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Abstract: This review presents an overview of methods for preparing chitosan-derived porous
materials and discusses their potential applications. This family of materials has garnered significant
attention owing to their biocompatibility, nontoxicity, antibacterial properties, and biodegradability,
which make them advantageous in a wide range of applications. Although individual porous
chitosan-based materials have been widely discussed in the literature, a summary of all available
methods for preparing materials based on pure chitosan, along with their structural characterization
and potential applications, has not yet been presented. This review discusses five strategies for
fabricating porous chitosan materials, i.e., cryogelation, freeze-drying, sol-gel, phase inversion, and
extraction of a porogen agent. Each approach is described in detail with examples related to the
preparation of chitosan materials. The influence of the fabrication method on the structure of the
obtained material is also highlighted herein. Finally, we discuss the potential applications of the
considered materials.

Keywords: porous chitosan material; phase inversion; sol-gel; cryogelation; porogen agent; freeze-drying

1. Introduction

Chitosan is one of the most popular polysaccharides, with applications in many areas.
Similar to other macromolecular polysaccharides, chitosan chains comprise numerous basic
units connected by glycosidic bonds. Specifically, chitosan is a linear copolymer consisting
of 2-acetamido-2-deoxy-β-D-glucopyranose and 2-amino-2-deoxy-β-D-d-glucopyranose,
linked in a β-1,4-configuration [1]. The chemical structure of chitosan is shown in Figure 1.
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1. Introduction 
Chitosan is one of the most popular polysaccharides, with applications in many ar-

eas. Similar to other macromolecular polysaccharides, chitosan chains comprise numer-
ous basic units connected by glycosidic bonds. Specifically, chitosan is a linear copolymer 
consisting of 2-acetamido-2-deoxy-β-D-glucopyranose and 2-amino-2-deoxy-β-D-d-glu-
copyranose, linked in a β-1,4-configuration [1]. The chemical structure of chitosan is 
shown in Figure 1. 
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Figure 1. Chemical structure of chitosan.

Chitosan is obtained following the deacetylation of chitin, which is found primarily in
crustaceans, mollusks, insects, and fungi. The main sources of industrial chitosan are shrimp
and crab waste. In these cases, chitin is a component of the crustaceans’ exoskeletons, and
its content in dried exoskeletons varies from 5% to 42%, depending on the species [2,3].
Mushrooms and related wastes after industrial processing are also valuable sources of
chitosan, especially because the chitin content can reach 50% in relation to the dry biomass.
Chitin is also found in the spores and cell walls of hyphae, where it forms microfibrils
in combination with glucan molecules. Chitosan is furthermore an important structural
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component of cell walls in some species of fungi, such as Mucor, Absidia, and Rhizopus.
One particularly important class is Zygomycetes, wherein the Gongronella butleri species
gives the highest yield of chitosan [4–6]. Alternative sources of chitosan include insects
and mollusks; however, these have only been used on a laboratory scale, until recently.
The literature reports indicate the potential for extracting chitosan from insects, such as
beetles, blowflies, silkworm chrysalides, and houseflies, as well as mollusk species, such
as Sepia kobiensis, Loligo lessoniana, and Loligo formosana. In these cases, the amount of
retrievable chitosan and its degree of deacetylation can vary depending on the animal’s
living environment [7,8].

Chitosan is typically obtained from chitin using one of two possible methods: the
conventional extraction, wherein chitin is extracted from crustaceans, insects, or mollusks,
or the fermentation process, wherein chitosan is obtained from fungi [2]. In the conventional
process, chitin is isolated from the source in a few steps. First, the raw materials are treated
with diluted acid (i.e., HCl or HNO3) to promote demineralization. This procedure removes
mineral contents in form of inorganic salts (ashes) without destroying the chitin structure
or inducing depolymerization. In the second step, proteins are removed either with a
dilute base (i.e., 10% NaOH solution) or via enzymatic reactions with tripsine [9]. The
chitin is then isolated from the reaction mixture by removing other organic compounds.
In the next step, chitin is converted into chitosan through alkaline deacetylation, whereby
acetamido groups are converted to amino groups. Deacetylation occurs in strong alkali
environments and at elevated temperatures (i.e., 80–120 ◦C). These two parameters (pH
and temperature) have the most significant impact on the physico-chemical properties of
the obtained chitosan. To purify the isolated product from other solid precipitates, it can
be dissolved in an acidic medium, centrifuged, and then filtered. In the last step, chitosan
is dried to ensure a sustainable degree of moisture in the final product [2]. A scheme
illustrating the conventional method used to obtain chitosan from chitin is presented in
Figure 2.

In contrast, the fermentation process yields fungal biomass containing glucan com-
plexes with chitin or chitosan [4–6]. Two types of fermentation can be used to obtain chitin
and chitosan from fungi: solid-state fermentation, wherein microbial growth occurs on
moist solid media with no free-flowing water, and submerged fermentation, which takes
place in liquid medium. The additional steps for obtaining chitosan from chitin are the
same as those described for the conventional extraction method.

The properties of chitosan depend on its molecular weight and degree of deacetyla-
tion [10–13]. A characteristic feature of chitosan is its abundance of hydroxyl (–OH) and
amine groups (–NH2). The important properties of chitosan that govern its applicability
include solubility, polycationic character, film-forming abilities, antimicrobial properties,
and biocompatibility. The solubility and polycationic character of chitosan are fundamental
properties that impact the preparation of derivatives and applications in several fields.
Complete chitosan dissolution is only possible in a slightly acidic medium because of the
protonation of –NH2 groups. The presence of ammonium groups (–NH3

+) generates strong
electrostatic repulsions between the polymer and surrounding solvent molecules, which
consequently improves the solubility of chitosan. On the other hand, strong interactions
between positively charged ammonium groups and negatively charged entities (i.e., pro-
teins or lipids) make chitosan an attractive polymer for stabilizing chitosan-DNA fragment
complexes [14–16]. Such interactions with negatively charged molecules are also important
when introducing chitosan as a component of diet supplements that bind free fatty acids.
During the digestion process, lipids are released, and therefore, the presence of chitosan in
diet supplements facilitates the removal of harmful lipid-based substances [17–19]. Further-
more, in acidic environments, chitosan behaves as a cationic polyelectrolyte, which enables
ionic modifications that endow chitosan with amphiphilic properties [20,21]. Amphiphilic
chitosan has been widely studied in drug delivery systems for its potential to protect
encapsulated drugs from harsh conditions [22–24], increase the uptake of targeted cells [25],
improve mucoadhesive properties [26], and increase the bioavailability of drugs [27].
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A key property of chitosan, which makes it attractive for application in food preser-
vation, pharmaceuticals, and biomedicine, is its antibacterial and antifungal effects. Two
mechanisms have been proposed to explain the antibacterial and antifungal properties
of chitosan. The first pathway assumes that positively charged groups in chitosan chains
(i.e., amine groups) interact with negatively charged particles that are present at the cell
surface, where the chitosan is responsible for binding and destroying pathogens. The
second mechanism is based on the formation of chitosan-DNA complexes. In this case, free
particles of chitosan permeate into the cell nucleus where they react with DNA to inhibit
mRNA synthesis, thereby preventing the creation of pathogen proteins [14–16,28].

Another important property of chitosan originating from the presence of –OH and
–NH2 groups is its ability to chemically absorb metal and dye ions. Two chemical adsorption
mechanisms can be distinguished based on the type of substance absorbed by the chitosan
and the pH of the medium: chelation and electrostatic attraction. In the case of chelation,
ions interact with amine or hydroxyl groups through covalent bonds, resulting in complex
formation. The second mechanism involves the electrostatic attraction between chitosan
chains and negatively charged particles [29–32].

One of the most important properties of chitosan is its ability to form films owing to its
inert, hydrophilic nature and its insolubility in water, as well as alkali and organic solvents.
These properties allow for the formation of solid/gel films or membranes with interesting
mechanical, chemical, and textural properties. Such chitosan films and membranes have
been used for the separation of gas and liquid mixtures (i.e., ultrafiltration, reverse osmosis,
and pervaporation) and as biodegradable films in the food packaging industry. There
are numerous examples of chitosan being employed as a selective membrane to separate
different types of liquid mixtures. Because of its hydrophilic nature and affinity toward
water, chitosan membranes have been intensively studied for the dehydration of alcohols.
Studies regarding the separation of organic mixtures with chitosan membranes are also
abundant [33–37]. Chitosan films have been investigated for food packaging applications
owing to their favorable mechanical properties and selective permeability to CO2 and
O2. Furthermore, their excellent antibacterial and fungicidal properties, biocompatibility,
nontoxicity, and ease of film forming make them attractive edible packaging materials that
can improve food safety and increase shelf life [38–41].

Due to the presence of reactive functionalities in the molecular chain, chitosan can
be modified chemically or physically to produce scaffolds with desirable properties for
tissue engineering. Chitosan-based scaffolds have been used to prepare high-resolution 3D
patterns with adaptable pore sizes, interconnected lamellae and the ability to support the
developmental lineage of encapsulated cells for use in the regeneration of bone, cartilage,
vascular systems, neural networks and skin tissue [42–44]. The use of chitosan in medicine is
supported by its various biological properties, including high biodegradability, nontoxicity,
antifungal activity, accelerated wound healing capabilities, and stimulation of the immune
system. Thus, chitosan has already been used in contact lenses, eye fluid, artificial skin,
surgical sutures, artificial blood vessels, bandages, sponges, burn dressings, and hemostatic,
antibacterial, and antifungal agents, as well as for blood cholesterol control, controlled
drug release, accelerated wound healing, and tumor and plaque inhibition [42–44]. These
applications for chitosan materials are summarized in Figure 3.

This review article summarizes the methods of preparation and application of pure
porous chitosan materials. Increasing environmental awareness has highlighted the need
to replace artificial polymer materials with natural polymers. Therefore, this review of
chitosan-derived porous materials will support further research concerning these materials
and the design of modified derivatives with unique applications. Although chitosan
materials have been described in the literature, this review comprehensively describes the
available methods for obtaining pure porous chitosan materials with specific structural
features and their various applications. This article is divided into five sections according to
the five strategies for preparing chitosan-based porous materials, i.e., cryogelation, freeze-
drying, sol-gel, phase inversion, and extraction of a porogen agent. Each section contains
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a general description of the preparation method, as well as the characterization of the
obtained chitosan structure. The potential applications and future prospects of specific
materials are also discussed.
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2. Freeze-Drying (Lyophilization)

Freeze-drying, also known as lyophilization, is a very common technique for prepar-
ing highly-porous materials with large specific surface areas [45–53]. This approach is
relevant for obtaining materials with hierarchical structures because it enables control over
the structure of the manufactured material [46,47]. Lyophilization is widely used in the
pharmaceutical industry [48–50], the food industry [51,52], and biotechnology [53].

Lyophilization is based on the physical removal of the solvent from a frozen solution
(or suspension) via sublimation. This results in a solid structure containing voids previously
occupied by condensed solvent molecules. The preparation of porous materials using the
freeze-drying method is presented in Figure 4.
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The technique of preparation of porous materials by lyophilization begins with sample
preparation, where the key parameters, i.e., silico precursor concentration, type of solvent
and mixture ratio, affect the final structure of the material [54]. In the next steps, the sample,
which is a solution or homogeneous suspension, is frozen [55] and dried to remove the
condensed solvent [56]. This procedure yields a super-dried material that contains less
than 0.5 wt.% water.

2.1. Preparation of Chitosan-Derived Porous Materials by Lyophilization

The fabrication of porous chitosan materials via lyophilization involves three steps: prepara-
tion of chitosan solution, freezing, and removal of the frozen solvent by lyophilization.

Depending on the operating parameters (i.e., initial chitosan concentration, freezing
time, and freezing temperature), it is possible to produce a material with designed porosity
and specific surface area. Garg et al. [57] employed lyophilization to prepare chitosan
scaffolds. During the freeze-drying process, they consistently increased the operating tem-
perature and decreased the pressure. They ultimately obtained porous chitosan scaffolds
that were white in color (when dried), smooth, spongy, flexible, and sufficiently strong to
withstand the drying process without undergoing deformation. In terms of the pore struc-
ture, the pores were heterogeneous and interconnected, and their diameters ranged from
10 to 20 µm. Porous chitosan scaffolds were also obtained by Nwe et al. [5] using various
sources of chitosan, including shrimp shells, crab shells, squid bone plates, and mycelia.
The solution was poured into a culture dish and frozen at a slow rate under relatively mild
conditions. The samples were then lyophilized. To protect the chitosan scaffolds from
dissolution in an aqueous medium, they were immersed in an alcoholic solution of NaOH.
The results indicated that the diameter of all chitosan scaffolds after neutralization was
approximately 16% smaller than that before neutralization. Scanning electron microscopy
(SEM) images revealed heterogeneous 3D pore microstructures with well-connected pores
in all chitosan scaffolds. Three types of pores were identified: perpendicular elongated
pores, polygonal pores, and elongated pores. The perpendicular pores were produced from
the highly parallel growth of ice crystals between the layers of the scaffold substrate, which
resulted from the formation of hydrogen bonds between long polymer chains during the
freeze-drying process. Polygonal pores and elongated pores occurred randomly in small
numbers but influenced the reduction in scaffold thickness following neutralization. The
substrate layers in all chitosan scaffolds adopted sheet-like structures. The average pore
diameter of all chitosan scaffolds was in the range of 60–90 µm. Similarly, Song et al. [58]
fabricated hydrogel porous chitosan beads and compared them to hydrogels prepared
without freezing (i.e., direct lyophilization). In this case, freeze-drying generated large
pores inside the chitosan microspheres and promoted the formation of a rough layer on
their surface, whereas direct freeze-drying led to relatively small pores and a dense surface
layer. These observations were explained based on the physical phenomena occurring
during both processes. Freezing of the hydrogel involved a change in the state of water
aggregation, which resulted in the formation of ice nuclei and, consequently, larger ice
crystals. After sublimation, the large ice crystal volumes became large pores. In the case
of direct lyophilization, the water inside the microspheres was distributed more evenly
relative to the ice. Furthermore, the concentration of chitosan played an important role in
governing the structure and morphology of the porous microspheres. A higher chitosan
concentration led to a more compact structure and a smaller pore size, both on the surface
and inside the chitosan microspheres. This phenomenon was explained by the balance
between adsorption and desorption of solute molecules on the ice crystal surface, which
significantly affected the growth of ice crystals. Meanwhile, as the concentration of chitosan
increased, the tendency of chitosan to accumulate and adsorb on the ice crystal surface also
increased, thereby inhibiting the growth of ice crystals. As a result, more ice crystals with
smaller diameters were formed.

Tomaz et al. [59] applied a freeze-drying method to fabricate porous chitosan mem-
branes for drug carrier applications. Specifically, a chitosan solution was poured into
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polystyrene Petri dishes, frozen for 24 h at −84 ◦C, and lyophilized for 72 h. The dry
samples were removed from the Petri dishes and neutralized in NH4OH for 72 h. Finally,
the samples were washed with distilled water. According to SEM images, the obtained
membranes had a 3D interconnected macroporous structure. The mean pore size decreased
as the degree of crosslinking in the membranes increased. A summary of the chitosan mate-
rials obtained via freeze-drying is presented in Table 1 with their structural characteristics
and potential applications.

Table 1. Structure and applications of chitosan-derived porous materials obtained by freeze-drying.

Type of Material Pore Characteristics Porosity (%)/Pore
Size (µm) Application Reference(s)

Membranes Open-pore structure; oblong pores;
slice building of the membrane 70–80/- Catalysis (catalyst site for

Heck coupling reaction) [60]

Membranes

Interconnected macropores;
uniform pore structure; fewer
pores on the surface of
the membrane

-/- Drug release, inhibition of
cancer cell growth [59]

Scaffolds
Relatively small, interconnected
pores; sponge-like
scaffold structure

-/10–20 Drug delivery,
tissue engineering [57]

Scaffolds
Polygonal and interconnected
pores; sheet-like scaffold structure;
randomly-located pores

88–97/60–90 Biomedicine, cell proliferation [5]

Scaffolds

Uniform, spherical pores;
open-pore structure; pore size
depended on initial
chitosan concentration

-/40–250 Tissue engineering [61]

Scaffolds

Small oblong pores that were
heterogeneously distributed;
specific surface area calculated
using BHJ desorption isotherms
(2.19 m2/g)

-/- Bioengineering [62]

Scaffolds Medium-sized pores; uniform
sponge-like scaffold structure -/50–200 Tissue engineering

(nerve regeneration) [63]

Scaffolds
Interconnected pores with thin
walls; pores on the scaffold surface
and inside the structure

75–85/60–80 Cell proliferation,
tissue engineering [64]

Scaffolds
Spherical, interconnected pores;
uniform scaffold structure; narrow
range of pore sizes

30–80/105–138 Tissue engineering [65]

Scaffolds Interconnected pores; organized
structure throughout material -/- Protein coating, drug delivery [66]

Scaffolds
Interconnected pores;
highly-porous structure; wide
distribution of pore sizes

85–95/50–150 Cell proliferation [67]

Scaffolds Interconnected pores; sponge-like
scaffold structure -/100–200 Tissue engineering

(bone regeneration) [68]

Scaffolds
Structure with open,
interconnected pores; round,
uniformly-shaped pores

-/100–200 Cell proliferation
(chondrocytes growth) [69]

Scaffolds (dried hydrogels)
Uniform, homogenous pores with
thin walls; pore size depended on
the lyophilization conditions

-/9–400 - [70]

Particles

Small, randomly dispersed pores
within particles; pores on the
particle surface were larger than
interior pores

-/1.5–15 Cell proliferation [71]
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Table 1. Cont.

Type of Material Pore Characteristics Porosity (%)/Pore
Size (µm) Application Reference(s)

Nanofibers

Irregularly-shaped pores crucial
for the structure; pore volume
between 13.89–33.32 mL/g
depending on initial
chitosan concentration

-/20–180 Ion adsorption (copper
ion removal) [72]

Microspheres
(microcarriers)

Pores distributed evenly on the
surface and within microspheres;
pores collapsed with higher initial
concentrations of chitosan

90/15–20 Cell proliferation
(hepatocyte growth) [73]

Microspheres

Shape and structure of pores
depended on chitosan
concentration; uniformly
distributed pores with spherical or
oblong shapes

23.14–63.15/- Ion adsorption (hexavalent
chromium removal) [58]

Microspheres

Shape and structure of pores
depended on chitosan
concentration, freezing
temperature, and time; sponge-like
interior structure and porosity
>90% for 1 wt.% chitosan; uniform
distribution of pores and porosity
~50% for 2.0–3.5 wt.% chitosan

45–95/- Ion adsorption (hexavalent
chromium removal) [74]

2.2. Application of Porous Chitosan Materials Prepared by the Freeze-Drying Method

In recent years, the lyophilization technique has been used to obtain chitosan-based
porous materials that serve as scaffolds [63–65], microspheres [58,73,74], and
membranes [59,60]. Tissue engineering is one of the most popular fields in which porous
chitosan materials are applied [61,62,68]. The rich pore structures of the chitosan scaffolds
provide an excellent environment for cell growth. Moreover, the uniform shape of the
pores and high specific surface area facilitates the adhesion of cells on the internal walls of
the scaffolds [75,76]. Scientists have also noticed a correlation between the elasticity and
stiffness of the extracellular matrix (i.e., chitosan scaffold) and the quantity of adsorbed
Schwann cells [77]. Furthermore, various chitosan properties, such as its biocompatibility,
antibacterial activity, or ability to promote wound healing significantly impact the vitality
and growth rates of cells. Thus, chitosan scaffolds obtained via freeze-drying offer the
potential for culturing various types of cells [63,78,79].

Another important field of science where chitosan-based porous materials show
wide applicability is the pharmaceutical industry, in particular, controlled drug release.
Chen et al. [80] studied the compatibility between chitosan xerogel and doxorubicin hy-
drochloride (DOX), which is an anticancer drug, with the goal of developing a drug delivery
system. They found that the chitosan xerogel absorbed DOX owing to the presence of
–NH2, –OH, and phenolic groups. In addition, as the drug concentration increased, the
chitosan material was able to store significantly more DOX. This study demonstrated that
the DOX release rate decreased over time, and after 28 days, the cumulative drug release
reached almost 50% at pH 7.4. The sorption capacity for DOX and the long-term release
capacity of the chitosan xerogel were closely related to the structure and morphology of
the carrier. As the specific surface area increased, the absorption capacity also increased,
and consequently, the drug was released more slowly.

Porous chitosan materials obtained using lyophilization have also been used to remove
ions from water. Ren et al. [74] studied the relationship between the structure of porous
chitosan microspheres and their adsorption of Cr(VI) ions. They observed that the chitosan
matrix’s adsorption affinity for Cr(VI) ions was related to the overall porosity of the beads.
The microspheres with the highest porosity exhibited the highest adsorption capacity. This
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phenomenon was explained by the fact that beads with higher porosity contained more
free –NH2 groups, which adsorbed Cr(VI) ions.

Zeng et al. [60] indicated the possibility of using porous chitosan membranes for
heterogeneous catalysis. They confirmed that the obtained material was highly active,
selective, and recyclable in the cross-coupling reactions of aromatic halides with alkenes. In
this case, Pd(II) ions served as chitosan crosslinking agents and as catalytic sites for the cross-
coupling reactions. The excellent activity and stability of the chitosan membranes were
attributed to their highly-porous structures and the strong chelation between palladium and
numerous hydroxyl and amine functional groups in the chitosan-based macromolecules.

3. Cryogelation

Another method that allows for the preparation of porous materials is cryogelation.
This approach is attractive because of its inherent time and energy efficiency, as well
as its scalability. In addition, this technique is simple and allows control over the pore
structure depending on the cooling rate during the initial stages [81–83]. The cryogelation
process involves the following steps: polymer solution preparation, freezing, gelation,
and drying. Freezing represents a very important stage, which has a significant influence
on the structure of the obtained material. The cooling rate determines the size of the ice
nuclei and the corresponding number and diameter of the pores. The frozen sample is then
immersed in a non-solvent solution to induce gelation, which is defined as the formation of
intermolecular or intramolecular bonds. This process makes the polymer network more
compact, inhibits dissolution, and reduces the swelling of the material [84,85]. Moreover,
the gelation process protects the pore structure from collapse during the phase separation
step [86]. The pores formed in the cryogelation process are typically large because of
the increase in water volume during solidification. Nevertheless, their diameters can be
controlled within a certain range by adjusting the cooling rate during the second stage (i.e.,
freezing). A scheme showing the process of fabricating porous materials by a cryogelation
method is presented in Figure 5.
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3.1. Preparation of Chitosan-Derived Porous Materials via Cryogelation

Ho et al. [86] prepared porous chitosan scaffolds using a cryogelation method, where
the chitosan solution was frozen at −20 ◦C. To induce gelation below the melting point of
the polymer solution, the frozen samples were immersed in a pre-cooled NaOH/ethanol
solution. After removing the non-solvent, the chitosan scaffolds were dried completely at
room temperature. The final structure contained interconnected pores with diameters in the
range of 60–150 µm and a high porosity (~80%). The authors also noted the relatively high
robustness of the porous structure of the material obtained after gelation. Chen et al. [87]
studied the influence of the type of organic acid (as a solvent for chitosan) on the structure
and properties of the resulting porous chitosan materials. They tested six carboxylic acids
(acetic, ascorbic, citric, glycolic, malic, and tartaric acids) under identical conditions. In
each case, the chitosan solution was frozen at −80 ◦C for 12 h. The frozen samples were
then immersed in a NaOH/ethanol mixture at −20 ◦C for 12 h, and after crosslinking,
they were washed in saline phosphate buffer. Porosity measurements indicated that the
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free volume inside the membranes was generally consistent, regardless of the acid used
to prepare the solution, and in all cases, this parameter was slightly higher than 90%. In
terms of the mechanical properties of the porous membranes, those derived from chitosan
dissolved in ascorbic acid were the most durable (strength ≈ 8 N/g). The authors proposed
that this was related to the oxidation of the two hydroxyl groups to carboxyl groups in the
ascorbic acid environment; this oxidation also promoted the initial crosslinking of chitosan
particles. Pinto et al. [88] studied porous chitosan scaffolds crosslinked using different
concentrations of glutaraldehyde. In this case, the mixture of chitosan and glutaraldehyde
was frozen at −20 ◦C for 24 h, transferred to a freeze-dryer, and stored at −52 ◦C for four
days. The lyophilized samples were rehydrated and stabilized with ethanol, re-frozen
in liquid nitrogen, lyophilized for an additional 24 h, and stored in a desiccator. The
SEM microphotographs of the chitosan scaffolds revealed interconnected pores ranging
in size from 50 to 200 µm. The addition of glutaraldehyde did not significantly alter
the morphology or size of the pores, and therefore, clear interconnections between pores
were maintained. Furthermore, the addition of glutaraldehyde increased the compressive
strength of the scaffolds because glutaraldehyde reacted with chitosan, making the structure
more rigid and mechanically resistant. Moreover, a gradual increase in Young’s modulus
was observed as the crosslinking agent concentration increased.

3.2. Application of Porous Chitosan Materials Prepared by Cryogelation Method

Ho et al. [86] employed porous chitosan scaffolds obtained by a cryogelation method
for cell culture applications. Cell culture experiments were conducted using ROS cells,
which are osteoblast-like cells that can mineralize and/or express collagen and osteo-
calcin. Their results indicated that ROS cells cultured in chitosan-based scaffolds could
attach, spread, and proliferate, thus demonstrating their potential applicability in tissue
engineering. Pinto et al. [88] confirmed that porous chitosan scaffolds crosslinked with
glutaraldehyde could be used in bone tissue engineering. The obtained scaffolds had
sufficient biocompatible properties and enhanced biological performance. According to
biological assessments, the material containing a low concentration of glutaraldehyde
achieved the best biological performance in terms of metabolic activity, ALP expression,
cell morphology, cell/scaffold interactions and gene expression.

4. Sol-Gel Method

The sol-gel method enables powder-free processing of glasses, ceramics, thin films,
or fibers directly from a solution. The precursors are mixed at the molecular level, and
different material shapes can be formed at much lower temperatures than what is possible
with traditional methods [89–91]. The specific steps of this method are similar to those
in the freeze-drying and cryogelation approaches, except that the solution is not frozen,
and the phase separation stage is significantly different. Specifically, a gel is dried under
supercritical conditions for the solvent, which leads to the formation of a porous structure
(i.e., aerogel). Sol-gel processing begins with the preparation of a solution or sol that
later becomes a gel. The solution may comprise inorganic salts or organic compounds,
which are then hydrolyzed and condensed to form a sol or gel. The gel state indicates
a three-dimensional interconnected solid network where liquid fills the pores. In the
wet gel state, these pores are interconnected. Aerogels represent a prominent group of
porous materials [92]; they are unique nanoporous substances with particular structures
and special properties. When manufacturing such materials, the liquid portion of the gel is
replaced by gas using an appropriate drying technology. The resulting solid material is
ultralight, porous, and in some cases, transparent because it is approximately 99.2% empty
space. A scheme illustrating the preparation of porous materials using the sol-gel method
is shown in Figure 6.
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4.1. Preparation of Chitosan-Derived Porous Materials Using the Sol-Gel Method

To produce chitosan aerogel, a colloidal solution (sol) is first prepared. Dilute solutions
of simple organic acids represent solvents that are suitable for dissolving chitosan. The
initial concentration of chitosan and the pH both significantly influence the final structure
of the aerogel. In the next step, the solution undergoes gelation. The chitosan gelation
is induced by changing the pH of the solution (physical gelation) or by adding various
crosslinking agents (chemical gelation). Increasing the pH of the solution causes the de-
tachment of protons from the –NH3

+ groups of chitosan; as a result, the polymer does
not dissolve upon contact with water and the sol transforms into a gel. In practice, the
physical gelation of a chitosan solution is promoted by placing the chitosan solution under
an ammonium atmosphere [93] or in a NaOH bath [94] for a certain amount of time to allow
for solution condensation. Physical gelation can also be carried out under the influence
of di-, tri-, or five-valent ions. For example, sulfuric acid(VI) induces electrostatic interac-
tions between SO4

2- anions and positively charged amine groups –NH3
+. This increases

the tensile strength of the material without significantly reducing its hydrophilicity [95].
Other compounds that can promote ionic gelation of chitosan include sodium tripolyphos-
phate [96], citric acid [97], phosphoric acid, and oxalic acid [98]. Chemical crosslinking
leads to the formation of new bonds between hydroxyl and amino groups in chitosan and
corresponding functional groups in the crosslinker. These bonds create a tighter polymer
network. The most common organic compounds used for the chemical gelation of chitosan
include glutaraldehyde [99], formaldehyde [100], epichlorohydrin [101], genipin [102], and
glyoxal [103].

The next step in the sol-gel process is gel aging. To further grow the structure, the
partially gelled solution is left untouched for a period of a few hours to a few weeks,
depending on the gelation conditions. During this time, condensation reactions proceed,
and the partially gelled solution becomes increasingly viscous. To stabilize the porous gel
structure and prevent the collapse of the pore walls during drying, solvent exchange must
occur at an appropriate point during the aging process. In some cases, dilute aqueous
acetic acid solution is exchanged for ethanol. Because of its lower surface tension and
higher volatility relative to water, ethanol is more rapidly removed during drying. In the
case of chemical crosslinking, the aging process occurs relatively quickly owing to the fast
rate of reaction between functional groups in the chitosan and in the crosslinker. After
complete condensation, the gel contains solvent molecules inside the structure, which are
in thermodynamic equilibrium with the polymer. In the final step, the gel is dried. One
of the most common techniques for drying hydrophilic gels is supercritical CO2 (scCO2)
extraction [92,104,105].

A comparison of the structural properties and applications of chitosan aerogels is
presented in Table 2.
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Table 2. Structural properties and application of chitosan aerogels prepared using scCO2 extraction.

Gelation Structural Characteristics Porosity (%)/Pore
Size (nm) Application Reference(s)

Aqueous solution
of NaOH

Structure comprising
numerous fibers with meso-
and macropores; fibers
distributed uniformly
generating a structure with
high specific surface area
(257–479 m2/g) and specific
pore volume (1.01–1.70 cm3/g)

96.7–97.2/
2–50 and >50 Chronic wound healing [106]

Glutaraldehyde

Chitosan aerogel comprising
entangled nanofibers with
diameters ~40 nm;
interconnected fibers create
structure with large specific
surface (658–973 m2/g)

-/
50–120

Adsorption of
methyl orange [107]

Glutaraldehyde

Chitosan aerogel structure
comprising short nanofibers
with diameters 5–10 nm; high
specific surface area (545 m2/g)
and thermal conductivity
coefficient (0.022 W/mK)

86–97/
10–50

House windows, glass
walls of buildings,

car windows
[108]

Formaldehyde

Aerogel structure comprising
nanofibers with diameters
~15 nm and nanoparticulate
aggregates; highly transparent,
yellow aerogel with high
specific surface area
(737–872 m2/g)

89.3–96.0/
21.3–43.6 Sound absorption [109]

Sodium
tripolyphosphate

Low-porosity aerogels with
low specific surface area
(73–103 m2/g); uniform
aerogel structure with
homogeneous pore shapes

20–29/- Drug delivery [110]

Formaldehyde and
alkyl aldehyde

Aerogel with uniform,
interconnected pores; structure
comprising nanofibers with
diameters ~50 nm; high
specific surface area
(581–672 m2/g)

-/- Thermal insulation [111]

López-Iglesias et al. [106] studied a series of chitosan aerogels using the sol-gel process
with scCO2 extraction as the method of drying. The samples were prepared from a solution
of chitosan in dilute acetic acid, which was then dropped into a 0.1 M NaOH solution
(gelling bath). After a short gelation time, the hydrogel beads were transferred to an
absolute ethanol bath for 30 min. The solvent exchange step was repeated to completely
remove water from the alcogel beads. Finally, the chitosan beads were dried via scCO2
extraction, which afforded the final aerogels. The authors observed that the beads were
formed based on a network of interpenetrating bundles of polysaccharide fibers. The dual
porous structure of these aerogels was observed in the inner and outer structures of the
particles, where the voids within and between the fiber bundles were mesoporous (2–50 nm)
and macroporous (>50 nm), respectively. Moreover, the porosity value remained constant
at approximately 97%, while the specific surface area (determined by the BET method)
increased from 257 to 479 m2/g as the gel aging time increased. Takeshita et al. [112]
prepared chitosan aerogels using mixed (physico-chemical) gelation in the presence of



Int. J. Mol. Sci. 2022, 23, 9932 13 of 24

various amounts of urea as a coagulant agent. To initiate the thermal decomposition of
urea and induce gelation, the prepared solution was sealed in an airtight polypropylene
container and stored at 80 ◦C for 72 h. The resulting hydrogel was soaked in a water/ethanol
mixture three times, with two exchanges per day. Then, the gel was placed in an autoclave
and encapsulated in a scCO2 drying system. The SEM images of the aerogels revealed
that samples with low urea concentrations exhibited mesoporous structures consisting of
primary particles that were approximately 10 nm in diameter. This structure was highly
homogeneous below the sub-micrometer scale. Aerogels with high urea concentrations
consisted of similar primary nanoparticles, although they also formed fibrous and aggregate
structures exceeding 100 nm in diameter, which were composed of primary nanoparticles.
The BET surface area reached a maximum of 436 m2/g for the sample with the lowest
urea concentration, and this area decreased (to ~300 m2/g) as the initial urea concentration
increased. Another method for preparing porous chitosan aerogels by the sol-gel method is
via hydrophobic modification [111]. The key point of this approach is the combination of
the nanofibrous material and a hydrophobization agent, i.e., chitosan and alkyl aldehydes.
In this process, a certain amount of alkyl aldehyde was mixed with methanol and then
with an aqueous solution of formaldehyde and chitosan. The mixture was left overnight
at 60 ◦C in a tightly sealed container. After cooling to room temperature, the resulting gel
was washed by soaking in methanol with continuous stirring to remove water, and then
dried supercritically in a CO2-methanol system at 80 ◦C and 20 MPa to obtain an aldehyde-
modified chitosan aerogel. The SEM observations revealed entangled chitosan nanofibers
(less than 50 nm in diameter) forming a mesoporous structure. The specific surface areas
were 672 and 581 m2/g for the unmodified sample and the hexanal-modified sample,
respectively. Obaidat et al. [110] used supercritical fluid technology to prepare porous
chitosan aerogels. In this case, raw chitosan was dissolved in a dilute acetic acid solution,
while chitosan oligomers were dissolved in water. The resulting solution was added
dropwise to a sodium tripolyphosphate solution. The obtained chitosan microparticles were
dehydrated by immersion in a series of ethanol baths with increasing alcohol concentrations.
The microparticles were then dried with supercritical fluid at 9.997 MPa and 40 ◦C for 2 h.
The SEM images showed that the obtained aerogels had a homogeneous shape with a high
specific surface area thanks to macro- and mesopores. The specific surface area and porosity
of raw chitosan were higher than those of the oligomers. It was therefore demonstrated that
supercritical fluid drying overcame the limitations of traditional drying by maintaining
high open porosity and favorable textural properties in the prepared porous structures, i.e.,
aerogels. This outcome was attained because a moderate temperature was used during
drying, resulting in conformational changes and minimizing intermolecular interactions.

Another interesting way to prepare porous chitosan aerogels using the sol-gel method
is to obtain them directly, without introducing catalysts or oxidants [108]. In this case,
chitosan powder is first dissolved in acetic acid to form a homogeneous solution at the
molecular level and then regenerated to form a gel through crosslinking. Formaldehyde
was used as a crosslinker because it reacts with NH2 groups to form Schiff base moieties.
The SEM images showed that the obtained chitosan aerogels comprised entangled, i.e.,
randomly-oriented, nanofibers that were 5–10 nm in diameter and mesopores that were
10–50 nm in size. The pore area increased with decreasing apparent density, ultimately
reaching 545 m2/g. X-ray diffraction profiles showed that the chitosan nanofibers in the
aerogels were almost amorphous.

4.2. Application of Porous Chitosan Materials Prepared by Sol-Gel Method

Chitosan-based aerogels represent very promising materials with high specific surface
area, porosity, and biocompatibility. As a result, they have potential applicability in various
fields of science and contemporary technologies [106–111]. The main advantages of using
chitosan for aerogel preparation are (i) facile control over gelation through suitable pH selec-
tion, (ii) abundance of hydroxyl and amino groups, (iii) simplicity of chemical modification,
and (iv) wide selection of potential crosslinking agents. López-Iglesias et al. [106] obtained
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porous chitosan aerogels for chronic wound applications. They noted that vancomycin-
containing chitosan aerogels comprise a promising formulation that can be incorporated
into dressings for treating chronic wounds, especially when infectious episodes are ex-
pected. Importantly, loading vancomycin into chitosan aerogels did not affect vancomycin
colonization at the wound site. Furthermore, this approach can provide rapid local delivery
of the antibiotic at the wound site to prevent infection soon after wound debridement,
without compromising cell viability. Obaidat et al. [110] confirmed that supercritical fluid
technology could be employed to produce chitosan aerogel microparticles with salbutamol,
which may be useful in pulmonary drug delivery systems. They observed prolonged release
in all prepared microparticles compared with unformulated salbutamol. The release profile
of salbutamol from the developed material was influenced by the type of chitosan and the
sodium tripolyphosphate concentration. The highest release rate was obtained for raw
chitosan because it had the highest porosity. Increasing the sodium tripolyphosphate con-
centration decreased the salbutamol release rate thanks to the increased crosslinking of the
polymer chain, which reduced the swelling capacity. Zhang et al. [107] fabricated chitosan
aerogels for the adsorption of methyl orange from water tests. Their investigations revealed
that the prepared adsorbents had excellent adsorption properties because of their high
specific surface areas. The main driving forces for methyl orange adsorption were physical
or hydrogen bonding interactions and the high specific surface area, which contributed to
favorable three-dimensional structures that offered numerous adsorption sites.

5. Phase Inversion

The wet phase-inversion method is the most widely used technique for preparing
porous materials. Four strategies can be applied for the formation of phase-inversion mem-
branes: immersion precipitation, vapor-phase precipitation, precipitation by controlled
evaporation, and thermally-induced phase separation [113–115]. Immersion precipitation
is the most commonly used approach to polymeric membrane preparation. In this method,
the polymer solution is cast onto a suitable support layer and then immersed in a coag-
ulation bath containing a non-solvent. Precipitation occurs by exchanging the solvent
with the non-solvent. In vapor-phase precipitation, the main phenomenon responsible for
phase separation is the influx of non-solvent to the membrane. The non-solvent penetrates
from the vapor phase as water, acetone, or ammonia vapor. In this case, the system enters
a diphasic regime due to non-solvent intake, rather than solvent loss. Precipitation by
controlled evaporation can be implemented to prepare materials with less porous surfaces.
The evaporation step forms a “skin layer” with locally increased polymer concentrations
following the selective loss of the volatile (co)solvent. After immersion in the coagulation
bath, the skin layer forms a resistance barrier between the main part of the membrane and
the coagulation bath. Thus, non-solvent and solvent diffusion are hindered and demixation
is delayed. In thermally-induced phase separation, polymer precipitation is induced by a
reduction in temperature, which is usually initiated by immersing the material in a quench-
ing bath. To prepare membranes, it is necessary to find a substance that cannot dissolve
the polymer at room temperature but does behave as a solvent close to the melting point
of the polymer. Reducing the temperature therefore triggers phase inversion. The general
procedure for fabricating porous materials by phase inversion is presented schematically in
Figure 7.

5.1. Preparation of Chitosan-Derived Porous Materials Using Phase Inversion

Mi et al. [116] prepared porous chitosan membranes via dry/wet phase separation.
For dry phase separation, the casted chitosan solution was pre-heated in an oven with
circulating hot air (50 ◦C) for 10–60 min. The obtained material was immersed in an
aqueous NaOH (2 wt.%)-Na2CO3 (0.05 wt.%) solution, which was used as a coagulant
for 24 h. After coagulation, the chitosan membrane was soaked in distilled water to
remove NaOH, and then it was freeze-dried. The obtained membranes had asymmetric
structures; a dense skin was formed during dry inversion, and a sponge-like porous layer
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formed following wet phase separation. The thickness of the skin and sponge-like porous
layers depended on the evaporation time. Specifically, a longer “dry” evaporation time
increased the thickness of the skin layer while simultaneously decreasing the thickness
of the porous layer. Asymmetric gradational-changed porous chitosan materials were
described by Hong et al. [117]. In this case, a chitosan solution was cast into a glass plate
and pre-vaporized in an oven at 50 ◦C for 1 h. The obtained membrane was immersed
in a NaOH solution for 24 h, then washed repeatedly with deionized water, and freeze-
dried for 2 h. The SEM analysis showed that the studied membranes contained three
layers: a dense layer (~25 µm), a transitional medium-density layer (~30 µm), and a
spongy porous layer (~100 µm). The medium-density transition layer contained numerous
interconnected micropores, approximately 1–2 µm in diameter, whereas the interconnected
pores in the porous spongy layer were approximately 15–60 µm in diameter. Porous
chitosan membranes can also be prepared via cryogenic-induced phase separation [118].
In this case, the mixture of chitosan and glutaraldehyde was cast onto a glass plate and
placed in a chamber at low temperature for 72 h until crosslinking was complete. The
obtained membrane was immersed in acetone three times to extract ice and decompressed
at room temperature to remove acetone. Finally, it was neutralized with NaOH solution
to remove any remaining acetic acid, washed with deionized water until pH 7, and dried.
The SEM images revealed a 3D porous structure, stacked by the porous chitosan lamellas.
The thickness of the prepared membranes was 80 µm, and the cross-sections indicate
long narrow pores oriented parallel to the membrane surface. The surface exhibited a
homogeneous porous structure, which was similar to a lacy structure. The porosity was
74.2% and originated from an open-pore membrane structure with high porosity.
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The thermally-induced phase separation method for fabricating porous chitosan mem-
branes was studied by Qin et al. [119]. A chitosan solution was poured into a Petri dish and
immediately quenched to −10 to −20 ◦C for 6–12 h. At −20 ◦C, the chitosan/water-ethanol
solution became a relatively transparent soft gel. To regenerate the chitosan, a pre-cooled
(0 ◦C) coagulant solution was added, and the mixture was maintained at 0 ◦C for 6 h.
The gel membrane was subsequently frozen at −20 ◦C for 2 h, and then lyophilized at
−50 ◦C for 24 h. The SEM images indicated that because of the phase separation into two
bicontinuous polymer-rich (chitosan) and solvent-rich (water) phases at low temperature
(−20 ◦C), chitosan formed a skeleton of pores, and water solidified into ice crystals within
the chitosan matrix. As a result, large holes existed in the chitosan material. The pore
sizes could be modulated by replacing water with a mixture of water and ethanol. This
phenomenon was a result of rapid ice crystallization, which led to a chitosan film with a
large number of pores.

5.2. Application of Porous Chitosan Materials Prepared by a Phase Separation Method

Hong et al. [117] studied porous chitosan membranes for guided periodontal tissue
regeneration. The investigated membranes had excellent surface and structural compati-
bility. Moreover, they did not cause anaphylactic reactions or hemolysis and exhibited no
cytotoxicity or pyrogenic effects. Furthermore, their bioactivity induced and guided tissue
regeneration when combined with growth factors and other bioactive elements. In terms of
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membrane degradation, the obtained materials maintained their structural integrity for
5–6 weeks in an RLS enzyme solution, which satisfied the requirements for a guided tissue
regeneration membrane for curing periodontal disease. The other application of porous
chitosan materials prepared by phase inversion is controlling the antigen release of the
Newcastle disease (ND) vaccine [120]. Indeed, controlled-release of the ND vaccine antigen
could be achieved by adsorbing the antigen onto chemically-modified porous chitosan
microspheres. These results indicated that either quaternary or succinyl porous chitosan
microspheres could form strong electrostatic attractions or intermolecular interactions with
the WP virus antigen, thereby enabling a very slow rate of antigen release. Moreover, the
rate of antigen release from the microspheres was not significantly dependent on enzymatic
degradation. Salerno et al. [121] investigated porous chitosan membranes in the context
of human epidermal stratification and differentiation applications. They demonstrated
that it was possible to stimulate the formation of epidermal layers by using membranes
with tailored properties. Distinct effects on cell proliferation and differentiation of human
keratinocytes could be observed depending on the surface topography of the nano- and mi-
crostructured membranes. Nanoporous membranes with pore diameters of 26 nm exhibited
moderate roughness and elastic moduli, which allowed them to influence the development
of a cornified epidermal surface layer structure characterized by low thickness, low cell
proliferation, and high CK1 expression. In contrast, microporous chitosan membranes with
open-pore diameters of 0.131 µm and increased roughness and elastic moduli induced the
formation of basal epidermal lamina, with numerous proliferating cells that stratified and
differentiated over time, thus forming a multilayered and viable epidermis.

The dry/wet phase-inversion method was also applied to generate asymmetric porous
chitosan membranes for controlled antibacterial release [117]. The results indicated that a
silver sulfadiazine (AgSD)-doped asymmetric chitosan membrane represents a potential
wound dressing material with antimicrobial properties to protect injured skin from infection.
This membrane allowed the burst-release of sulfadiazine and the slow release of silver
from the membrane into the burn wound to control bacterial growth. In addition, it was
less cytotoxic than the traditional AgSD cream and more effective in terms of long-term
growth inhibition of Pseudomonas aeruginosa and Staphylococcus aureus infections in the
wound. Thermal phase separation was also used to fabricate porous chitosan materials
to study their adsorption behavior for Cu2+ and their potential for soft tissue engineering
applications [119,122]. It was confirmed that porous chitosan membranes are promising
adsorbents for treating wastewater contaminated with heavy metal ions. These membranes
exhibited high adsorption capacity for Cu2+, and the adsorption process was based on
monolayer and chemical adsorption. The chitosan-based materials also promoted fibroblast
proliferation and were therefore considered promising scaffolds for soft tissue engineering.
The mechanical environment of the scaffolds was intentionally soft so that the cells could
not generate large traction forces when they attached to and pulled on the surface. This
resulted in a more rounded cell morphology, which better mimics the native morphology
of fibroblast cells in soft human tissue.

6. Extraction of a Porogen Agent

Another interesting way to prepare porous membranes is by adding a porogen agent
to the polymer solution. Introducing a porogen agent as a porosity former is a facile,
convenient, and cost-effective method that can be applied with a wide range of polymers.
Furthermore, porogen agents determine the stability, selectivity, and permeability of the
polymer. A porogen is an organic or inorganic material that is added to the polymer
solution before membrane formation. During membrane shaping, it is selectively removed
by leaching, thereby forming pores in the place of porogen molecules in the membrane
matrix. In this process, the pore size is controlled by the size of the porogen. Some of the
most popular porogen agents are NaCl, sugar crystals, paraffin spheres, and polymers. The
most widely used porogen is NaCl, although it is not stable enough to obtain uniformly-
sized pores, and therefore, its applicability in tissue engineering is limited. For this reason,
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new porogen agents are still being developed and tested to obtain membranes with uniform
pore sizes [123–126]. The scheme in Figure 8 illustrates the preparation of porous materials
by the addition of a porogen agent.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 17 of 24 
 

 

infection. This membrane allowed the burst-release of sulfadiazine and the slow release 
of silver from the membrane into the burn wound to control bacterial growth. In addition, 
it was less cytotoxic than the traditional AgSD cream and more effective in terms of long-
term growth inhibition of Pseudomonas aeruginosa and Staphylococcus aureus infections in 
the wound. Thermal phase separation was also used to fabricate porous chitosan materials 
to study their adsorption behavior for Cu2+ and their potential for soft tissue engineering 
applications [119,122]. It was confirmed that porous chitosan membranes are promising 
adsorbents for treating wastewater contaminated with heavy metal ions. These mem-
branes exhibited high adsorption capacity for Cu2+, and the adsorption process was based 
on monolayer and chemical adsorption. The chitosan-based materials also promoted fi-
broblast proliferation and were therefore considered promising scaffolds for soft tissue 
engineering. The mechanical environment of the scaffolds was intentionally soft so that 
the cells could not generate large traction forces when they attached to and pulled on the 
surface. This resulted in a more rounded cell morphology, which better mimics the native 
morphology of fibroblast cells in soft human tissue. 

6. Extraction of a Porogen Agent  
Another interesting way to prepare porous membranes is by adding a porogen agent 

to the polymer solution. Introducing a porogen agent as a porosity former is a facile, con-
venient, and cost-effective method that can be applied with a wide range of polymers. 
Furthermore, porogen agents determine the stability, selectivity, and permeability of the 
polymer. A porogen is an organic or inorganic material that is added to the polymer so-
lution before membrane formation. During membrane shaping, it is selectively removed 
by leaching, thereby forming pores in the place of porogen molecules in the membrane 
matrix. In this process, the pore size is controlled by the size of the porogen. Some of the 
most popular porogen agents are NaCl, sugar crystals, paraffin spheres, and polymers. 
The most widely used porogen is NaCl, although it is not stable enough to obtain uni-
formly-sized pores, and therefore, its applicability in tissue engineering is limited. For this 
reason, new porogen agents are still being developed and tested to obtain membranes 
with uniform pore sizes [123–126]. The scheme in Figure 8 illustrates the preparation of 
porous materials by the addition of a porogen agent. 

 
Figure 8. Formation of porous materials by adding a porogen agent. 

6.1. Preparation and Characterization of Chitosan-Derived Porous Materials Prepared by the 
Extraction of a Porogen Agent 

Porogen agents have also been used to fabricate porous chitosan membranes. Chao 
et al. [127] added NaCl particles to a 5% v/v chitosan solution. The obtained membranes 
were then dried at 50 °C, immersed in an aqueous 1 M NaOH solution, and then immersed 
in deionized water to dissolve the NaCl particles and remove the remaining NaOH. As a 
result, chitosan membranes with macroporous structures were obtained. In this case, the 
addition of NaCl particles to the chitosan solution led to a more compact polymer confor-
mation and reduced the solubility of the polymer chains. Furthermore, some of the NaCl 

Figure 8. Formation of porous materials by adding a porogen agent.

6.1. Preparation and Characterization of Chitosan-Derived Porous Materials Prepared by the
Extraction of a Porogen Agent

Porogen agents have also been used to fabricate porous chitosan membranes.
Chao et al. [127] added NaCl particles to a 5% v/v chitosan solution. The obtained mem-
branes were then dried at 50 ◦C, immersed in an aqueous 1 M NaOH solution, and then
immersed in deionized water to dissolve the NaCl particles and remove the remaining
NaOH. As a result, chitosan membranes with macroporous structures were obtained. In
this case, the addition of NaCl particles to the chitosan solution led to a more compact
polymer conformation and reduced the solubility of the polymer chains. Furthermore,
some of the NaCl particles dissolved in the chitosan solution to form amorphous polymer
precipitates, whereas others helped form the macroporous structure. Overall, the number of
NaCl particles had a significant effect on the porosity of the resulting chitosan membranes.
The mean pore diameter of the investigated membranes ranged from 74.14 to 153.38 µm,
and the pore size generally depended on the physico-chemical treatment applied during
membrane preparation (oven, freeze, and vacuum dry steps). Another porogen agent that
is commonly used to obtain macroporous chitosan membranes is silica [128]. Silica particles
could be removed from the dense membranes following treatment with a 5 wt.% solution
of NaOH at 60 ◦C for 4 h. Next, the obtained membranes were washed with distilled water
at 60 ◦C and again at room temperature. To properly plasticize the membranes to avoid
pore closure during the drying process, the membrane materials were immersed in 20 wt.%
glycerol solution for 30 min. The addition of silica particles to the polymer matrix induced
the formation of macroporous chitosan membranes with asymmetric structures. The top
layer was dense and non-porous, whereas a porous layer was formed at the bottom surface
because silicon particles tended to fall within the chitosan film. This membrane structure
served to increase the mechanical resistance and selectivity of the membrane. According to
SEM observations, the pore size was controlled within the range from 4 to 20 µm based on
the silica particle diameter.

Zeng et al. [129] prepared porous chitosan membranes using polyethylene glycol as
a porogen agent. They dissolved chitosan in 2 wt.% acetic acid and mixed this solution
with various amounts of polyethylene glycol. To form the desired porous structure, the
polyethylene glycol was removed by immersing the obtained membranes in a water bath
at 80 ◦C for 8 h. The SEM images showed that the membrane surface adopted a 3D porous
structure comprising stacked porous lamella. The ultimate pore size depended on the
molecular weight of the polyethylene glycol. In general, the higher the molecular weight
of polyethylene glycol, the larger the final pore size, thus indicating poorer compatibility
with chitosan. An alternative porogen agent for preparing porous chitosan materials is
sodium acetate [130]. In this case, the chitosan solution was mixed with sodium acetate
salt, frozen at −70 ◦C for 24 h, and lyophilized for an additional 24 h. The chitosan-salt
mixture was washed in ethanol for 2 h and then underwent salt-leaching in distilled
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water for 48 h. The amount of sodium acetate had a significant impact on the structure,
porosity, and mechanical properties of the obtained porous chitosan material. The porosity
increased as the sodium acetate content increased; material prepared with 90% sodium
acetate contained larger primary pores (200–500 µm), as well as numerous smaller pores
(7–30 µm). Compared with the phase-separation method, the use of sodium acetate as a
porogen agent to prepare chitosan materials could increase the elongation-at-break and
elastic recovery of the final material. Furthermore, more favorable mechanical properties
were observed when using larger amounts of sodium acetate.

Liu et al. [131] used eggshell membrane powder (ESMP) as a porogen agent to fabricate
porous chitosan materials. Importantly, ESMP is a natural material that has attracted in-
creased attention in many contexts owing to its nontoxicity, biocompatibility, and abundant
functional groups. It can serve as a suitable porogen agent because it partially dissolves in
NaOH solution. For example, chitosan solution (3.5% w/v) was mixed with an aqueous
ESMP solution (7% w/v) and stirred for 2 h. Then, the mixture was treated with 10% NaOH
solution, and the obtained mesoporous material was sequentially washed with deionized
water, ethyl alcohol (50% v/v), and deionized water to reach neutrality. After adding ESMP
to the chitosan matrix, the density of macropores increased, and the size range of macro-
pores became narrower. Furthermore, ESMP promoted the transformation of macropore
walls and dense lamella to a porous network structure with thinner gauze-like nets at the
boundaries of the ESMP particles. The obtained structure was beneficial in terms of the
diffusion of substrate molecules from the solution into the interior of the macroparticles.
Additionally, ESMP loading on the surface gradually enhanced the roughness of the surface
morphology. Finally, BET analysis showed that the changes to the mesopore structure of
the chitosan material after adding ESMP were due to the dissolution of ESMP in the NaOH
solution; when these particles were removed, larger spaces were created. On the other
hand, ESMP induced attraction effects between chitosan chains, which reduced mesopore
formation following the accumulation of chitosan chains.

6.2. Application of Porous Chitosan Materials Prepared by Extracting a Porogen Agent

Recently [127], researchers demonstrated the higher adsorbing capabilities of porous
chitosan materials prepared using NaCl particles as the porogen agent, relative to copper
(II) ions. They noticed that Cu2+ ions sorbed on the surfaces of existing pores and between
the segments of the matrix. This contributed to a significant improvement in the sorption
capacity of the developed porous chitosan material. Shi et al. [132] observed that chitosan
materials with a sponge-like 3D pore structure exhibited better sorption capacity for dyes.
The porous chitosan-based membranes, which were prepared using polyethylene glycol as
the porogen agent, indicated the possibility of combining high adsorption capacity with
high-speed dynamic dye removal. This phenomenon was mainly attributed to the rejection
of the millipores and the interactions between certain characteristic functional groups in
the membrane and dye. The prepared membrane was also capable of repeated dye removal
(>80% after 5 cycles of dynamic adsorption at a dye concentration of 150 mg/L). The same
porogen agent (polyethylene glycol) was used to prepare porous chitosan membranes
for filtration applications [133]. The incorporation of polyethylene glycol increased the
hydrophilicity of the membranes, while the accumulation of polyethylene glycol molecules
at the membrane surface stabilized the surface and generated a hydrophilic surface network,
which increased pure water permeability. More favorable results were obtained when using
a low concentration of polyethylene glycol because this enabled the creation of a membrane
structure with a uniform morphology (no defects).

Macroporous chitosan membranes prepared using a silica porogen agent have been
applied in the context of drug permeation [128]. Observed differences in drug permeability
were generally due to their differing water solubilities. Because the permeation process is
governed by the distribution of the solvent in the water-filled pores, a more water-soluble
drug will permeate more easily. Additionally, the permeation increased as the temperature
increased because of the enhanced thermal mobility of the polymer, which promoted mass
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transport through the membrane. An analogous porous chitosan-silica membrane was
investigated for the fabrication of batteries [134]. The results of this study indicated that a
porous chitosan membrane prepared by silica removal could be implemented to construct
coin cell proton batteries with excellent electrochemical properties and overall battery
performances. In addition, the specific discharge capacities of the fabricated proton battery
increased because of the absorption of H+ ions in the porous chitosan membrane at the
electrode-membrane interface. This behavior was possible thanks to the relatively large
pore size, high water absorption, high conductivity, and optimal linear sweep voltammetry
of the novel material.

7. Summary

Porous chitosan materials, which are characterized by biocompatibility, nontoxicity,
antibacterial properties, and biodegradability, are increasingly being considered for broad
industrial applications. This review provides in-depth overviews of the developed porous
chitosan materials while focusing on the methods of preparation, characterization, and
application of these materials. The scope was limited to pure chitosan materials where
the crosslinking agent was the only modification. This assumption was implemented
to clearly discuss the direct links between the properties of the obtained material and
the method (conditions) of preparation, without the influence of additional factors. In
the descriptions of each method, we elucidate how the fabrication approach impacts the
structure and potential applicability of porous chitosan materials. Overall, five membrane
preparation methods were presented: cryogelation, freeze-drying, sol-gel, phase inversion,
and extraction of a porogen agent. The basic principles of each process and the resulting
porous chitosan materials were discussed in terms of their structures and applications.

The information compiled in this article can be used as a guide to improve the struc-
tural and mechanical properties of chitosan materials to broaden the scope of their potential
applications to other areas of industry.
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