining regions (CDRs) with clonally unique epitope specificity (Bassing et al., 2002). Notably,

one of the fundamental tenets of adaptive immune systems is self-tolerance: somatically recombined

receptors that bind host proteins are deleted during lymphocyte development. This process is medi-

ated by proteins within the MHC and has been proposed to have been co-opted from an ancient

olfactory system still used in mate choice based on peptide carrier protein phenotype

(Andreou et al., 2017; Boehm, 2006; Penn and Potts, 1998). Even after negative selection to elimi-

nate receptors that bind self-antigens, the adaptive immune system is a powerful, lethal tool in ver-

tebrates that requires tight regulation. This regulation, as described in section 9.3, is partly

mediated by the nervous system.

In parallel with the Rag1/2-based adaptive immune system of jawed vertebrates, jawless verte-

brates convergently evolved a distinct type of adaptive immunity (Flajnik, 2014). Here, VLRs exist as

gene segment clusters that are re-arranged in lymphocyte-like cells by orthologs of activation

induced cytidine deaminase (AID), known as CDA1/CDA2 (Rogozin et al., 2007). Transcriptional

profiles suggest that the two independent mechanisms of lymphocyte receptor generation arose

after the origin of three lymphocyte populations: a B cell-like progenitor, and two subsets of T-cell

progenitors. BCRs and VLRB proteins are expressed as membrane-bound receptors that are

secreted after activation. The membrane-bound VLRC and gd TCR are expressed on cells that local-

ize in skin (Flajnik, 2014; Hirano et al., 2013). Finally, T cells (both VLRA+ and VLRC+) develop in

the FoxN1+ agnathan thymoid, suggesting that VLR cells follow similar regulation mechanisms of

gnathostome adaptive immunity (Bajoghli et al., 2011). Lamprey CNS patterning during develop-

ment mirrors that of gnathostomes, but whether the agnathan CNS and meninges mount immune

responses against local or distant danger is essentially unknown (Sugahara et al., 2016). Further-

more, cross-regulation between the agnathan nervous and immune systems remains unexplored.

Recently however, CRISPR-based genome editing was used successfully in lampreys to eliminate

CDA2, the enzyme that mediates VLRB rearrangements (Morimoto et al., 2020). Consequently, this

model system is now ripe for the investigation of changes in the nervous system in the absence of

one arm of the immune system. Thus, investigation of neuroimmune interactions in the agnathan

CNS with a convergent, yet unique, adaptive immune system is an exciting avenue for this field.

7.Draining the brain: evolution of brain lymphatics
As the vertebrate CNS became larger and more compartmentalized, increased metabolic waste and

immunological demands necessitated a waste removal system to avoid deleterious effects on neuro-

nal function (Kanamori and Kipnis, 2020; Louveau et al., 2018). Lymphatic vessels present in the

meninges of the CNS of mammals drain molecules and immune cells from the subarachnoid space

into the cervical lymph nodes (Aspelund et al., 2015; Da Mesquita et al., 2018; Louveau et al.,

2015). Beyond creating an avenue for immune surveillance of antigens in the brain, meningeal

Kraus et al. eLife 2021;10:e66706. DOI: https://doi.org/10.7554/eLife.66706 13 of 33

Review Article Immunology and Inflammation Neuroscience

https://doi.org/10.7554/eLife.66706


lymphatics have been implicated in neuroinflammatory disease (Da Mesquita et al., 2018;

Louveau et al., 2015).

Although first discovered in mice, recent studies have revealed the presence of brain lymphatic

vessels in zebrafish, a cold-blooded vertebrate (Bower et al., 2017; Castranova et al., 2021;

Chen et al., 2019b; van Lessen et al., 2017). Bony fish have a similar innate and adaptive immune

system to mammals, yet a smaller CNS and lower mass-specific metabolic rates compared to those

of mammals. The presence of a meningeal lymphatic system clearing macromolecules seems to be

required in both fish and mammals for adequate function of the CNS although whether it was a

requirement for existence of a complex CNS is unclear (Louveau et al., 2015; van Lessen et al.,

2017). Agnathan vertebrates have a CNS and meninges, but the existence of lymphatics, and there-

fore a lymphatic system, associated with the CNS is unknown. Furthermore, based on current knowl-

edge, the emergence of brain lymphatics coincides with the emergence of B- and T-cell immunity in

jawed vertebrates, though whether the existence of dangerous lymphocytes obliges lymphatic evo-

lution to protect the vulnerable CNS is unknown (Figure 2). Future studies in agnathans and inverte-

brates with centralized nervous systems, such as Drosophila, may reveal unique or conserved

systems to drain the CNS in organisms where B and T cells are not present.

8.Genes and gene families that mediate both neuronal and
immune functions
Given their similar functions, it is not surprising that the immune and nervous systems rely on similar

proteins and protein domains (Table 1). Leucine-rich repeat (LRR) domains detect pathogens as part

of PRRs and VLRs and guide neuronal development (Slit proteins and LRRK). Similarly, the immuno-

globulin (Ig) domains that form the basis of jawed vertebrate adaptive immunity (i.e., BCR, TCR,

MHC) also regulate neuronal development and synapse formation (Sanes and Zipursky, 2020).

Here, we explore three examples of gene families employed by both the nervous and immune sys-

tems but many more exist, including cytokines, neurotrophins, perforins, and complement

(Table 1; Kolosowska et al., 2019; Minnone et al., 2017; Ni and Gilbert, 2017; Stevens et al.,

2007; Yang et al., 2016). Notably, many of these play crucial roles in the development of both the

nervous and immune systems.

8.1 DSCAM
The Down syndrome cell adhesion molecule (DSCAM) is a member of the Ig superfamily expressed

on the cell surface. In both mammals and arthropods, DSCAM regulates self-avoidance during neural

development (Garrett et al., 2018; Hattori et al., 2009). That is, if two dendrites from a single neu-

ron encounter one another during morphogenesis, they repel each other, preventing inappropriate

synapse formation and leading to even spatial distribution. In this context, DSCAM appears to oper-

ate in concert with two cell adhesion molecules: cadherins and protocadherins (Garrett et al.,

2018). Evolutionary analysis suggests that although the dscam gene is present throughout Bilateria,

Pancrustacea (insects and crustaceans) exhibit a distinct form of isoform diversification

(Armitage et al., 2012). While mammalian neurons only express a single dscam1 transcript, arthro-

pods have evolved a unique evolutionary strategy in which a single dscam gene is capable of pro-

ducing over 38,000 isoforms due to mutually exclusive alternative splicing (Brites and Du Pasquier,

2015). In Drosophila, the dscam gene consists of 22 exons, of which four are clusters of tandemly

arrayed sequences. All but one of these arrays are spliced out during transcript processing. Stochas-

tic expression of these hypervariable isoforms within individual neurons drives the self-avoidance

behavior.

Although mammalian dscam1 expression is restricted to neurons, dscam homologs play a unique

role in the crustacean immune system (Ng and Kurtz, 2020; Table 1). Isoform variability was origi-

nally described in transcripts isolated from Drosophila hemocytes (Watson et al., 2005). Numerous

reports have investigated transcriptional changes in the dscam isoform repertoire after pathogen

challenge in a variety of insect and crustacean species (Ng and Kurtz, 2020). Furthermore, in crabs

DSCAM acts as an opsonin; specific isoforms were shown to bind bacteria and promote phagocyto-

sis (Li et al., 2018). In contrast to the neural expression, where DSCAM hypervariability serves to

avoid self, within hemocytes, diverse DSCAM proteins function to bind to a wide array of pathogens.
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Interestingly, the expression of pathogen-specific isoforms can be upregulated in response to

immune challenge (Li et al., 2018). The hypervariable family of dscam transcripts thus highlights

how the immune and nervous systems in Pancrustacea deploy a single mechanism for generating

diversity with distinct end goals.

8.2 Toll-like receptors
TLRs are prototypic PRRs with fundamental roles in animal innate immune responses. The protein

Toll was originally described as a regulator of dorsoventral patterning in early Drosophila embryo-

genesis. However, it was observed that flies with loss-of-function mutations in the Toll signaling

pathway exhibited impaired immune responses (Lemaitre et al., 1996). Subsequently, genetic and

functional assays implicated a mammalian homolog of Toll (Toll-like receptor 4; TLR4) as a receptor

for LPS (Poltorak et al., 1998). Most vertebrate genomes contain 10–20 TLR paralogs that recognize

PAMPs, and independent expansions of TLRs occurred several times in invertebrate lineages

(Buckley and Rast, 2015). TLRs are central to innate immunity and activate adaptive responses

although they are also expressed by many cell types outside the immune system including epithelial

cells, endothelial cells, and neurons. As transmembrane receptors, TLRs localize to either the cell sur-

face, where they recognize PAMPs (e.g., LPS, flagellin) or endosomes where they largely detect

nucleic acids (Kawai and Akira, 2010). Ligand binding to the TLR ectodomain, composed of LRRs,

initiates a signaling pathway that culminates in NF-kB activation. This highly conserved pathway is

present throughout Metazoa, including poriferans (Figure 2).

Surprisingly, TLR knock-out studies in mice revealed not only impaired immune responses, but

also neural phenotypes. Of the 13 TLRs in mice, five are expressed within the CNS, where they have

roles in both neuronal development as well as neural plasticity, cognition, and behavior

(Morimoto and Nakajima, 2019). TLR2, TLR3, and TLR4 have been shown to regulate proliferation

in neural progenitor cells (NPCs) (Chen et al., 2019a; Lathia et al., 2008). TLRs 3, 7, and 8 also reg-

ulate synapse formation (Hung et al., 2018). During brain development, synapse formation is activity

dependent, leading to death of inactive axons, which creates apoptotic bodies and releases nucleic

acids that activate TLR responses (Ma et al., 2006; Zhang and Poo, 2001). It has been suggested

that these responses induce cytokine expression, which subsequently attracts phagocytic microglia

(Chen et al., 2019a; Ma et al., 2006). While nucleic acid sensing TLRs are typically restricted to

endosomes in the nervous system, these TLRs are expressed on cell surfaces, where they detect self-

antigens. This conserved detection and signaling pathway thus represents a fundamental aspect of

neuroimmune communication.

8.3 Olfactory receptor superfamily
The olfactory receptor (OR) superfamily is a diverse group of rhodopsin-type GPCRs that detect che-

mosensory cues in the environment. Mammalian genomes typically contain very large (~1,000) num-

bers of OR genes (Niimura, 2012). Rhodopsin-type GPCRs emerged 580–700 mya and are present

in Porifera and Placozoa (Churcher and Taylor, 2011). For several OR groups, orthologs can be

clearly identified in both chordates and cnidarians (Churcher and Taylor, 2011). Frequent duplica-

tion and divergence within the OR gene family early in metazoans as well as the role of rhodopsin-

type GPCRs in brain development and synapse formation suggest that ORs were essential in the

emergence of the CNS (Churcher and Taylor, 2011). Similarly, in mammals, OR expression in olfac-

tory sensory neural axons is necessary for axonal outgrowth to discrete glomeruli in the olfactory

bulb (Feinstein et al., 2004).

Within immune cells, ORs detect pathogens and pathogenic products (Li et al., 2013). Moreover,

OR expression in mucosal lymphoid tissues may contribute to tissue organization; recent transcrip-

tomic analyses reveal the enrichment of genes within the olfactory pathway in lymph nodes and

Peyer’s patches of mice suggesting co-option of ORs in mammalian lymphoid structures

(Heimroth et al., 2020; Table 1). Mammalian lymph nodes are innervated by both sympathetic and

sensory neurons, including peptidergic neurons capable of regulating gene expression in endothe-

lial, stromal, and innate immune cells (Huang et al., 2021). Given these dual roles in the nervous and

immune systems, the original OR function remains unclear. It is clear, however, that the bidirectional

neuroimmune communication in lymphatic tissues mediated by ORs is highly sophisticated and

occurs both during development and under steady-state conditions (Huang et al., 2021).
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9.Bringing neurons into the defense game
Sensory neurons detect environmental conditions and transmit afferent information to an integration

hub (the CNS in vertebrates), which subsequently sends efferent signals to extremities to coordinate

a response. When a pathogen is detected by a sensory neuron, the efferent signals elicit both overt

avoidance behaviors and prime immune responses to protect the organism from infection or delete-

rious inflammation. Here we propose several ways by which the immune response benefits from neu-

ronal activity (Figure 3). Whereas some may be restricted to specific metazoan lineages, many of

these beneficial interactions are likely widely conserved.

9.1 Pathogen avoidance
The ultimate protection mechanism is to avoid pathogens altogether. Although the neuroethology

of how animals integrate sensory cues from pathogens to modulate behavior remains largely

unknown, every animal interrogated thus far, particularly highly social animals, displays some form of

Figure 3. Schematic diagram illustrating how neurons play a role in the regulation of each step of the immune response, from inception to resolution.

(A) Sensory neurons detect danger cues that are then transduced to move the animals away from potential deleterious infection. For example, in C

elegans npr-1 expressing neurons detect oxygen levels to avoid harmful pathogens (Hoffman and Aballay, 2019; Singh and Aballay, 2019;

Styer et al., 2008). Furthermore, bacterially infected female Drosophila will lay fewer eggs (Kurz et al., 2017; Masuzzo et al., 2019). (B) Sensory

neurons directly detect pathogen presence resulting in rapid action potentials and release of neurotransmitters that increase the velocity of an immune

response. Neurons ultra-rapid communication to immune cell reservoirs deploy immune cells quicker than chemokine signals; such as recruiting CD8+

cells to the olfactory organ after detection of neurotrophic virus by sensory neurons (Chavan and Tracey, 2017; Sepahi et al., 2019). The immune

responses triggered by neurons can be biased to be neuroprotective while dealing with infection such as in the myenteric plexus of the gut where b2

adrenergic receptor signaling polarizes muscularis macrophages to express Arg1, associated with an M2 phenotype (Gabanyi et al., 2016; Lai et al.,

2020). (C) Pathogens detected by immune and epithelial cells provoke release of cytokines and other immune factors that are pro-inflammatory and

potentially deleterious to the tissue if allowed to propagate inflammation without regulation. Local neurons are rapidly activated by the inflammatory

environment and PAMPs, releasing neurotransmitters that tune the immune response (immune cells and epithelial cells) toward a less pro-inflammatory

phenotype (Baral et al., 2018; Basbaum et al., 2009; Cardoso et al., 2017; Chu et al., 2020; Labed et al., 2018; Ramirez et al., 2020). A specific

example is neuromedin U that binds to its cognate receptor on ILC2s enhancing their type 2/repair phenotype mediating protection against worm

infections (Cardoso et al., 2017). Another example includes the reduction of systemic inflammation when the vagus nerve is stimulated

(Borovikova et al., 2000). However, suppressive neuronal responses can be detrimental and favor infection as when TRPV1 neurons release CGRP and

suppress neutrophil recruitment, leading to S. pyogenes lesion progression compared to animals lacking CGRP signaling (Pinho-Ribeiro et al., 2017;

Chu et al., 2020). (D) The immune system and nervous system must balance their responses over time to return to homeostasis (Aurora and Olson,

2014; Veiga-Fernandes and Artis, 2018). An initial immune response is necessary for clearance of pathogen and debris and to initiate growth factor

responses in neurons, but prolonged inflammation can be detrimental to neuronal regeneration as seen in the olfactory system and spinal cords with

NF-kb/chemokine and TNFa signaling, respectively, leading to loss of regenerative abilities (Chen et al., 2019a; Godwin et al., 2013; Tsai et al.,

2019; Tsarouchas et al., 2018). Another example includes the resolution of inflammation controlled by the sympathetic nervous system in mice

(Körner et al., 2019).
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avoidance behavior (Curtis, 2014; Figure 2). Generally, animals avoid individuals of their own spe-

cies that are sick. In rodents, avoidance behaviors are mediated by the vomeronasal system and spe-

cific synchronization between the ventral hippocampus and the medial prefrontal cortex; mice with

ablated vomeronasal organs no longer avoid odors from parasitized mice (Boillat et al., 2015;

Padilla-Coreano et al., 2019; Padilla-Coreano et al., 2016).

Avoidance behaviors have also been observed in other jawed vertebrates (e.g., bony fishes),

agnathans, and invertebrates (Behringer et al., 2018). Interestingly, germ-free zebrafish larvae have

been found to be hypermobile and exhibit increased anxiety-like behaviors compared to convention-

alized larvae, demonstrating that behavioral circuits require the presence of a microbiome to

develop properly (Davis et al., 2016). The agnathan sea lampreys display avoidance behaviors to

environmental chemosensory cues such as alarm odors secreted from heterospecifics; however,

avoidance behavior to pathogens or infected lampreys has not been investigated to date

(Hume and Wagner, 2018).

While such studies clearly connect behavior to nervous system function, understanding how affer-

ent sensory cues are integrated in response to danger is far more complicated. However, smaller,

less-complex model organisms may offer some answers. In Drosophila, during bacterial infection,

peptidoglycan-NF-kb signaling specifically activates a subset of octopamine neurons and changes

egg-laying physiology of females (Kurz et al., 2017; Masuzzo et al., 2019). Additionally, both Dro-

sophila gustatory and olfactory neurons have been found necessary and sufficient to avoid LPS and

geosmin, respectively (Soldano et al., 2016; Stensmyr et al., 2012). Furthermore, C. elegans sen-

sory neurons mediate avoidance behaviors in response to pathogen-contaminated food, thereby

lowering pathogen burden (Anderson and McMullan, 2018; Styer et al., 2008). However, C. ele-

gans also display avoidance behavior to Bacillus anthracis despite the fact that this bacterium is not

harmful (Turner et al., 2020). Individual worms learn to avoid pathogenic Pseudomonas aeruginosa

after luminal bloating alters the TGF-b/DAF-7 pathway and activates the GPCR NPR-1, causing aero-

taxis away from an oxygen-deficient bacterial lawn (Singh and Aballay, 2019). Interestingly, C. ele-

gans pathogen-specific avoidance behaviors can be transgenerational, a phenomenon mediated by

two immunological pathways: TGF-b signaling in sensory neurons and the Piwi/Argonaute small RNA

pathway (Moore et al., 2019). Behaviors that avoid wounding and infection from pathogens are key

to survival because once barriers are breached, immune responses are energetically costly and may

leave long-lasting damage in the host.

9.2 Velocity of the immune response
When behaviors fall short, barrier tissues provide the next line of defense against pathogens. When

pathogens breach barrier tissues, innate immune cells are recruited by chemokines secreted by epi-

thelial cells who sense PAMPs and damage-associated molecular patterns (DAMPs). Innervating neu-

rons sense microorganisms, and their products, directly and influence the direction of immune

responses (pro- or anti-inflammatory) several orders of magnitude faster than those induced in

immune cells (Chavan and Tracey, 2017; Chiu et al., 2013; Foster et al., 2017; Pinho-

Ribeiro et al., 2017). Pathogen detection by neurons results in rapid electrical activation (within

milliseconds) and release of chemical mediators that either enhance or suppress the local and distant

immune response (Chu et al., 2020) (Figure 3). Rapid neuronal responses offer clear advantages for

the host, thereby offering positive pressures for the immune system to gain expression of receptors

for neuronal messengers as an additional, accelerated mechanism of pathogen surveillance.

Recent studies highlight anticipatory immunity by mammalian nociceptive TRPV1+ neurons. Acti-

vated neurons mediate a type-17 immune response in contiguous areas resulting in protection of

regional areas of the skin from subsequent fungal and bacterial infection (Cohen et al., 2019). On

an organismal level, electrical activation of dopaminergic and cholinergic neurons in the vagus nerve

is sufficient to regulate hematopoietic tissues such as the spleen and can inhibit pro-inflammatory

cytokine secretion (Chavan and Tracey, 2017; Kressel et al., 2020). In the case of the olfactory-

CNS axis, pathogen activation of olfactory sensory neurons (OSNs) quickly elicits neuroimmune

responses in the CNS. This was recently demonstrated in a bony fish model, in which electro-olfacto-

grams show that trout OSNs detect rhabdovirus and become electrically activated (Sepahi et al.,

2019). Concomitantly, within minutes of nasal delivery of rhabdovirus, antiviral immune responses

occur in the olfactory epithelium as well as the CNS (Sepahi et al., 2019). This response, however,
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requires viral sensing by the OSNs, highlighting that ultra-rapid coordination of immune responses

by neurons is critical in chemosensory organs.

Although the concept of neuronal speed in the context of the immune response has not been

widely discussed in the mammalian literature, we propose that neuronal innervation of lymphoid tis-

sues as well as the wide presence of NICUs at mammalian tissue barriers may have been evolutionary

driven to optimize the speed of the immune response at the organismal level. Furthermore,

increased immune speed can be beneficial to the neurons themselves. In the gut, enteric bacteria

activate sympathetic and nociceptive neurons that, in turn, polarize muscularis macrophages towards

a tissue protection profile that protects neurons from dying 7 days after infection (Gabanyi et al.,

2016; Lai et al., 2020; Matheis et al., 2020). Neurons directly sense danger, and their action poten-

tials release immunogenic neurotransmitters that affect immune system function that can be protec-

tive of the organism and neurons themselves. However, as infection progresses, regulation of the

immune response by neurons must be balanced for pathogen clearance and optimal host survival.

9.3 Adding layers of regulation to the immune response
Upon binding PAMPs and/or DAMPs, PRRs initiate cytokine expression. In turn, the cytokine milieu

promotes optimal immune responses while dampening others (e.g., humoral vs cellular immunity).

Classically, cortisol and the vagus nerve are known to maintain homeostasis and decrease inflamma-

tory pathways to prevent damage (Borovikova et al., 2000). From these studies, it was suggested

that the nervous system acts as a final layer of regulation over the mammalian immune system by

coordinating large scale-physiological responses (Eberl and Pradeu, 2018). However, viewing neu-

ronal control of inflammation as culmination of regulation neglects experimental evidence demon-

strating that instantaneous neuronal control of local immune responses provides the first layer of

immune regulation. We propose that neurons impart checkpoints at each step of the defense

response, from its inception to resolution and healing (Figure 3).

Neurons are powerful immune suppressors. For example, in a murine model of Staphylococcus

aureus pneumonia, ablation of TRPV1+ nociceptive neurons increases neutrophil surveillance and gd

T-cell numbers in the lung, leading to increased survival and bacterial clearance (Baral et al., 2018).

A Citrobacter rodentium infection model found increased colonic bacterial burdens and T-cell num-

bers in TRPV1+ nociceptor ablated animals compared to controls (Ramirez et al., 2020). Further-

more, infection burden with N. brasiliensis can be experimentally decreased in the gut in the

presence of exogenous neuromedin U (Cardoso et al., 2017). This molecule is normally secreted by

enteric neurons and enhances immune responses by binding to innate lymphoid cells,

(Cardoso et al., 2017). Finally, brainless Xenopus larvae exhibit increased susceptibility to bacterial

infection with E. coli and an overall increase in myeloid lineage cells and neurons (Herrera-

Rincon et al., 2020). In these studies, brains were removed prior to the developmental maturation

of the adaptive immune system, so phenotypic differences resulted from neuronal effects on innate

immunity (Herrera-Rincon et al., 2020). Therefore, the inhibitory signals from peripheral neurons

may prevent deleterious off-target host damage due to the immune response but also affect infec-

tion outcomes depending on the pathogen.

Neuronal suppression of the immune system is deeply rooted in animal evolution. In addition to

the vertebrate models described above, studies in protostome lineages also highlight the crosstalk

between the neural and immune systems. Upon stimulation, Drosophila sensory neurons deploy

TGF-b to stimulate hemocyte proliferation and adhesion (Makhijani et al., 2017; Table 1). In C. ele-

gans, npr-1+ neurons suppress the unfolded protein response (UPR), an important innate immune

mechanism, thereby increasing pathogen susceptibility (Hoffman and Aballay, 2019; Sun et al.,

2011). Additionally, neurons in C. elegans release neurotransmitters (e.g., insulin, neuropeptides,

octopamine, dopamine, acetylcholine) to modulate pathways involved in host defense in the gut

endothelium (e.g., p38 MAPK, UPR, and WNT signaling) (Wani et al., 2020). For instance, C. ele-

gans neurons release acetylcholine in response to infection, and acetylcholine then activates the

canonical Wnt pathway in intestinal epithelial cells resulting in innate immune responses

(Labed et al., 2018). The broad phylogenetic distribution of these findings suggests that neuronal

regulation is a fundamental mechanism to prevent collateral damage from the immune response.

When unavoidable, the immune and nervous systems mount a coordinated response to repair

damage.
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9.4 Cooperation of neurons and immune cells in animal regeneration
In extreme cases of disease or injury, animals undergo whole-body or limb regeneration. Regenera-

tive capacity varies considerably among animal phyla and depends on interactions between the

immune and nervous systems (Bloom, 2014; Cary et al., 2019; Lange and Brand, 2020). In the

well-characterized newt regeneration model, phagocytic macrophages are recruited within one day

post-amputation; macrophage depletion results in decreased expression of regenerative genes and

slows regrowth (Godwin et al., 2013). sc-RNA-Seq analyses confirm this important role for macro-

phages immediately following amputation and reveal the presence of T cells in the blastema,

although the function of these adaptive immune cells is unknown (Leigh et al., 2018). Fluorescent

activated cell sorting of early progenitors and RNA-Seq reveal that early dividing cells at the ampu-

tation plate recruit myeloid cells through IL-8 signaling, without which the blastema forms but does

not regenerate the limb (Tsai et al., 2019). In addition to immune cells, nerves provide neurotrophic

factors that are necessary for limb reformation (Wang et al., 2000). Notably, nerve growth factor

pathways are suppressed in early blastema progenitors just 4–5 days post-amputation, suggesting

that, prior to regeneration, wound healing and developmental patterning must occur (Tsai et al.,

2019). The cooperation between nerves and immune cells precisely coordinates the timing and acti-

vation of newt limb regeneration, although it has been proposed that that salamanders preserve

these regenerative abilities because they have a weaker, more simple immune system (Aurora and

Olson, 2014).

Most mammalian spinal cords and CNS heal poorly after injury with the exception of the neonatal

opossum and fetal rat (Wheaton et al., 2020). However, more ancient vertebrates such as lampreys

maintain regenerative capacity (Bloom, 2014). Excessive influx and pro-inflammatory signatures of

oligodendrocytes, macrophages, and microglia (gliosis) may limit regeneration in mammalian spinal

cord injuries (Vitalo et al., 2016). A teleost model of spinal cord injury could not recapitulate the

gliosis seen in mammals, although glial cells did participate in regeneration (Vitalo et al., 2016).

Zebrafish mutants that lack macrophages are unable to heal spinal cord injuries and exhibit pro-

longed pro-inflammatory states (Tsarouchas et al., 2018). In mice, neuron-derived CCL2 acts as a

macrophage chemoattractant; overexpression increases the M2/regenerative macrophage pheno-

type, leading to increased neurite outgrowth and neuronal regeneration (Kwon et al., 2015).

In mammals, the greatest capacity for neuronal regeneration lies in the olfactory system

(Durante et al., 2020). At the basement of the olfactory epithelium, olfactory progenitor cells,

known as horizontal basal cells, regenerate olfactory sensory neurons to maintain homeostasis after

damage via acute inflammation induction of NF-kB (Chen et al., 2017; Peterson et al., 2019). How-

ever, chronic inflammation with prolonged NF-kB activation and CCL19/CCL20 secretion causes

increased inflammatory phenotypes of resident immune cells and diminishes the regenerative capac-

ity of the olfactory epithelium (Chen et al., 2019a). Understanding the regulation of inflammation in

this naturally regenerating neuroepithelium may help uncover therapeutics; however, more work is

needed to understand neuroimmune communication in the olfactory system.

10.Conclusions
The nervous system is an invaluable ally for the immune system to fight infection from the early

detection of danger to the shutdown of the immune response. Current knowledge on neuroimmune

communication is mostly limited to mammalian studies; however, the most fundamental elements

that enable this interaction are found deep in the metazoan tree of life. We argue that interrogating

the basal branches of the metazoan tree in the context of danger detection using new approaches

such as single-cell transcriptomics and CRISPR can illuminate the origins and fundamental principles

that govern NICU development and function across taxa.
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Gold R, Flügel A, Lühder F. 2015. Thymocyte-derived BDNF influences T-cell maturation at the DN3/DN4
transition stage. European Journal of Immunology 45:1326–1338. DOI: https://doi.org/10.1002/eji.201444985,
PMID: 25627579

Liongue C, Sertori R, Ward AC. 2016. Evolution of cytokine receptor signaling. The Journal of Immunology 197:
11–18. DOI: https://doi.org/10.4049/jimmunol.1600372, PMID: 27317733

Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ. 1994. Tumor necrosis factor-
alpha expression in ischemic neurons. Stroke 25:1481–1488. DOI: https://doi.org/10.1161/01.STR.25.7.1481,
PMID: 8023366
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Schöneberg T, Hofreiter M, Schulz A, Römpler H. 2007. Learning from the past: evolution of GPCR functions.
Trends in Pharmacological Sciences 28:117–121. DOI: https://doi.org/10.1016/j.tips.2007.01.001, PMID: 172
80721

Schuhmann B, Dietrich A, Sel S, Hahn C, Klingenspor M, Lommatzsch M, Gudermann T, Braun A, Renz H,
Nockher WA. 2005. A role for brain-derived neurotrophic factor in B cell development. Journal of
Neuroimmunology 163:15–23. DOI: https://doi.org/10.1016/j.jneuroim.2005.01.023

Scofield VL, Schlumpberger JM, West LA, Weissman IL. 1982. Protochordate allorecognition is controlled by a
MHC-like gene system. Nature 295:499–502. DOI: https://doi.org/10.1038/295499a0, PMID: 7057909

Senatore A, Raiss H, Le P. 2016. Physiology and evolution of Voltage-Gated calcium channels in early diverging
animal phyla: cnidaria, placozoa, porifera and ctenophora. Frontiers in Physiology 7:481. DOI: https://doi.org/
10.3389/fphys.2016.00481, PMID: 27867359

Sepahi A, Kraus A, Casadei E, Johnston CA, Galindo-Villegas J, Kelly C, Garcı́a-Moreno D, Muñoz P, Mulero V,
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