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Abstract: The goal of classifier combination can be briefly stated as combining the decisions of
individual classifiers to obtain a better classifier. In this paper, we propose a method based on the
combination of weak rank classifiers because rankings contain more information than unique choices
for a many-class problem. The problem of combining the decisions of more than one classifier with
raw outputs in the form of candidate class rankings is considered and formulated as a general discrete
optimization problem with an objective function based on the distance between the data and the
consensus decision. This formulation uses certain performance statistics about the joint behavior
of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an
initial approach leads to a binary linear programming problem with a simple and global optimum
solution. The consensus function can be considered as a mapping from a set of individual rankings
to a combined ranking, leading to the most relevant decision. We also propose an information
measure that quantifies the degree of consensus between the classifiers to assess the strength of the
combination rule that is used. It is easy to implement and does not require any training. The main
conclusion is that the classification rate is strongly improved by combining rank classifiers globally.
The proposed algorithm is tested on real cytology image data to detect cervical cancer.

Keywords: classifier combination; rank; aggregation; total order; independence; data fusion; mutual
information; plurality voting; binary linear programming; cervical cancer; HPV

1. Introduction

Using a single classifier has shown limitations in achieving satisfactory recognition performance,
and this leads us to use multiple classifiers, which is now a common practice in machine learning.
Classifier combination has been studied in many disciplines such as the social sciences, sensor fusion,
pattern recognition, etc. Schapire [1] proved that a strong classifier can be generated by combining
weak classifiers. It has been accepted as an effective method to improve classification performances.
Many examples of ensemble classifier systems can be found in process engineering or medicine. For a
survey of the issues and approaches on classifier combination, readers are referred to Woźniak [2] and
Oza and Turner [3]. The same type of approach has also been used, for instance, in remote sensing
domains (e.g., for land cover mapping with Landsat Multispectral Scanner, elevation) [4], computer
security [5], financial risks [6], proteomics [7].

Classifiers can provide as their final decision only a single class, a ranked list of all the classes, or
a score associated with each class as a measure of confidence for the class. In this paper, we focus only
on rank-values to perform combination. Rank data are useful when data can not be easily reduced
to numbers, such as data that are related to concepts, opinions, feelings, values, and behaviors of
people in a social context, genes, characters, etc. Ranking also has the advantage of removing scale
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effects while permitting ranking patterns to be compared. But rank-ordering has also its disadvantages:
it is difficult to combine data from different rankings, and the information contained in the data is
limited [8].

After learning, each classifier of the ensemble has output its own results. Several fusion strategies
have been proposed in the literature to combine classifiers at the rank level [9,10]. Among them,
one of the most common techniques is certainly the linear combination of the classifier outputs [11,12].
The voting principle is the simplest method of combination, where the top candidate from each classifier
constitutes a single vote. The final decisions can be made by majority rule (over half of the votes) [13],
plurality (maximum number of votes) [14], weighted sum of significance [15], or other variants.
The method of Borda count [16], which sums up the rank values of classifiers, can be considered
as a generalization of the voting principle. The Bayesian approach estimates the class posterior
probabilities conditioned on classifier decisions by approximating various probability densities [17].
Although decision theory itself does not assume classifiers are independent, this assumption is almost
always adopted in practical implementation to reduce the exponential complexity of probability
estimation. In summary, classifier combination is an ensemble method that classifies new data by
taking a weighted vote of the predictions of a set of classifiers [18]. This is originally a Bayesian
averaging, but more recent algorithms include boosting, bagging, random forests, and variants [19–21].
Note that Dempster–Shafer formalism for aggregating beliefs based on uncertainty reasoning lends
itself to a more flexible model used to combine multiple pieces of evidence and capable of taking
uncertainty and ignorance into account [22].

Finally, a rank classifier provides an ordered list of classes associating each class with a rank
integer that indicates its importance in the list. The output of a classifier Kk is therefore a vector of
ranks attributed to the K classes.

An ensemble of classifiers might be a better choice than a single classifier because of the variability
of the ensemble errors, which is such that the consensus performance is significantly better than
the best individual in the ensemble [23]. This analysis is certainly true when the classifiers of the
ensemble “see” different training patterns, and it can be effective even when the classifiers all share the
same training set. In a computerized tomography problem to illustrate how the ensemble consensus
outperformed the best individuals, Anthimopoulos observed that the marginal benefit obtained by
increasing the ensemble size is usually low due to correlation among errors: most classifiers will get
the right answer on easy inputs, while many classifiers will make mistakes on difficult inputs [24].

In addition, running several searches and combining the solutions produces a better
approximation than many learning techniques that use local searches to converge toward a solution,
with the risk of staying stacked in local optima (which may not be true in the case of deep learning
classifiers, since Kawaguchi has shown that every local minimum is a global minimum [25]). Thus,
we might not be capable of producing the optimal classifier using a training set and a given classifier
architecture, compared to a set of several classifiers. Since the number of classifiers can be very high
(in the thousands), it is difficult to “understand” the classifier ensemble decision characteristics.

Although general performances are often improved when classifiers are combined, it becomes
computationally costly to combine well-trained classifiers [26]. Most of the time, it is believed that
the combination of independent classifiers will provide greater performance improvement [27], while
combiner decisions could be biased toward duplicated outputs. However, this belief stems from the
difficulty of using a dependence assumption. In fact, in practical situations, classifier independence is
difficult to assess.

How do multiple rank classifiers improve separation performances when individual classification
performances are slightly better than random decision making? And what is “classifier independence” ?
This term raises several issues that we will address in Section 4, where we come back to the theory of
rank aggregation and propose an algorithm to combine classifiers. The main properties of the classifier
are discussed. Section 2 exposes the general framework and the notations used. A classifier ensemble
dependence measure is then proposed to evaluate the conditional mutual information in Section 5.
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Experimental results are presented in Section 6 for the detection of cervical cancer. Finally, Section 7
gives conclusions on rank classifier combination and further investigations are discussed.

Notations

Set and regions are indicated by double-trace uppercase letters such as G,S,R, vectors with
bold lowercase such as x, y, and matrices with uppercase bold letters such as C, M, Σ. The elements
of a matrix M = {mij} are indexed by the row index i and the column index j. Lowercase letters
refer to individual elements in a vector whose position in the vector is indicated by the last subscript.
Therefore, xij refers to the jth element of vector xi. p(Ci) is the a priori probability of the random value
X belonging to class Ci, 1 ≤ i ≤ K, K being the number of classes. M is the number of classifiers used
for combination. |C| denotes the cardinality of set C. T denotes the transpose operator.

2. Problem Statement and Model

We consider a classification dataset B0 with n observations

B0 = {(xi, ci)}n
i=1, (1)

obtained from a physical signal, or synonymously, explanatory variables, objects, instances, cases,
patterns, t-uples, etc. where each xi belongs to class ci ∈ {C1, . . . , CK}. The vector xi lies in an attribute
space A ∈ Rp and each component xij is a numerical or nominal categorical attribute, also named
feature, variable, dimension, component, field, etc.

The output of the M classifiers K1(x), . . . ,KM(x) are represented by a K-dimensional vector
ui(x) = (ui1, . . . , uiK)

T , 1 ≤ i ≤ m: each component uij is a certain value associated with class Cj
given by Ki(x). Depending on the nature of the classifier Ki(x), uij can be a rank value that reflects
a complete or partial ordering of all classes, or a value in {0, 1} corresponding to the predicted class
assigned to 1 and the others to zero, or a score, e.g., a discriminant value, associated with each class
Cj, which serves as a confidence measure for the class to be the true class. The latter can easily be
converted into the two former. Therefore, each classifier Ki(x) defines a mapping function from
the image domain Rp to a K-dimensional vector space defined over a set of values Ei. The general
framework is illustrated in Figure 1.

Ki(x) Gx ui z

Figure 1. General framework for classifier combination. The classifier Ki(x) produces output vector ui.
Finally, from ui the combination function produces a final decision vector z.

In this paper, uij is a rank value that reflects a complete or partial ordering of the classes. The
objective is to design an optimal combination function G that takes all the ui as input and produces as
an output the decision vector z = (z1, . . . , zK)

T , where zk is the rank associated with the decision on
class Ck, that is, z = G(u1, . . . , uM). Thus, we seek G as a discriminant function defined over RK×m.

In the following, it is assumed that (i) classifiers have equal individual performances (ii) classifiers
Ki are treated as “black boxes”. Hence, the combination operator applies only on the real space
vectors ui.

3. Conditional Independence Properties

The term “classifier independence” has been used in an intuitive manner, but what is classifier
independence? Formally, two classifiers K1 and K2 are said to be independent if

p(u1 = cj, u2 = c`) = p(u1 = cj, )p(u2 = c`) ∀1 ≤ j, ` ≤ K, (2)

with u1 and u2 being the decision values of K1 and K2. The idea is illustrated in the following example.
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Example 1 (Independent classifiers). Consider a binary classification problem (with equiprobable classes C1

and C2) and two classifiers C1 and C2 with similar performances and whose outputs are u1 and u2, i.e., their
probabilities of correct classification α1 and α2 are equal:

p(u1 = c1|c1) = p(u1 = c2|c2) = α1

p(u2 = c1|c1) = p(u2 = c2|c2) = α2

p(u1 = c1|c2) = p(u1 = c2|c1) = 1− α1

p(u2 = c1|c2) = p(u2 = c2|c1) = 1− α2.

(3)

Then the total probability rule helps to find the probability of the outputs:

p(u1 = c1) =p(u1 = c1|c1)p(c1) + p(u1 = c1|c2)p(c2) = α1/2 + (1− α1)/2 = 1/2

p(u2 = c1) =p(u2 = c1|c1)p(c1) + p(u2 = c1|c2)p(c2) = α2/2 + (1− α2)/2 = 1/2.
(4)

The two classifiers are independent if the joint probability p(u1, u2) factorizes

p(u1 = c1, u2 = c1) = p(u1 = c1)p(u2 = c1) = l
1
2
× 1

2
=

1
4

. (5)

And similarly,

p(u1 = c1, u2 = c2) = p(u1 = c2, u2 = c1) = p(u1 = c1)p(u2 = c2) =
1
2
× 1

2
=

1
4

. (6)

In Equations (5)–(6), α1 and α2 do not appear anymore. The value of p(u1, u2) should be 1
4 , independently

of the classifier performances. This is possible only if α1 = α2 = 1
2 . Thus, the ensemble performance does not

depend of the performance of the individuals. In other words, independent classifiers in the sense of definition (2)
are random classifiers (recognition rate of 50%)!

Suppose now that classifiers are very efficient and that α1 and α2 are almost identical to 1. In this case,
the probability that the two answers are correct is also almost equal to 1 and

p(u1 = c1, u2 = c2) ≈ p(c1) = 1/2 6= p(u1 = c1)p(u2 = c2), (7)

which is far from the value of 1
4 required by the condition of independence.

Example (1) suggests that interesting classifiers (non-random!) cannot be independent in the sense
of Equation (2). Making the assumption that decision vectors u1, . . . , uM are conditionally independent
given x ∈ Cj, the discriminant function G maximizes the posterior probability p(Cj)∏M

i=1 p(ui|Cj) =

p(Cj)∏M
i=1 ∏K

k=1 p(uik|Cj), which can be point estimated from the entries of the M KK-confusion
matrices, as given, for instance, in Table 1.

Let 1j<k be the indicatrix function for which 1j<k = 1 if the rank of the class Cj is less than the
alternative class Ck, and 0 otherwise. Then in Table 1, njk = 1j<k and the line and column marginals
are respectively defined by nj· = ∑K

k=1 njk and n·k = ∑K
k=1 njk. If class Cj is the kth choice for classifier

Ki, then p(uik|Cj) =
njk
nj·

.

Example 2 (Conditional independent classifiers). Consider once again the binary classification case
introduced in Example (1) and assume that the classifiers are very efficient: α1 = α2 ≈ 1. Then

p(u1 = c2, u2 = c1|c1) ≈ 1

p(u1 = c1|c1)p(u2 = c1|c1) = α1α2 ≈ 1
(8)
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We conclude that two classifiers can be conditionally independent even if they are very efficient. Equation (8)
does not indicate that the classifiers are independent. It only suggests that they can be conditionally independent
or conditionally dependent.

Therefore, conditional independence can be seen as a necessary condition for classifier
combination. But the direct use of the confusion matrix as a criterion to derive the optimal combination
rule is not feasible since the true classes are unknown.

Table 1. Confusion matrix of a classifier Ki used to estimate p(Uik|Cj) in the Bayesian approach.
Ui = Rj denotes the classifier decision on class being ranked jth.

Predicted Classes
R1 . . . Rj . . . RK

Tr
ue

cl
as

se
s C1 n11 . . . n1j . . . n1K n1·

...
...

. . .
...

...
...

Cj nj1 . . . njj . . . njK nj·
...

...
...

...
...

CK nK1 . . . nKj . . . nKK nK·
n·1 . . . n·j . . . n·K

4. Rank Class Combination Problem

4.1. Rank-Order Statistic Model

A rank classifier gives an ordered list of classes associating each class with a integer that indicates
its importance in the list; in the case of K classes, it is an integer k ∈ {1, 2, . . . , K}. The output of a
classifier Kk is a vector of ranks attributed to K classes:

uk(x) = rk =


r1k
r2k
...

rKk,

 , (9)

and rjk = rk(Cj) is the rank assigned to class Cj by the classifier Kk. By convention, the smaller the
rank assigned to a class, the more likely it is. In other words, rik < rjk if Kk judges Ci more likely than
Cj. The vector r(k) is therefore a permutation of the first K integers. The matrix R = {rik} represents
the total order ranking of the K classes attributed by the M classifiers, i.e., rik 6= ri′k, ∀i′ 6= i [28]. In the
following, for ease of writing, we will denote rik = r(k)i . Then

R = (r1 r2 . . . rM) =


r11 r12 . . . r1M
r21 r22 . . . r2M
...

...
. . .

...
rK1 rK2 . . . rKM,

 (10)

where
(
rj1 rj2 . . . rjM

)
is the set of ranks assigned to class Cj by the M classifiers.

The solution of a rank class combination problem is a total order ranking (TOR) r∗, given by a
virtual classifier minimizing the disagreement of opinions between the M classifiers. The optimization
problem is defined as follows:

r∗ = arg min
r

M

∑
k=1

f (r, rk), s.t. r ∈ SK, (11)
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where rk is the rank distribution on the K classes proposed by the classifier Kk, SK is the symmetric
group of the K! permutations [29], and f : SK × SK → R+ is a metric on SK. Solving Equation (11) is
difficult due to the constraint r ∈ SK. In the following subsections, the search for r∗ conducts to a linear
optimization program with an exact solution that depends on the metric used, i.e., the disagreement
distance or the Condorcet distance.

The choice of these metrics is motivated by a range of properties: (i) both have an intuitive
and plausible interpretation as a number of pairwise choices, (ii) they provide the best possible
description of the process of ranking classes as performed by a human, (iii) both have a number of
appealing mathematical properties such as counting rather than measuring and providing a very good
concordance indicator [30,31].

4.2. Total Order Ranking with Disagreement Distance

The disagreement between the rankings from classifiers Kk and Kk′ is measured by fd(rk, rk′) =

∑K
i=1 sgn |rik − rik′ |. The kth permutation rk can be represented by a permutation matrix P(k) =

{x(k)ij }, x(k)ij ∈ {0, 1}, with x(k)ij = 1 if class i is positioned in place j and 0 otherwise (see Figure 2).

Therefore, the constraint r ∈ SK in Equation (11) imposes ∑K
j=1 r∗ij = ∑K

i=1 r∗ij = 1, ∀i, j. Let φd(r) =

∑M
k=1 fd(r, rk) = ‖P, P(k)‖d with tensor Einstein notation. Equation (11) can then be rewritten:

r∗ = arg min
r

φd(r) = arg min
r∈SK

M

∑
k=1

K

∑
i=1

sgn |ri − rik|, (12)

where ri denotes the rank of the ith candidate in the unknown ranking r. As r can be represented by its
permutation matrix P = {xij}, it comes from the rewriting of ri = ∑j jxij in Equation (12):

φd(r) =
M

∑
k=1

K

∑
i=1

sgn |∑
j

jxij − rik| s.t. ∑
j

xij = 1, (13)

which is equivalent to:

φd(r) =
M

∑
k=1

K

∑
i=1

sgn |∑
j
(j− rik)xij| (14)

Taking into account the summation on j and the fact that xij only takes the value 1 once (and 0
elsewhere), only (j− rik) corresponding to the value j for which xij = 1 is considered.Then

φd(r) =
M

∑
k=1

K

∑
i=1

sgn(
K

∑
j
|j− rik|xij) =

M

∑
k=1

K

∑
i=1

K

∑
j=1

(sgn |j− rik|)xij. (15)

Let us define by

κij(r) =
M

∑
k=1

sgn |j− rik| =
M

∑
k=1

∣∣∣xij − x(k)ij

∣∣∣ (16)

the cost of attributing the alternative i in position j. κij is also the number of classifiers that don’t
position the alternative i in place j. κij(r) is equivalent to m− πij, where πij is the number of classifiers

who do position the alternative i in place j. Given that |xij − x(k)ij | = (xij − x(k)ij )2 because |xij − x(k)ij | ∈
{0, 1}, we obtain

φd(r) =
1
2

M

∑
k=1

K

∑
i=1

K

∑
j=1

(xij − x(k)ij )2 =
M

∑
k=1

(K−
K

∑
i=1

K

∑
j=1

xijx
(k)
ij ), (17)

and then

φd(r) =
K

∑
i=1

K

∑
i=1

(m−
M

∑
k=1

x(k)ij )xij. (18)
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In Equation (18), considering that πij = ∑M
k=1 x(k)ij is the number of classifiers that position class

Ci in place j, the linear objective function associated with Equation (12) is finally formulated as

P∗ = arg min
P

K

∑
i=1

K

∑
j=1

(M− πij)xij s.t. πij =
K

∑
k=1

x(k)ij ,
M

∑
i=1

xij =
M

∑
j=1

xij = 1, and xij ∈ {0, 1}, (19)

constrained by ∑K
i πij = ∑K

j πij = K. The form to be minimized in Equation (19) recodes the classifier
combination rule, which is reduced to solve an NP-hard binary linear programming problem (see [32]
for some resolution strategies).

K1 K2 . . . Kk . . . KM 1 2 . . . j . . . K

rik

1
2

...

i

...

K

R =

C1
C2

...

Ci

...

CK

x(k)ij = P(k)

Figure 2. Permutation matrix put for the ranking of classifier Kk.

4.3. Total Order Ranking with Condorcet Distance

To define this distance, we define a new set of matrices {Y(1), . . . , Y(m)}, where Y(k)
ij = {yij} = 1i<j

is put for the indicator matrix of classifier Kk with the convention y(k)ij = 1 if the rank of class Ci is less
than that of class Cj and 0 otherwise (see Figure 3).

Using the tables Y(k) as in Section 4.2

fC(rk, rk′) = f (Y(k), Y(k′)) =
1
2

K

∑
i

K

∑
j
|y(k)ij − y(k

′)
ij |, k, k′ = 1, . . . , M, (20)

which can be simplified as follows in the case of total order:

fC(rk, rk′) =
1
2

K

∑
i

K

∑
j
(y(k)ik − y(k

′)
ik )2 = ∑

i
∑

j
y(k)ij y(k

′)
ji . (21)

As (y(k)ij )2 = y(k)ij = 0 or 1, the consensus function associated with the Condorcet distance is given
by

φC(r) =
1
2

[
K

∑
i=1

K

∑
j=1

Myij +
K

∑
i=1

K

∑
j=1

(
M

∑
k=1

yij

)
− 2

K

∑
i=1

K

∑
j=1

yij

M

∑
k=1

y(k)ij

]
. (22)
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K1 K2 . . . Kk . . . KM 1 2 . . . j . . . K

rik

C1

C2

...

Ci

...

CK

R =

C1

C2

...

Ci

...

CK

y(k)ij = Y(k)

Figure 3. Condorcet matrices.

Let δij = ∑K
k=1 y(k)ij be the total number of classifiers preferring class Ci to Cj. Defining ∆ = {δij}

as a matrix summing the M matrices Y(k) associated with the rankings rk of the classifier Kk allows us
to rewrite φC as

φC(r) =
1
2

[
K

∑
i=1

K

∑
j=1

Myij +
K

∑
i=1

K

∑
j=1

δij − 2
K

∑
i=1

K

∑
j=1

δijyij

]
. (23)

As r defines a total order, ∑K
i=1 ∑K

j=1 yij =
K(K− 1)

2
and ∑K

i=1 ∑K
j=1 δij < M

K(K− 1)
2

.

Let θ = 1
2

(
M

K(K− 1)
2

+ ∑K
i=1 ∑K

j=1 δij

)
. Then theta is constant and φC(r) is

φC(r) = θ −
K

∑
i=1

K

∑
j=1

δijyij. (24)

Finally, the search for an optimal rank classifier combination conducts to the following binary
linear program:

max
Y

K

∑
i=1

K

∑
j=1

δijyij s.t. δij =
K

∑
k=1

y(k)ij , yij + yji = 1, i < j, yii = 0∀i

yij + yji − yik ≤ 1, ∀i 6= j 6= k, yij ∈ {0, 1}.
(25)

From a machine learning perspective, solving Equations (19) and (25) provides deterministic
matrix solutions P∗ and Y∗, respectively, from which r∗ is easily reconstructed, but these solutions are
not necessarily identical [28].

Example 3 (Classifier ensemble aggregation rule). The problem selected to illustrate our theory is that of
combining four classifiers for recognizing handwritten digits 0 to 9. Binary images from the MNIST database
are used [33]. The four classifiers are tested on a sample and proposed rankings are collected in Table 2.

The two rankings are concordant except for the predictions for digits 5 and 6.
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Table 2. Proposed rank classifier combination using disagreement and Condorcet distances.

Digits Classifier Ranks Proposed Rank

K1 K2 K3 K4 Disag. Condorcet

0 1 4 3 10 3 3
1 2 2 1 2 2 2
2 3 1 2 1 1 1
3 4 6 4 3 4 4
4 5 5 7 5 5 6
5 6 3 6 4 6 5
6 7 8 5 6 7 7
7 8 7 8 9 8 8
8 9 10 10 8 10 10
9 10 9 9 7 9 9

5. Classifier Ensemble Information Measure

Since sgn |x| ≤ |x|, then

fd(rk, rk′) =
K

∑
i=1

sgn |rik − rik′ | ≤
K

∑
i=1
|rik − rik′ |. (26)

If rik = K−∑K
i=1 y(k)ij , then from Equation (26),

K

∑
i=1
|rik − rik′ | =

K

∑
i

∣∣∣∣∣ K

∑
j
(y(k)ij − y(k

′)
ij )

∣∣∣∣∣ ≤ K

∑
i

K

∑
j

∣∣∣y(k)ij − y(k
′)

ij

∣∣∣ = 2 fC(rk, rk′). (27)

In summary, fd(rk, rk′) ≤ fC(rk, rk′), which means that fC is more uncertain than fD and could be
preferred for a classifier ensemble agreement. The question is, how precisely can we measure this
voting conjunction?

Section 4.3 introduced a matrix representation of the information. By summing for all the
tables Y(k), one obtains the matrix ∆ defined previously. If we arrange the classifiers according to a
permutation order Σ = (σ(1), σ(2), . . . , σ(K)), ∆ can be represented from matrix ∆(Σ) obtained by the
permutation of rows and columns.

The objective function to minimized is given in the general case by:

FC(r) = θ − (sum of the elements of the upper triangular part of the matrix), (28)

and as follows in the case of total orders:

FC(r) = (sum of the elements of the lower triangular part of the matrix). (29)

A measure of classifier ensemble agreement is a coefficient between 0 and 1 measuring the intensity of
the link between the set of classifier votes. The closer its value is to 1, the more the opinions of the
classifiers are in agreement. Conversely, the closer their value is to 0, the greater the disagreement
between the votes. Here, we give the coefficients of concordance for the two metrics.

5.1. Disagreement Distance

Theorem 1 (Conjunction coefficient interval for the disagreement metric). Let {Ki}M
i=1 be an ensemble

of conditionally independent classifiers voting on K classes. Then, the interval of variation of the conjunction
coefficient Id is [0, 1].

See Appendix A for the proof.
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5.2. Condorcet Distance

If M classifiers vote on K classes with pairing order comparison matrices Y(k), the sum of which
makes it possible to obtain ∆ = {δij} with δij = ∑K

k=1 y(k)ij , as defined in Section 4.3, the conjunction
coefficient is defined as

IC = 4
∑K

j=1 ∑K
j=1 δij(δij − 1)

M(M− 1)K(K− 1)
− 1. (30)

Theorem 2 (Conjunction coefficient interval for the Condorcet metric). Let {Ki}M
i=1 be an ensemble of

conditionally independent classifiers voting on K classes. Then the interval of variation of the conjunction
coefficient IC defined by (30) is

IC ∈
{
[− 1

M ; 1] if M is even,

[− 1
M−1 ; 1] otherwise.

(31)

See Appendix B for the proof.

6. Experiments

6.1. The Detection of Cervical Cancer

Many studies have shown evidence that cervical cancer may be imputed to a subset of DNA
viruses called human papillomavirus (HPV) (referred to as risky patients)that infect cutaneous and
mucosal epithelia, and in which acute infection causes benign cutaneous lesions [34,35]. Some of these
viruses infect the genital tract and cause malignant tumors, which are most commonly located in
the cervix. Even though most of these infections are controlled by the immune system, some remain
persistent and are ascribed to different types of cancers and particularly, to cervical cancer. In 2016,
cervical cancer represented the 12th most lethal female cancer in the European Union, accounting for
13,500 deaths a year and 30,400 new cases a year. Therefore, cervical cancer screening still continues to
play a critical role in the control of cervical cancer. However, the screening of a smear is nowadays
mostly made manually: a pathologist inspects each cell of a smear with a microscope to check if
it is atypical or not. Consequently, human error is always possible, and in particular, mistakenly
diagnosing atypical cells as normal. This situation can occur because of the practitioner’s fatigue or a
lack of experience or concentration. In addition, diagnosis is also linked to the preparation of cells, and
in some situations, atypical cells can be partially hidden by others, which makes their interpretation or
classification difficult. In addition, the presence of atypical cells in the entire studied population is
very uncommon (up to 1h) which makes the detection task even more difficult. Therefore, an error
is easily possible. This could have irreversible effects on the evolution of the cancer and can impact
treatment. The introduction of an automatic procedure, able to point out the pathological cells, would
both help the practitioner in his diagnosis and improve or strengthen it.

Depending on the morphology of the nuclei of the cells, the diagnosis varies: if a nucleus is
considered normal and all of the cells removed have the same diagnosis, then the cervix is considered
normal. On the other hand, if a nucleus is considered abnormal, the diagnosis is not automatically
associated with a risky smear.

We propose to test our classifier combination strategy to cluster cells into three different classes
(normal cells, atypical cells, and debris) using a certain number of classifiers.

6.2. The Dataset

The cytological dataset is constituted of smear images from 14 different women. They generally
comprise more than one hundred cells characterized by 42 morphological or textural variables. Nine
showed a negative HPV test and the other five, a positive test. In addition, few observations were
labeled by an expert who pointed out some atypical cells and noisy objects. The dataset is presented
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in detail in Table 3. Among the most recurrent patterns of abnormal cells are nucleus regularity or a
swollen aspect, nucleus size, important optical density, number of nucleoli, high core/cytoplasm ratio,
ratio of minimum/maximum width of the nucleus, etc.

The images were colored with Papanicolaou stain, which is the most widely used reference color
for the screening of cervical cancers; it makes it possible to distinguish the different nuclei, which are
colored in blue, the mother cells in dark purple to black, and the keratinized and squamous epithelium.
The images were then segmented into thumbnail images of 16× 16 pixels which correspond a priori to
objects. Most of the time, these objects are nuclei, but they may sometimes be non-identified objects that
we call “noise”. Indeed, they can correspond, for example, to a poor segmentation, a superimposed
nuclei, etc.

Table 3. Dataset characteristics.

HPV Test Total Number of Cells Number (or %) of

– Debris – – Cancer –

positive 405 78 (0.19) 49 (0.12)
positive 114 19 (0.17) 8 (0.07)
positive 206 31 (0.15) 13 (0.06)
positive 448 30 (0.06) 2 (0.004)
positive 519 70 (0.13) 33 (0.06)
negative 137 13 (0.09) – –
negative 76 5 (0.06) – –
negative 211 84 (0.39) – –
negative 251 31 (0.12) – –
negative 251 52 (0.20) – –
negative 257 40 (0.15) – –
negative 223 24 (0.11) – –
negative 691 155 (0.22) – –
negative 67 23 (0.24) – –

Total 3857 655 (0.17) 105 (0.02)

A few observations were labeled by an expert who pointed out some atypical cells and noisy
objects. The fact that a nucleus has one of these characteristics does not always imply its malignancy.
In fact, a cell can have a singular morphology but not be infected, and others may present abnormalities
that correspond to pre-cancerous lesions such as dysplastic cells and in situ carcinomas or to cancerous
cells. Figure 4a shows a cluster of abnormal cells (with large nuclei) that are not yet cancerous, because
of their low density, unlike Figure 4b, where one can observe a set of abnormal cells with dense nuclei.

(a) (b)

Figure 4. Images of cervical cells colored with Papanicolaou stain. (a) Clumps of abnormal cells with
large nuclei. (b) Abnormal cells with dense nuclei.

Table 4 summarizes the characteristics of the dataset. First, the observed data come from samples
of 14 different smears, which supposes the existence of inter-individual variability (confirmed by tests
of variance between the HPV negatives, the HPV positives, or between the two types of population;
the 5% risk threshold tests rejected the assumption of equality of means for all variables). However,
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it is possible that this variability is simply relative to the studied dataset, in the sense that the study
was done on a small number of smear samples. This assumption remains to be verified on larger
databases. It can also be noted in Table 3 that the known population of “abnormal” cells remains very
low in proportion to the other classes, and, in contrast, the recognized “default/waste” class represents
more than 15% of the data. The low proportion of the target class and the heterogeneity of the debris
present obstacles for clustering. This means that, among the cells belonging to risky patient smears,
there exists a non-null risk that some nuclei are atypical. Iin practice, this proportion is usually very
low (0.1% to 5%).

Table 4. Overview of the studied dataset.

No. of Patients No. of Nuclei No./Yype of Data

control patients 9 2165 427/noisy objects
risky patients 5 1692 105/atypical nuclei

– – 228 / noisy objects
Total 14 3857 760 objects

From this image segmentation, morphological and photometric features are extracted and
computed. In total, the studied dataset has 3857 cell samples belonging to 14 different smears and
consists of 42 variables: variables 1 to 19 represent morphological variables, and the rest corresponds
to textural and photometric characters. The channel of treatments from the smear image to the dataset
is reported in Figure 5.

Papanicolaou
smear
stain

image
processing

thumbnail
image

processing

encoding
nuclei

variable
selection
detection

Figure 5. Overview of the processing chain.

Each smear was pre-processed according to a standardized protocol: cell collection, spreading a
thin layer on slides, and the staining of these slides. Each slide was then scanned, segmented cell by
cell, and finally, underwent an extraction of 42 morphological and textural characteristics.

6.3. Experimental Protocol

Two-layer multilayer perceptrons (MLPs) were chosen as classifiers to produce the desired outputs,
which were ordered to produce the ranks. Each multilayer perceptron (MLP) contains 42 input units,
10 hidden units, and 3 output units. Training was achieved using a learning rate of 0.1 and a momentum
of 0.9 for two epochs on the training set. We deliberately trained the MLPs without optimization of a
validation set. It is important to stress that the training set for the classifier was not the same set as
the test set, the ensure that the experiments would be unbiased. The best results obtained for an MLP
were a classification error rate of 0.159± 0.022 and a false positive rate (FPR) (or false alarm ratio) of
0.133± 0.050. The FPR is the number of false positives divided by the total number of negatives N,
i.e., FP/N. The false negative rate (FNR) is the number of false negatives divided by the number of
real positive cases in the data, i.e., FN/P. In practice, this is a test result that indicates that a condition
does not hold, while in fact it does.

In order to assess the efficiency of the rank classifier combination algorithms, error rates were
computed from a certain percentage of nuclei whose labels were known. This represented 70% of
the observations in a subsample, as we took into account the 20 labeled atypical nuclei randomly
selected, and we also assumed that those coming from control patients (120) were all normal nuclei.
We proceeded in the same manner to compute the FPR which stands for the percentage of actual
atypical nuclei mis-classified.
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In Table 5 and in Figure 6a, we report the classification error rate computed from the data with
known labels and its corresponding FPR, for the two procedures. First of all, we can observe that
the Condorcet combination rule shows the best performances in terms of classification error rate and
FPR (see also Figure 6c). Indeed, only 4.28% of cells are mis-classified, whereas the disagreement
combination rule has a mis-classification rate of 4.84% in the best case, with 765 classifiers. The main
conclusion is that the success ratio is strongly improved when combining classifiers. However, it is
disappointing to see that the Condorcet algorithm results in a significant number of false negatives
(pathological cells classified as normal ones); the FNR also remains relatively high, around 10%, in
many simulations. Indeed, the classification risk is not symmetric here: the detection of pathological
cells activates the decision for treatment, and their absence implies an absence of treatment.

Table 5. Classification results with disagreement and Condorcet combination rules using a set of M
classifiers (with 4 ≤ M ≤ 1321).

Disagreement Distance Condorcet Distance

Id M Error Rate FPR FNR IC M Error Rate FPR FNR

0.873 1321 0.0800 0.0934 0.0644 0.901 1321 0.0820 0.0870 0.0777
0.901 1073 0.0544 0.0491 0.0576 0.906 1073 0.0572 0.0566 0.0561
0.866 907 0.0560 0.0553 0.0562 0.966 907 0.0428 0.0529 0.0313
0.895 845 0.0524 0.0593 0.0464 0.920 845 0.0508 0.0532 0.0465
0.870 765 0.0484 0.0502 0.0500 0.822 765 0.0516 0.0555 0.0493
0.800 538 0.0636 0.0675 0.0600 0.817 538 0.0664 0.0718 0.0592
0.792 302 0.0728 0.0766 0.0710 0.744 302 0.1020 0.0923 0.1126
0.781 205 0.0896 0.0906 0.0864 0.757 205 0.1472 0.1015 0.1968
0.759 120 0.1292 0.1157 0.1439 0.776 120 0.1472 0.1118 0.1846
0.697 95 0.1424 0.1023 0.1809 0.660 95 0.1424 0.0985 0.1888
0.706 66 0.1392 0.1098 0.1667 0.689 66 0.1548 0.1055 0.2090
0.739 49 0.1328 0.0840 0.1854 0.672 49 0.1568 0.1117 0.2067
0.694 38 0.1460 0.1152 0.1770 0.516 38 0.1772 0.1404 0.2233
0.643 19 0.1540 0.1294 0.1801 0.484 19 0.1696 0.1323 0.2032
0.496 13 0.1644 0.1127 0.2224 0.455 13 0.1728 0.1261 0.2248
0.561 4 0.1580 0.1238 0.1962 0.477 4 0.1668 0.1234 0.2130

We compared the clustering partition obtained by the three competitors: sparse k-means (SkM)
proposed by Witten and Tibshirani [36,37], general sparse multi-class linear discriminant analysis
(GSM-LDA) [38], and sparse EM (sEM)by Zhong et al. [39]. First, we can observe that among
these algorithms, the sEM shows the best performance in terms of clustering accuracy. Only 9% of
observations are mis-classified, on average, whereas the GSM-LDA algorithm has a mis-classification
rate of 15.9%, and the SkM algorithm mis-classifies 19.2% of nuclei. However, the sparse approaches
provide a better clustering results from a medical point of view since the results can be interpreted
conversely to the LDA-type algorithm, for which the fitted discriminative axis is a linear combination
of the original variables. Therefore, SkM and sEM provide information which can be interpreted to
better understand both the data and the phenomenon.

The rank classifier combination provides the best classification results. We can observe that the
global clustering error rates are considerably reduced (Table 6). Indeed, the best error rate reaches
4.28% with 907 classifiers and a conjunction coefficient of 96.6%.
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(a) Conjunction coefficients (b) Error classification rate

(c) False positive rate

Figure 6. Graphic representations of the classification results for disagreement (blue) and Condorcet
(red) distances.

Table 6. Results obtained for the sparse k-means (SkM), general sparse multi-class linear discriminant
analysis (GSM-LDA), and sparse EM (sEM) algorithms: Average and standard error of clustering error
rate, false positive rate FPR, and false negative rate FNR on 20 simulations.

Algorithm Error Rate FPR FNR

SkM [36] 0.192 ± 0.016 0.205 ± 0.044 0.165 ± 0.084
GSM-LDA [38] 0.159 ± 0.022 0.133 ± 0.050 0.118 ± 0.099

sEM [39] 0.090 ± 0.047 0.077 ± 0.022 0.062 ± 0.061

7. Conclusions and Future Research

In this paper, we show that an exact optimal combination rule for a rank classifier ensemble can
be computed as the solution to a binary linear programming problem. This rule can be seen as a
total order ranking attributed to K classes by a virtual voter resuming the points of view of M voters.
One could also stand the dual problem of the previous one, i.e., is there a distribution of marks or
values that could have been attributed to a virtual class C by the m voters? The first problem is related
to the idea of aggregating points of view, the second with the idea of summarizing profiles.

We compared disagreement and Condorcet metrics, making it possible to quantify the consensus
between the classifiers with a conjunction coefficient. The optimal rankings are not the same, i.e., the
solution depends of the metric used. But they have shown their efficiency, in addition to the appealing
property of being deterministic algorithms: they improve the classification results and ease the
interpretation and the understanding of the results. Another point worth mentioning is the theoretical
capability of handling the reject option. A weak point of this technique is that it treats all classifiers
equally and does not take into account individual classifier capabilities. This disadvantage can be
reduced to a certain degree by applying weights. The weights can be different for every classifier,
which in turn requires additional training. This idea deserves to be further explored.
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The role of variable selection appears to be significant, as it enables the improvement of both the
clustering partition and the modeling of the atypical cells in the cancer detection smear (see Figure 5).
In the future, we propose including a rule to rank the selected features and to investigate how the
number and nature of classifiers influence the results of the rank classifier combination.
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drafting the article.
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Appendix A. Conjunction Coefficient Extreme Values for Disagreement Metric

As a proof, consider the matrix ß = {πij} defined in Section 4.2 in the case when the rankings rk
are total orders. Then

K

∑
j=1

K

∑
j=1

πij(πij −M) = 0, (A1)

if all of the classifiers propose the same rankings, because πij = 0 or πij = M. Then πij(πij −M) =

0, ∀i, j. From (A1), ∑K
j=1 ∑K

j=1 π2
ij = KM2. Therefore, we define the conjunction coefficient as

Id =
∑K

j=1 ∑K
j=1 π2

ij

KM2 . (A2)

Id ≤ 1 because ∑K
j=1 ∑K

j=1 π2
ij ≤ ∑K

j=1 ∑K
j=1 πij M since πij ≤ M ∀(i, j).

Appendix B. Conjunction Coefficient Extreme Values for the Condorcet Metric

The minimum value is obtained for a maximum disagreement, i.e., if most classifiers prefer i to j
than the opposite, or, mathematically, if δij + δji = 0 or δij = δji =

M
2 , ∀i, j.

In the case of M being even

K

∑
i<j

(δij − δji)
2 =

K

∑
i<j

δ2
ij +

K

∑
i<j

δ2
ji − 2

K

∑
i<j

δjiδij. (A3)

As ∑K
i ∑K

j (δij − δji)
2 = 0 and 2 ∑K

i ∑K
j δijδji =

M2K(K−1)
4 , then

K

∑
i

K

∑
j

δ2
ij =

M2K(K− 1)
4

. (A4)

Therefore,
K

∑
i

K

∑
j

δij(δij − 1) =
K(K− 1)

2

[
M2

2
−M.

]
. (A5)

Finally,

IC =
M− 2
M− 1

− 1 = − 1
M− 1

. (A6)

The case of M being odd. Let M = 2m + 1. In the case of maximum disagreement, then ∑K
i<j(δij −

δji) = ±1 and δijδji = m(m + 1), ∀i, j. It comes ∑K
i<j δij(δij − 1) = ∑i<j 1 = K(K−1)

2 . Moreover,

K

∑
i

K

∑
j

δ2
ij =

K(K− 1)
2

[m(m + 1) + 1] (A7)
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and
K

∑
i

K

∑
j

δij(δij − 1) =
K(K− 1)

2
[m(m + 1) + 1− 2m− 1] =

K(K− 1)
2

m2. (A8)

Finally,

IC =
4m2

2m(2m + 1)
− 1 = − 1

M
. (A9)
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2. Woźniak, M.; Graña, M.; Corchado, E. A survey of multiple classifier systems as hybrid systems. Special
Issue on Information Fusion in Hybrid Intelligent Fusion Systems. Inf. Fusion 2014, 16, 3–17. [CrossRef]

3. Oza, N.; Tumer, L. Classifier ensembles: Select real-world applications. Inf. Fusion 2008, 9, 4–20. [CrossRef]
4. Han, M.; Zhu, X.; Yao, W. Remote sensing image classification based on neural network ensemble algorithm.

Neurocomputing 2012, 78, 133–138. [CrossRef]
5. Raj Kumar, P.A.; Selvakumar, S. Distributed Denial of Service Attack Detection Using an Ensemble of

Neural Classifier. Comput. Commun. 2011, 34, 1328–1341. [CrossRef]
6. Bolton, R.J.; Hand, D.J. Statistical Fraud Detection: A Review. Stat. Sci. 2002, 17, 235–255.
7. Nanni, L. Ensemble of classifiers for protein fold recognition. Neurocomputing 2006, 69, 850–853. [CrossRef]
8. Vigneron, V.; Duarte, L.T. Rank-order principal components. A separation algorithm for ordinal data

exploration. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN),
Rio, Brazil, 8–13 July 2018; pp. 1036–1041.

9. Altinçay, H.; Demirekler, M. An information theoretic framework for weight estimation in the combination
of probabilistic classifiers for speaker identification. Speech Commun. 2000, 30, 255–272. [CrossRef]

10. Yang, S.; Browne, A. Neural network ensembles: Combining multiple models for enhanced performance
using a multistage approach. Expert Syst. 2004, 21, 279–288. [CrossRef]

11. Wozniak, M. Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination; Number 519 in
Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2014.

12. Kuncheva, L.I. Classifier Ensembles for Changing Environments. In Proceedings of the 5th International
Workshop on Multiple Classifier Systems, Cagliari, Italy, 9–11 June 2004; pp. 1–15.

13. Bhatt, N.; Thakkar, A.; Ganatra, A.; Bhatt, N. Ranking of Classifiers based on Dataset Characteristics using
Active Meta Learning. Int.J. Comput. Appl. 2013, 69, 31–36. [CrossRef]

14. Abaza, A.; Ross, A. Quality Based Rank-level Fusion in Multibiometric Systems. In Proceedings of the 3rd
IEEE International Conference on Biometrics: Theory, Applications and Systems, Washington, DC, USA,
28–30 September 2009; pp. 459–464.

15. Li, Y.; Wang, N.; Perkins, E.; Zhang, C.; Gong, P. Identification and optimization of classifier genes from
multi-class earthworm microarray dataset. PLoS ONE 2010, 5, e13715. [CrossRef]

16. García-Lapresta, J.L.; Martínez-Panero, M. Borda Count Versus Approval Voting: A Fuzzy Approach.
Public Choice 2002, 112, 167–184. [CrossRef]

17. Zhang, H.; Su, J. Naive Bayesian Classifiers for Ranking. In Proceedings of the 15th European Conference
on Machine Learning, Pisa, Italy, 20–24 September 2004; Volume 3201, pp. 501–512.

18. Dietterich, T.G. Ensemble Methods in Machine Learning. In Proceedings of the First International
Workshop on Multiple Classifier Systems, Cagliari, Italy, 21–23 June 2000; Springer: London, UK, 2000;
pp. 1–15.

19. Denison, D.D.; Hansen, M.; Holmes, C.C.; Mallick, B.; Yu, B. Nonlinear Estimation and Classification;
Number 171 in Lecture Notes in Statistic; Springer: New York, NY, USA, 2003.

20. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
21. Lee, S.; Kouzani, A.; Hu, E. Random forest based lung nodule classification aided by clustering.

Comput. Med. Imaging Graph. 2010, 34, 535–542. [CrossRef] [PubMed]
22. Panigrahi, S.; Kundu, A.; Sural, S.; Majumdar, A. Credit card fraud detection: A fusion approach using

Dempster–Shafer theory and Bayesian learning. Inf. Fusion 2009, 10, 354–363. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2013.04.006
http://dx.doi.org/10.1016/j.inffus.2007.07.002
http://dx.doi.org/10.1016/j.neucom.2011.04.044
http://dx.doi.org/10.1016/j.comcom.2011.01.012
http://dx.doi.org/10.1016/j.neucom.2005.08.006
http://dx.doi.org/10.1016/S0167-6393(99)00054-0
http://dx.doi.org/10.1111/j.1468-0394.2004.00285.x
http://dx.doi.org/10.5120/12089-8269
http://dx.doi.org/10.1371/journal.pone.0013715
http://dx.doi.org/10.1023/A:1015609200117
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/j.compmedimag.2010.03.006
http://www.ncbi.nlm.nih.gov/pubmed/20430583
http://dx.doi.org/10.1016/j.inffus.2008.04.001


Entropy 2019, 21, 440 17 of 17

23. Hansen, L.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990,
12, 993–1001. [CrossRef]

24. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung Pattern Classification
for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans. Med. Imaging
2016, 35, 1207–1216. [CrossRef]

25. Kawaguchi, K. Deep Learning without Poor Local Minima. In Advances in Neural Information Processing
Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2016; pp. 586–594.

26. Datta, S.; Pihur, V.; Datta, S. An adaptive optimal ensemble classifier via bagging and rank aggregation
with applications to high dimensional data. BMC Bioinform. 2010, 11, 427. [CrossRef] [PubMed]

27. Nadal, J.; Legault, R.; Suen, C. Complementary algorithms for the recognition of totally unconstrained
handwritten numerals. In Proceedings of the 10th International Conference on Pattern Recognition,
Atlantic City, NJ, USA, 16–21 June 1990; pp. 443–446.

28. Brüggemann, R.; Patil, G. Ranking and Prioritization for Multi-Indicator Systems: Introduction to Partial Order
Applications; Environmental and Ecological Statistics; Springer: New York, NY, USA, 2011.

29. Benson, D. Representations of Elementary Abelian p-Groups and Vector Bundles, 1st ed.; Cambridge Tracts in
Mathematics; Cambridge University Press: Cambridge, UK, 2016.

30. Vigneron, V.; Duarte, L. Toward Rank Disaggregation: An Approach Based on Linear Programming and
Latent Variable Analysis. In Latent Variable Analysis and Signal Separation; Tichavský, P., Babaie-Zadeh, M.,
Michel, O.J., Thirion-Moreau, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp.
192–200.

31. Gehrlein, W.; Lepelley, D. Voting Paradoxes and Group Coherence: The Condorcet Efficiency of Voting Rules,
1st ed.; Studies in Choice and Welfare; Springer: Berlin/Heidelberg, Germany, 2011.

32. Korte, B.; Vygen, J. Combinatorial Optimization: Theory and Algorithms, 4th ed.; Springer Publishing Company,
Incorporated: Berlin/Heidelberg, Germany, 2007.

33. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

34. Li, G.; Guillaud, M.; Follen, M.; MacAulay, C. Double staining cytologic samples with quantitative
Feulgen-thionin and anti-Ki-67 immunocytochemistry as a method of distinguishing cells with abnormal
DNA content from normal cycling cells. Anal. Quant. Cytopathol. Histopathol. 2012, 34, 273–284.

35. Scheurer, M.; Guillaud, M.; Tortolero-Luna, G.; McAulay, C.; Follen, M.; Adler-Storthz, K. Human
papillomavirus-related cellular changes measured by cytometric analysis of DNA ploidy and chromatin
texture. Cytom. Part B Clin. Cytom. 2007, 72, 324–331. [CrossRef]

36. Witten, D.M.; Tibshirani, R. A framework for feature selection in clustering. J. Am. Stat. Assoc. 2010,
105, 713–726. [CrossRef] [PubMed]

37. Kondo, Y.; Salibian-Barrera, M.; Zamar, R. RSKC: An R Package for a Robust and Sparse K-Means
Clustering Algorithm. J. Stat. Softw. Artic. 2016, 72, 1–26. [CrossRef]

38. Safo, S.E.; Ahn, J. General Sparse Multi-class Linear Discriminant Analysis. Comput. Stat. Data Anal. 2016,
99, 81–90. [CrossRef]

39. Zhong, M.; Tang, H.; Chen, H.; Tang, Y. An EM algorithm for learning sparse and overcomplete
representations. Neurocomputing 2004, 57, 469–476. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1109/TMI.2016.2535865
http://dx.doi.org/10.1186/1471-2105-11-427
http://www.ncbi.nlm.nih.gov/pubmed/20716381
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1002/cyto.b.20173
http://dx.doi.org/10.1198/jasa.2010.tm09415
http://www.ncbi.nlm.nih.gov/pubmed/20811510
http://dx.doi.org/10.18637/jss.v072.i05
http://dx.doi.org/10.1016/j.csda.2016.01.011
http://dx.doi.org/10.1016/j.neucom.2003.12.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement and Model
	Conditional Independence Properties
	Rank Class Combination Problem
	Rank-Order Statistic Model
	Total Order Ranking with Disagreement Distance
	Total Order Ranking with Condorcet Distance

	Classifier Ensemble Information Measure
	Disagreement Distance
	Condorcet Distance

	Experiments
	The Detection of Cervical Cancer
	The Dataset
	Experimental Protocol

	Conclusions and Future Research
	Conjunction Coefficient Extreme Values for Disagreement Metric
	Conjunction Coefficient Extreme Values for the Condorcet Metric
	References

